
Why3: State-based Development

A deductive verification tool like Why3 can be used to check the behavior of a
collection of functions working on a shared state, such as classes in object-oriented
programming (sharing instance variables), smart contracts in blockchain
development, or multi-threaded concurrent programming (based on shared
memory). 

We will illustrate this by means of an example where we model functions operating
on a bank account. 
The global shared state stores the balance of each account, identified by a number.

module Accounts_MapImp

  use int.Int

  type accNumber = int 

  type amount    = int

  val open (n :accNumber) : ()

  val deposit (n :accNumber) (x :amount) : () 

  val withdraw (n :accNumber) (x :amount) : () 

  val transfer (from :accNumber) (to_ :accNumber) (x :amount)

: () 

We need a way to associate balances with account numbers. We will use a Why3
 finite map  type for this purpose. Map types implement dictionaries; the Why3
library https://why3.lri.fr/stdlib/fmap.html makes the following available:

 a logic-level map type (module Fmap) that cannot be extracted to code; 
and two programming map types, that can be extracted (typically implemented
as hash tables)

a “functional” type (module MapApp) 
and an “imperative” type (module MapImp)

https://why3.lri.fr/stdlib/fmap.html


Since we want to program with maps we will use programming types. 

We start by using the imperative type. The read and write functions on this type are
specified in the library as follows. Note that the find and add functions used in the
contracts are synonymous logic-level functions: the behavior of programming-level
maps is specified using the Fmap logic type. 

  val find (k: key) (m: t 'v) : 'v

    requires { mem k m }

    ensures  { result = m[k] }

    ensures  { result = find k m }

  val add (k: key) (v: 'v) (m: t 'v) : unit

    writes  { m }

    ensures { m = add k v (old m) }

Programming types are used by cloning the respective module into our own. In this
concrete case we will instantiate the type of the map keys:

 clone fmap.MapImp with type key = accNumber

The type of maps with accNumber as keys is now available with name t. The
following declares the state variable accounts as a map with values of type amount:

  val accounts : t amount 

We wish to write functions to do the following tasks:
open a new account with a given account number
deposit funds into a given account 
withdraw funds from an account 
transfer funds internally from an account to another 

https://why3.lri.fr/stdlib/fmap.html#key_161
https://why3.lri.fr/stdlib/fmap.html#t_166
https://why3.lri.fr/stdlib/fmap.html#mem_174
https://why3.lri.fr/stdlib/fmap.html#find_68
https://why3.lri.fr/stdlib/fmap.html#key_161
https://why3.lri.fr/stdlib/fmap.html#t_166
https://why3.lri.fr/stdlib/fmap.html#add_50


As a first step let us consider a natural language specification of their behavior.
For instance:

given an account number n , the call open n will insert the pair (n →0) in the
accounts dictionary

given an account number n  and an amount x, the call deposit n x will add x to
the current balance of account n

The next step is to discuss what the functions should do in case they receive
unexpected argument values. What should happen if

in a call open n, the account number n already exists, i.e. it is already present in
the domain of accounts ?

in a call deposit n x, 
the number n is not a valid account number (i.e. it is not in the domain of
accounts, 
or x is a negative number ? 

We will choose not to program defensively : the functions will take for granted that
the above situations do not occur. 

So the definitions are really simple: 

  let open (n :accNumber) : ()

  = add n 0 accounts

  let deposit (n :accNumber) (x :amount) : () 

  = let bal = find n accounts in 

    add n (bal+x) accounts 



Now, in the absence of defensive programming it is the caller’s responsibility to
make sure that all calls satisfy the desired conditions, which should be included in
the contracts of the callee functions as preconditions: 

  let open (n :accNumber) : ()

    requires { not mem n accounts }

  = add n 0 accounts

  let deposit (n :accNumber) (x :amount) : () 

    requires { mem n accounts /\ x > 0 }

  = let bal = find n accounts in 

    add n (bal+x) accounts 

We will now also include postconditions in the functions’ contracts. This will not only
allow us to prove that the implementations respect the specifications (expressed
above in natural language), but also that no calls are made that do not respect the
preconditions.

  let open (n :accNumber) : ()

    requires { not mem n accounts }

    ensures  { mem n accounts /\ find n accounts = 0 }

    ensures  { forall a :accNumber. mem a accounts <-> mem a (

old accounts) \/ a = n } 

    writes   { accounts }

  = add n 0 accounts

  let deposit (n :accNumber) (x :amount) : () 

    requires { mem n accounts /\ x > 0 }

    ensures  { find n accounts = find n (old accounts) + x }

    ensures  { forall a :accNumber. mem a accounts  /\ a <> n 



                   -> find a accounts = find a (old accounts)

}

    ensures  { forall a :accNumber. mem a accounts <-> mem a

(old accounts) } 

    writes   { accounts }

  = let bal = find n accounts in 

    add n (bal+x) accounts 

Note that: 

The postcondition highlighted in deposit expresses an obvious fact that is
implicit in the natural language spec, but should be stated explicitly in the
contract: all balances are preserved, with the exception of account n

The contracts also include postconditions relating the keysets (domains) of the
mapping before and after execution of each function

The frame conditions   writes ...   make explicit the effects of the functions,
i.e. the parts of the global state that are modified by them

State Invariants

We may wish to prove that certain properties of the global state always hold, i.e. they
are invariants of all the state-changing functions. 

For instance: 

The balance of every account is non-negative

Such properties may be treated by simply including them simultaneously and pre-
and postconditions in all functions. We may then add the following to the contracts
of the functions defined above:



    requires { forall a :accNumber. mem a accounts -> find a a

ccounts >= 0 }

    ensures  { forall a :accNumber. mem a accounts -> find a a

ccounts >= 0 }

Exercise
Complete the definition of the module by equipping the remaining functions with
appropriate contracts and proving their correctness. 

  let withdraw (n :accNumber) (x :amount) : () 

  = let bal = find n accounts in 

    add n (bal-x) accounts 

  let transfer (from :accNumber) (to_ :accNumber) (x :amount)

: () 

  = let balfrom = find from accounts in 

    let balto   = find to_  accounts in 

    add to_  (balto  +x) accounts ;

    add from (balfrom-x) accounts 

Record types and type invariants

We could alternatively used a declarative / functional type for maps. We will
illustrate their use with an alternative implementation of the above module

module Accounts_MapApp_Record

  use int.Int



  type accNumber = int 

  type amount    = int

  clone fmap.MapApp with type key = accNumber

  type state = { mutable bal: t amount }

    invariant  { forall a :accNumber. mem a bal -> find a bal

>= 0 }

    by { bal = create() }

  val accounts :state

Declaring the state using a record type allows us to include the state invariant
directly in the type definition, which makes it unnecessary to include it explicitly as a
pre- and postcondition in function definitions (verification conditions will be created
automatically for all state-changing functions, ensuring the preservation of the type
invariant). 

Note that: 
The by clause is mandatory. Its role is to provide a witness satisfying the type
invariant. We simply provide the empty mapping as example (it is returned by the
create function)
Record fields are by default immutable (as in functional programming). Mutable
fields must be explicitly identified as above

Both in the code and the spec, the balance value will have to be referred using
record field notation. Note also the use of the <- assignment operator: since we are
now using an applicative map type, the add function may not have side effects — in
functional style, it takes a map and returns a new map).

  let open (n :accNumber) : ()

    requires { not mem n accounts.bal }

    ensures  { mem n accounts.bal /\ find n accounts.bal = 0 }



    ensures  { forall a :accNumber. mem a accounts.bal <-> mem

a (old accounts.bal) \/ a = n } 

    writes   { accounts.bal }

  = accounts.bal <- add n 0 accounts.bal 

  let deposit (n :accNumber) (x :amount) : () 

    requires { mem n accounts.bal /\ x > 0 }

    ensures  { find n accounts.bal = find n (old accounts.bal)

+ x }

    ensures  { forall a :accNumber. mem a accounts.bal  /\ a <

> n 

                -> find a accounts.bal = find a (old accounts.

bal) }

    ensures  { forall a :accNumber. mem a accounts.bal <-> mem

a (old accounts.bal) } 

    writes   { accounts.bal }

  = let baln = find n accounts.bal in

    accounts.bal <- add n (baln+x) accounts.bal 

Exercises
�. Complete the definition of this alternative implementation, by writing all the

remaining functions and their contracts (do not include the type invariant in the
contracts). Observe carefully all verification conditions, in particular those
pertaining to the type invariant. 

�. Prove also the postcondition of the following main function 

  let main ()

    ensures { find 3333 accounts.bal = 200 }

  = accounts.bal <- create()  ;

    open 1111 ;

    open 2222 ;

    open 3333 ;



    deposit 1111 100 ; 

    deposit 2222 100 ; 

    transfer 1111 3333 100 ;

    transfer 2222 3333 100 

    

Challenge
Consider now that we want to prove properties involving the global assets held in the
accounts:

The create and transfer functions do not modify the total value of these
assets;
 deposit and withdraw increase or decrease the total value by x 

In order to state these properties we need a way to compute this global value (at
logic level). The problem is that the domain of the map types is a set, and thus not
iterable.  

We may address this problem by including in the record type a ghost field of a list
type (i.e. a field that is not meant for programming, only kept for specification/logic
purposes), and including in the type invariant information tying the list to the domain
of the map;

  use list.Mem

  type state = { mutable bal: t amount ; mutable ghost domain

: list accNumber }

    invariant  { (forall a :accNumber. mem a bal -> find a bal

>= 0) /\

                 (forall a :accNumber. MapApp.mem a bal <-> Me

m.mem a domain) }

    by { bal = create() ; domain = Nil }



  val accounts :state

Now write a function to calculate the total value of the assets in the accounts (by
traversing the domain list), and use it to extend the contracts with the properties
expressed above.


