
Why3: Verification of Imperative
Programs

Recall the insertion sort imperative algorithm, written for instance as a C function:

void insertionSort(int A[], int N) {

    int i, j, key;    

    for (j=1 ; j<N ; j++) {

        key = A[j];

        i = j-1;        

        while (i>=0 && A[i] > key) {

            A[i+1] = A[i];

            i--;

        }

        A[i+1] = key;

    }

}

Why3 allows for the verification of such imperative algorithms, abstracting away
from program-level details such as machine integer types or memory allocation.
WhyML contains imperative features, including mutable (reference) variables and
arrays.

The Why3 array library, available at http://why3.lri.fr/stdlib/array.html, contains in
particular the modules  array.IntArraySorted  and  array.ArrayPermut  that not
only define the relevant notions for specifying the notion of sorting, but also contain
lemmas that will facilitate automated proofs.

It is worth recalling the dichotomy between two different approaches to  deductive
program verification:

http://why3.lri.fr/stdlib/array.html


On one hand we find verifiers that target specific real-world programming
languages. Examples include Frama-C/WP, Verifast (for C and Java programs),
KeY (for Java), or SPARK;

On the other hand, tools like Why3 and the Microsoft Research tools Dafny /
Boogie offer their own programming languages targeting verification at the
algorithmic level. Why3 is not a general-purpose programming language: it is
designed for verification at the algorithmic level, rather than the program level.

Verified real-life programs can also be obtained with the latter tools, either 
by automatic extraction 

Why3 offers automatic generation of both C and OCaml code from
(verified) WhyML developments.

by encoding programs into the language of the verifier, together with a
memory model

Boogie is designed specifically to be used in this way as an intermediate
verifier
The SPARK toolset uses Why3 in this way
Micro-C and Python frontends are also available for Why3 

In order to verify an algorithm with Why3 we create a module that starts by
importing the required library modules, and write the algorithm in WhyML, the
Why3 programming language. 
WhyML belongs to the ML family of languages, which also includes SML and
OCaml. 
https://en.wikipedia.org/wiki/ML_(programming_language)

module InsertionSort

  use int.Int

  use ref.Ref

  use array.Array

  use array.IntArraySorted

  use array.ArrayPermut

https://www.frama-c.com/fc-plugins/wp.html
https://github.com/verifast/verifast
https://www.key-project.org/applications/program-verification/
https://www.adacore.com/sparkpro
https://www.microsoft.com/en-us/research/project/dafny-a-language-and-program-verifier-for-functional-correctness/
https://www.microsoft.com/en-us/research/project/boogie-an-intermediate-verification-language/
https://en.wikipedia.org/wiki/ML_(programming_language


  let insertion_sort (a: array int) 

    ensures { sorted a }

    ensures { permut_all (old a) a }

  = 

    . . . 

end

We will write the complete algorithm following step by step the C version, but adding
also annotations that are required to prove its correctness: loop invariants and
variants. 

[permalink]

  let insertion_sort (a: array int) 

    ensures { sorted a }

    ensures { permut_all (old a) a }

  =

    for j = 1 to length a - 1 do

      invariant { sorted_sub a 0 j }

      invariant { permut_all (old a) a }

      let key = a[j] in

      let i = ref (j-1) in

      

      while !i >= 0 && a[!i] > key do

          invariant { -1 <= !i <= j-1 }

          invariant { sorted_sub a 0 j }

          invariant { !i = j-1 \/ (a[j-1] <= a[j] /\ key < a[!

i+2]) }

          invariant { permut_all (old a) a[!i+1 <- key] }

          variant { !i }

          a[!i+1] <- a[!i];

https://why3.lri.fr/try/?name=test.mlw&lang=whyml&code=A4moduleyInsertionSort%2FNH1use1int7tA1IntHq1refqA1RefHq3arrayq3ArrayHqqqyIntArraySorted%2FHqqqyArrayPermut%2FNNH1letyinsertion%2Bsort%2F7nza7vmf7oBJ5ensures774sortedm79Hppypermut%2Ball%2Fj1oldnlsmF7yJ1forzjrz10to4lengthm7sp0doJyinvariant%2Feysorted%2Bsub%2Fnz0igHnnccclcsmHV1keybp72h740inHmzimuDgmAYAYfkHH3whileB7gAj7TyX7Flc7WgAoc7zZSLTTcAc7RyeAjraooUHllReclnHnniiVnAiAi7XuVhSnnnadnnnp7O3a7xnXAfA7qAz27YoYHYYuQauQi7oshhAhAZ7RsdbfH5variantfTkpHiiqiikinnn7YwHsB7PyjrTBkD2done7wHkknhnhhdFkNNN1endNN


          i := !i - 1

      done;

      a[!i+1] <- key

    done

We make the following remarks regarding the programming language:

As in many other languages (but not C), arrays contain length information:
 length a  is the length of array a. Array accesses are valid within their length

for loops are bounded iterations (as in Python). As such, there is no need to
provide variants to establish termination, or to include trivial invariants
concerning the control variables (j in the above example)

A distinction is made between normal variables like key  and j above
(immutable, as in pure FP languages), and references, which offer mutability.
for loop control variables are not references, and cannot be assigned

The instruction  let i = ref (j-1) in ...   creates the reference  i and
initializes its contents with the current value of the expression j-1.
In order to access the contents of the reference the symbol ! is used

Three (!) different assignment operators are used: 

= is a binding, rather than an assignment. It is used for immutable variables,
and also to initialize references (note that the reference variable itself is
immutable; like a C pointer, it is its contents that can be modified) 

:= is the reference assignment instruction. Think of  i := e  as the
instruction
 !i = e, similar to *i = e in C. Thus  i := !i - 1  increments the value of i
. 

←  is the array assignment operator: the instruction  a[!i+1] <- key  stores
the value of key in position !i+1 of the array a. 



And regarding the specification and annotations:

The predicate sorted concerns the entirety of the array; sorted_sub expresses
that a segment of an array is sorted:
sorted_sub a x y   means that the range between indices x and y-1 is sorted. 

The expression old a refers to the array a in its initial state; a[k <- e] refers to
the array a updated by setting the value of index k to e. 
This latter notation is used in the above example to express a loop invariant
regarding the permutation property: as it is, the current array is not a
permutation of the initial array because it does not contain the key element; the
invariant mentions the array obtained by writing it back. 

Try it Yourself: Selection sort

This lab is designed to illustrate the use of contract-based verification in Why3. You
will verify a version of the selection sort algorithm relying on three different
functions. Similarly to Frama-C/WP, the verification of a called function does not
consider the code of the callees; instead it relies entirely on their contracts. 

The selection sort algorithm sorts an array by successively placing in each position
the “next minimum” element, as follows:

[40, 20, 10, 30, 60, 0, 80]
[0, 20, 10, 30, 60, 40, 80]
[0, 10, 20, 30, 60, 40, 80]
[0, 10, 20, 30, 60, 40, 80]
[0, 10, 20, 30, 60, 40, 80]
[0, 10, 20, 30, 40, 60, 80]



[0, 10, 20, 30, 40, 60, 80]
[0, 10, 20, 30, 40, 60, 80]

The array is modified by exchanging pairs of elements, using the following swap
function. Note the use of the exchange library predicate to express the swapping
property (we could also write this “by hand”):

  let swap (a: array int) (i: int) (j: int) =

    requires { 0 <= i < length a /\ 0 <= j < length a }

    ensures { exchange (old a) a i j }

   let v = a[i] in

    a[i] <- a[j];

    a[j] <- v

Now complete the specification and invariant in the following minimum function
and verify both functions swap and select. 

  let select (a: array int) (i: int) : int 

    requires { 0 <= i < length a }

    ensures  { i <= result < length a }

    ensures  { . . . }

    = 

    let min = ref i in

      for j = i + 1 to length a - 1 do

        invariant { . . . }

        if a[j] < a[!min] then min := j

      done;

    !min

http://why3.lri.fr/stdlib/array.html#array_15


Finally, complete the definition of the selection_sort algorithm, using the above
select  function, and verify it.

 let selection_sort (a: array int) 

    ensures { sorted a }

    ensures { permut_all (old a) a }

 =

 (. . .)

Further exercises: 

�. Investigate wheteher the two behaviors are independent from each other. Is it
possible to prove only the sorting or permutation behavior in an independent
way?

�. Write an alternative version without a helper select function.

�. Replace the swap spec using exchange by your own version, including all
information required for the verification of the sorting algorithm to still succeed. 


