
App design with Alloy
Alcino Cunha

–Daniel Jackson

“I mean ‘design’ here in the same sense that the word is used in other
design disciplines: the shaping of some artifact to meet a human need.

[…] For software, that means determining what the behavior of the
software should be: what controls it will offer, and what responses it will

provide in return.”

Concepts

• Apps are made of concepts

• Each concept is a self-contained unit of functionality with a clear purpose

• Concepts work together to provide the app overall functionality

• But can be understood independently of one another

Trash

Label

Like

Concept design

• Identify a clear purpose

• Choose the appropriate state and actions to fulfill that purpose

• The focus is on ensuring correctness and reusability

–Tony Hoare

“There are two ways of constructing a software design: One way is to
make it so simple that there are obviously no deficiencies, and the other
way is to make it so complicated that there are no obvious deficiencies.

The first method is far more difficult.”

App design

• Identify the core concepts

• Compose them, maybe providing new functionality

• The focus is on exploration

–Daniel Jackson

“[…] For software, that means determining what the behavior of the
software should be: what controls it will offer, and what responses it will

provide in return. These questions have no right or wrong answers,
only better or worse ones.”

Modeling concepts

Trash modeling a la UML

Trash “modeling” with code
class Trash<Item> {

 private HashSet<Item> accessible;
 private HashSet<Item> trashed;

 void delete(Item i) throws Exception {
 if (!accessible.contains(i)) {
 throw new Exception("Item not accessible");
 }
 if (trashed.contains(i)) {
 throw new Exception("Item already trashed");
 }
 trashed.add(i);
 accessible.remove(i);
 }

 ...
}

–Leslie Lamport

“If you’re not writing a program, don’t use a programming language.”

Trash modeling a la Jackson
concept trash [Item]
purpose
 to allow undoing of deletions
state
 accessible, trashed : set Item
actions
 create (x : Item)
 when x not in accessible or trashed
 add x to accessible
 delete (x : Item)
 when x in accessible but not trashed
 move x from accessible to trashed
 restore (x : Item)
 when x in trashed
 move x from trashed to accessible
 empty ()
 when some item in trashed
 remove every item from trashed
operational principle
 after delete(x), can restore(x) and then x in accessible
 after delete(x), can empty() and then x not in accessible or trashed

Concept modeling a la Jackson
• Name

- Optionally parametrized by types that can be specialized when composing

• Purpose

- A clear reason why you might want it

• State + Actions

- A description of the concept behavior using a transition system

• Operational principle

- Archetypical scenarios that show how the concept is fulfilled by the actions

Transition systems

Transition systems
• A popular model to describe the behavior of a system

• In some areas a model is a synonym for a transition system

• There are many variants and related formalisms

- Labeled transition systems

- Kripke structures

- Finite state machines

- Hybrid and timed automata

- ...

Transition system = States + Transitions
• States

- A state is a possible valuation to the structures of the system

- Initial states describe how the system starts

• Transitions

- A transition is a possible evolution between states

- Transitions originate from actions of the system or the environment

• Traces

- A trace is a valid path (a sequence of states) in the transition system, starting in an initial state

Trash transition system

Declarative modeling

• It is possible to describe a transition system by specifying which traces
are valid

• The specification talks about a sequence of states and not just about a
single state

• And thus requires some sort of temporal logic

Valid trash traces

Invalid trash traces

Transition systems in Alloy

Mutability
• In Alloy 6 mutable signatures and fields can be declared with keyword var

- Previously only possible with the Electrum extension

- It was possible to describe behavior in Alloy 5 by explicitly modeling the concept
of state

- But it was confusing and error prone

• Mixing mutable and static structures

- Static field inside mutable signature yields a warning

- Same for static signature extending or inside mutable one

Trash states

sig Item {}
var sig Accessible in Item {}
var sig Trashed in Item {}

Instances

• When mutable structures are declared, instances are infinite traces

• Analysis commands only return traces that can be represented finitely

- Instances are traces that loop back at some point

• Static signatures and fields have the same value in all states

• If there are mutable top-level signatures univ (and iden) are also mutable

Temporal logic
• Alloy 6 also supports linear temporal logic

• Temporal logic adds temporal operators to relational logic

• They allow us to “quantify” the validity of a formula over the different
states of a trace

• A formula without temporal operators is only required to hold in the initial
states

• Alloy 6 has both future and past temporal operators

Always, historically, and prime

always will always be true
historically was always true
' The value of in the next state

ϕ ϕ
ϕ ϕ

R R

Trash behavior
fact Behavior {

 // Initial state

 no Accessible

 no Trashed

 // Transitions

 always {

 // At most one item is created or deleted

 lone (Accessible - Accessible') + (Accessible' - Accessible)

 // All deleted items go to the trash

 Accessible - Accessible' = Trashed' - Trashed

 // If no item was deleted or created an empty must have occurred

 Accessible' = Accessible implies no Trashed'

 // ...

 }

}

😱

Trash behavior
fact Behavior {
 // Initial state
 no Accessible
 no Trashed
 // Transitions
 always {
 (some i : Item | create[i] or delete[i] or restore[i])
 or
 empty
 }
}

Anatomy of an action
• The specification of an action is a conjunction of three kinds of formulas

- Guards, that specify when it can occur

- Effects, that specify what changes when it occurs

- Frame conditions, special effects that specify what does not change when it occurs

• Guards usually have no temporal operators

- But can use past temporal operators to recall something about the past

• Effects and frame conditions use the prime operator to specify the relation between the present
and the next value of mutable signatures and fields

- If nothing is specified about a mutable signature or field it can change freely

Create item

pred create [i : Item] {
 // guard
 historically i not in Accessible
 // effect
 Accessible' = Accessible + i
 // frame condition
 Trashed' = Trashed
}

Delete item

pred delete [i : Item] {
 // guard
 i in Accessible
 // effects
 Accessible' = Accessible - i
 Trashed' = Trashed + i
}

Restore item

pred restore [i : Item] {
 // guard
 i in Trashed
 // effects
 Accessible' = Accessible + i
 Trashed' = Trashed - i
}

Empty trash

pred empty {
 // guard
 some Trashed
 // effect
 no Trashed'
 // frame condition
 Accessible' = Accessible
}

Validation

Validation

• As usual, run commands can be used to validate the model

• The scope of a mutable signature defines the maximum number of
different atoms in the full trace, not a maximum per state

Trace visualization
• The visualizer depicts two consecutive states of the trace side-by-side

- By default mutable structures are depicted with dashed lines

• A representation of the infinite trace is shown above

- Different states have different numbers

- The loop back is explicitly depicted

- Clicking on a state focus on that (and the succeeding) state

- It is possible to move forwards and backwards in the trace with → and ←

Trace visualization

Simulation

• It possible to perform “simulation” with the New instance buttons

- New config, returns a trace with a different configuration (a different
value to the immutable structures)

- New trace, returns any different trace with the same configuration

- New init, returns a trace with the same config, but a different initial state

- New fork, returns a trace with the same prefix, but a different next state

Simulation

DEMO

Specifying scenarios

• A formula can be given in a run command to look for specific scenarios

• Keyword expect can be used to distinguish positive and negative
scenarios

Semi-colon

 ; is valid after ϕ ψ ψ ϕ

Some trash scenarios
run Scenario1 {
 some i : Item {
 create[i]; delete[i]; restore[i]; delete[i]; empty
 }
} expect 1

run Scenario2 {
 some disj i,j : Item {
 create[i]; delete[j]
 }
} expect 0

run Scenario3 {
 some i : Item {
 create[i]; delete[i]; empty
}

} for 1 Item expect 1

Some trash scenarios

😯

Inconsistency

• This scenario is not possible because it cannot be extended to an infinite
trace

• Once the trash is empty no other action is possible and we stated that at
every state some action must occur

• At least a stuttering action should be possible at that point

Stuttering

A clock specification

pred clock_spec {
 h = 0 and m = 0
 always {
 m’=(m+1)%60 and
 m=59 implies h’=(h+1)%12 and
 m!=59 implies h’=h
 }
}

Ceci n'est pas une montre?!

check clock_spec

A clock specification
pred clock_spec {
 h = 0 and m = 0
 always {
 m’=(m+1)%60 and
 m=59 implies h’=(h+1)%12 and
 m!=59 implies h’=h
 or
 m’=m and h’=h
 }
}

A clock

check clock_spec

Stuttering

• It is good practice to allow the system to stutter in every state

• Stuttering can represent events by the environment or by other
components of the system (not yet modeled)

• Stuttering will enable the composition of concepts when specifying apps

Stuttering

pred stutter {
Accessible' = Accessible
Trashed' = Trashed

}

Fixing the trash behavior
fact Behavior {
 // Initial state
 no Accessible
 no Trashed
 // Transitions
 always {
 (some i : Item | create[i] or delete[i] or restore[i])
 or
 empty
 or
 stutter
 }
}

Verification

Model checking
• Model checking is the process of automatically verifying if a temporal logic

specification holds in a finite transition system model of a system

- If the specification is false a counter-example is returned

- A finite transition system may have infinite non-looping traces

- But every invalid specification can be falsified with a looping trace

• Complete or unbounded model checking explores all traces of the transition
system

• Bounded model checking explores all traces up to a given maximum number of
transitions before looping back

Verification
• As usual, check commands can be used to verify assertions

• The default verification mechanism is bounded model checking

- The default maximum number of transitions is 10

- This can be changed by setting a scope for steps

• Alloy 6 also supports unbounded model checking

- Activated by the special scope 1.. steps

- Requires model checkers nuXmv or NuSMV to be installed

Future temporal operators

always will always be true
eventually will eventually be true
after will be true in the next state
 until will eventually be true and is true until then

 releases can only stop being true after

ϕ ϕ
ϕ ϕ

ϕ ϕ
ψ ϕ ϕ ψ
ϕ ψ ψ ϕ

Future operators

ϕ ϕ ϕ ϕ ϕ ϕ ϕϕ

always ϕ

ϕ

eventually ϕ

ϕ

ϕ

after ϕ

Future operators

ψ ψ ϕψ

 until ψ ϕ

ϕ

ψ ψ ψ
ϕψ

 releases ϕ ψ

ψ ψ ψ ψ ψ ψ ψψ

Mixing operators

 ϕ
ψ ψ ψ ψ ψ

always (implies always)ϕ ψ

ϕ ψ ϕ ϕ
ψ

always (implies eventually)ϕ ψ

ϕ ψ ϕ ψ

always (implies after)ϕ ψ

Mixing operators

ϕ ϕ ϕ ϕ

always (eventually)ϕ

ϕ ϕ ϕ ϕ ϕ

eventually (always)ϕ

Past temporal operators

historically was always true
once was once true
before was true in previous state

 since was once true and was true since then

 triggered was always true back to the point where was true

ϕ ϕ
ϕ ϕ

ϕ ϕ
ψ ϕ ϕ ψ
ϕ ψ ψ ϕ

Past operators

ϕ ϕ ϕ ϕ
ψϕ

always (implies historically)ψ ϕ

ϕ ψ

always (implies once)ψ ϕ

 ϕ
ψ

ϕ ψ ϕ ψ

always (implies before)ψ ϕ

Past operators

ϕ θ θ θ
ψ

always (implies since)ψ θ ϕ

 ϕ
ψ

 ϕ
θ θ θ θ

ψ

always (implies triggered)ψ ϕ θ

θ θ θ
ψθ

Safety vs Liveness
• Safety properties prevent some undesired behaviors from happening

- Easier to model check, since it suffices to search for a finite sequence of steps that leads to a bad state

- It is irrelevant what happens afterwards, and any continuation leads to a counter-example

- The archetypal safety property is always

• Liveness properties force some desired behaviors to happen

- Harder to model check, since it is necessary to search for a complete infinite trace where the desired
behavior never happened

- Harder to specify, since they require fairness assumptions that prevent the system from stuttering forever

- The archetypal liveness property is eventually

• In this course we will focus only on safety properties

ϕ

ϕ

Some operational principles
assert Properties {

 // No item can simultaneously be accessible and trashed

 always no Accessible & Trashed

 // A restore is only possible after a delete

 all x : Item | always (restore[x] implies once delete[x])

 // If all items are in the trash and the trash is emptied no more items will exist

 always (Item in Trashed and empty implies always no Accessible)

 // After deleting an item only leaves the trash after an empty or a restore

 all x : Item | always (delete[x] implies after ((empty or restore[x]) releases x in Trashed))

 // A restore undos a delete

 all x : Item | always ((delete[x];restore[x]) implies Accessible'' = Accessible and Trashed'' = Trashed)

}

check Properties

The main operational principle
assert OperationalPrinciple {

 all x : Item | always {

 // after delete(x), can restore(x) and then x in accessible

 delete[x] implies after (x in Trashed and (restore[x] implies after x in Accessible))

 // after delete(x), can empty() and then x not in accessible or trashed

 delete[x] implies after (some Trashed and (empty implies after x not in Trashed+Accessible))

 }

}

check OperationalPrinciple for 4 Item, 20 steps

😀

Another concept

The label
concept label [Item]
purpose
 organize items into overlapping categories
state
 labels : Item -> set Label
actions
 affix (i : Item, l : Label)
 add l to the labels of i
 detach (i : Item, l : Label)
 remove l from the labels of l
 find (l : Label) : set Item
 return the items labelled with l
 clear (i : Item)
 remove item i and all its labels
operational principle
 after affix(i,l) and no detach(i,l), i in find(l)
 if no affix(i,l), or detach(i,l), i not in find(l)

The label in Alloy
sig Item {
 var labels : set Label
}
sig Label {}

fun find [l : Label] : set Item { labels.l }

fact Behavior {
 no labels
 always {
 (some i : Item, l : Label | affix[i,l] or detach[i,l])
 or
 (some i : Item | clear[i])
 or
 stutter
 }
}

Affix label

pred affix [i : Item, l : Label] {
 // guard
 i not in find[l]
 // effect
 i.labels' = i.labels + l
 // frame condition
 all j : Label - i | j.labels' = j.labels
}

Affix label

pred affix [i : Item, l : Label] {
 // guard
 i not in find[l]
 // effect
 labels' = labels + i->l
}

Detach label

pred detach [i : Item, l : Label] {
 // guard
 i in find[l]
 // effect
 labels' = labels - i->l
}

Clear item

pred clear [i : Item] {
 // effect
 labels' = labels - i->Label
}

Label scenarios
run Scenario1 {
 some i : Item, disj l,m : Label {
 affix[i,l]; affix[i,m]; clear[i]
 }
} expect 1

run Scenario2 {
 some i : Item, l : Label {
 affix[i,l]; affix[i,l]
 }
} expect 0

Label operational principle

assert OperationalPrinciple {

all i : Item, l : Label {

// after affix(i,l) and no detach(i,l), i in find(l)

always (affix[i,l] implies after ((detach[i,l] or clear[i]) releases i in find[l]))

// if no affix(i,l), or detach(i,l), i not in find(l)

all i : Item, l : Label | affix[i,l] releases i not in find[l]

always ((clear[i] or detach[i,l]) implies after (affix[i,l] releases i not in find[l]))

}

}

check OperationalPrinciple

Concept composition

Modularizing concepts

• To enable reuse and instantiation each concept should be in a
parametrized module

• The module can still be used on its own, as Alloy implicitly declares
parameter signatures

• Since a parameter signature cannot be extended with new fields, some
trick might be necessary to declare them

Trash

module Trash [Item]

sig Item {}
var sig Accessible in Item {}
var sig Trashed in Item {}

...

Label
module Label [Item]

sig Item {
var labels : set Label

}
sig Label {

var items : set Item
}
fun labels : Item -> set Label {

~items
}
...

Specifying apps
• Import the required concepts, instantiating parameter signatures as

needed

• Compose the concepts

- Enforce interleaving, by requiring at most one concept not to stutter

- Synchronize actions as needed

• Validate, validate, validate

• Check some expected properties

A filesystem

• Composed of trash and label

• Many options to explore

- When to allow affixing labels?

- When to delete labels?

- Whether to use special labels?

Free composition
open Trash[File] as trash
open Label[File] as label

sig File {}

fact Interleave {
always {

trash/stutter or
label/stutter

}
}

run Example {}

Simulation

DEMO

Filesystem v1

• Allow labelling only when accessible

• Clear labels when file is deleted

Filesystem v1
pred labelled [f : File] {

some l : Label | f in find[l]
}

fact Synchronization {
 // Allow affixing only if file is accessible
 all f : File, l : Label | always (affix[f,l] implies f in Accessible)

 // Clear all labels after file is deleted
 all f : File | always (delete[f] and labelled[f] implies after clear[f])
}

Filesystem v1
run Scenario1 {

some f : File, l : Label {
create[f]; affix[f,l]; delete[f]

}
} expect 1

run Scenario2 {
some f : File, l : Label {

create[f]; delete[f]; affix[f,l]
}

} expect 0

Filesystem v2

• Allow labelling when accessible or trashed

• Clear labels when file is permanently deleted

Filesystem v2
pred labelled [f : File] {
 some l : Label | f in find[l]
}

pred exists [f : File] {
 f in Accessible+Trashed
}

fact Synchronization {
 // Allow affixing only if file is exists
 all f : File, l : Label | always (affix[f,l] implies f in Accessible exists[f])

 // Clear all labels after file is permanently deleted
 all f : File | always {
 delete[f] f in Trashed and empty and labelled[f] implies after clear[f]
 }
}

Filesystem v2
run Scenario1 {

 some f : File, l : Label | create[f]; affix[f,l]; delete[f]

} expect 1

run Scenario2 {

 some f : File, l : Label | create[f]; delete[f]; affix[f,l]

} expect 1

run Scenario3 {

 some f : File, l : Label | create[f]; delete[f]; empty; affix[f,l]

} expect 0

run Scenario4 {

 some disj f1,f2 : File, l : Label | create[f1]; create[f2]; delete[f1]; affix[f2,l]; delete[f2]; affix[f1,l]; empty

} expect 1

run Scenario5 {

 some disj f1,f2 : File, l : Label | create[f1]; delete[f1]; affix[f1,l]; empty; create[f2]

} expect 0

Filesystem v2
pred labelled [f : File] {
 some l : Label | f in find[l]
}

pred exists [f : File] {
 f in Accessible+Trashed
}

fact Synchronization {
 // Allow affixing only if file is exists
 all f : File, l : Label | always (affix[f,l] implies exists[f])

 // Clear all labels after file is permanently deleted
 all f : File | always {
 f in Trashed and empty and labelled[f] implies after clear[f]
 ((some t : File | not exists[t] and labelled[t] and clear[t]) until clear[f])
 }
}

🫣

Filesystem v3

• Allow labelling when accessible or trashed

• Clear labels when file is permanently deleted

• Affix special label Trashed when file is deleted

• Detach special label Trashed when file is restored

Filesystem v3
one sig Trashed extends Label {}

fact Synchronization {

 // Allow affixing only if file is exists

 all f : File, l : Label | always (affix[f,l] implies exists[f])

 // Clear all labels after file is permanently deleted

 all f : File | always {

 f in Trashed and empty and labelled[f] implies after

 ((some t : File | not exists[t] and labelled[t] and clear[t]) until clear[f])

 }

 // Affix label Trashed when deleting

 all f : File | always (delete[f] and f not in find[Trashed] implies after affix[f,Trashed])

 // Detach label Trashed when restoring

 all f : File | always (restore[f] and f in find[Trashed] implies after detach[f,Trashed])

}

Epilogue

–Leslie Lamport

“A specification is an abstraction. It describes some aspects of the
system and ignores others. [...] But I don’t know how to teach you

about abstraction. A good engineer knows how to abstract the
essence of a system and suppress the unimportant details when

specifying and designing it. The art of abstraction is learned only
through experience.”

–Tony Hoare

“There are two ways of constructing a software design: One way is to
make it so simple that there are obviously no deficiencies, and the other
way is to make it so complicated that there are no obvious deficiencies.

The first method is far more difficult.”

–Alan Perlis

Epigram 31
“Simplicity does not precede complexity, but follows it.”

