

Introduction

- Stated differently, we are often interested in moving away from pure logical validity (i.e. validity in all models) towards a more refined notion of validity restricted to a specific class of models.
- There are two ways for specifying such a class of models:
	- ▶ To provide a *set of axioms* (sentences that are expected to hold in them).
	- \blacktriangleright To pinpoint the models of interest.
- *First-order theories* provide a basis for the kind of reasoning just described.

Maria João Frade (HASLab, DI-UM) SMT SMT MFES 2022/23 5/70

Theories - basic concepts

Let T be a first-order theory.

- *T* is said to be a *consistent* theory if at least one *T* -structure exists.
- \bullet *T* is said to be a *complete* theory if, for every *V*-sentence ϕ , either $\mathcal{T} \models \phi$ or $\mathcal{T} \models \neg \phi$.
- *T* is said to be a *decidable* theory if there exists a decision procedure for checking *T* -validity.
- A subset $A \subseteq T$ is called an *axiom set* for the theory T, when T is the deductive closure of *A*, i.e. $\phi \in \mathcal{T}$ iff $\mathcal{A} \models \phi$.
- A theory *T* is *finitely* (resp. *recursively*) *axiomatizable* if it possesses a finite (resp. recursive) set of axioms.
- A *fragment* of a theory is a syntactically-restricted subset of formulae of the theory.
- Maria João Frade (HASLab, DI-UM) SMT SMT MFES 2022/23 7/70

Theories - basic concepts

Let V be a vocabulary of a first-order language.

- \bullet A first-order *theory* $\mathcal T$ is a set of *V*-sentences that is closed under derivability (i.e., $\mathcal{T} \models \phi$ implies $\phi \in \mathcal{T}$).
- \bullet A *T*-structure is a *V*-structure that validates every formula of *T*.
- A formula ϕ is \mathcal{T} -valid if every \mathcal{T} -structure validates ϕ .
- \bullet A formula ϕ is *T*-satisfiable if some *T*-structure validates ϕ .
- Two formulae ϕ and ψ are *T*-equivalent if $\mathcal{T} \models \phi \leftrightarrow \psi$ (i.e. for every *T*-structure *M*, $M \models \phi$ iff $M \models \psi$).
- Maria João Frade (HASLab, DI-UM) SMT SMT MFES 2022/23 6/70

Theories - some results

- For a given *V*-structure *M*, the theory $\text{Th}(\mathcal{M}) = \{\phi \mid \mathcal{M} \models \phi, \text{for all } \}$ is complete.
	- These semantically defined theories are useful when one is interested in reasoning in some specific mathematical domain such as the natural numbers, rational numbers, etc.
	- Such theories may lack an axiomatisation, which seriously compromises its use in purely deductive reasoning.
- **If a theory is complete and recursive axiomatizable, it can be shown to be** decidable.

Maria João Frade (HASLab, DI-UM) SMT SMT MEES 2022/23 8/70

Theories - decidability problem

- The decidability criterion for *T*-validity is crucial for mechanised reasoning in the theory T .
- It may be necessary (or convenient) to restrict the class of formulas under consideration to a suitable *fragment* (i.e., syntactical constraint).
- The T-validity problem in a fragment refers to the decision about whether or not $\phi \in \mathcal{T}$ when ϕ belongs to the fragment under consideration.
- A fragment of interest is the *quantifier-free (QF) fragment*.

Maria João Frade (HASLab, DI-UM) SMT SMT MFES 2022/23 9/70

Presburger arithmetic $\mathcal{T}_{\mathbb{N}}$

- \bullet The theory of *Presburger arithmetic* $\mathcal{T}_{\mathbb{N}}$ is the additive fragment of the theory of Peano.
- Vocabulary: $V_{\mathbb{N}} = \{0, 1, +, =\}$
- Axioms:
	- \blacktriangleright axioms of \mathcal{T}_F
	-
	- ► $\forall x. \neg(x+1=0)$ (zero)

	► $\forall x. y. x + 1 = y + 1 \rightarrow x = y$ (successor)
	-
	- ► $\forall x, y. \ x + 1 = y + 1 \rightarrow x = y$ (successor)
► $\forall x. \ x + 0 = x$ *(plus zero)*
	- ► $\forall x. x + 0 = x$ (plus zero)

	► $\forall x. y. x + (y + 1) = (x + y) + 1$ (plus successor) $\forall x, y. \; x + (y + 1) = (x + y) + 1$ *(plus successor)*
	- \triangleright for every formula ϕ with $\mathsf{FV}(\phi) = \{x\}$ (axiom schema of induction)

 $\phi[0/x] \wedge (\forall x. \phi \rightarrow \phi[x+1/x]) \rightarrow \forall x. \phi$

 \bullet $\mathcal{T}_{\mathbb{N}}$ is both complete and decidable (Presburger, 1929), but it has double exponential complexity.

Maria João Frade (HASLab, DI-UM) SMT SMT MFES 2022/23 11/70

Equality and uninterpreted functions \mathcal{T}_{F}

- The **vocabulary** of the theory of *equality* T_F consists of
	- equality $(=)$, which is the only interpreted symbol (whose meaning is defined via the axioms of \mathcal{T}_E):
	- \triangleright constant, function and predicate symbols, which are uninterpreted (except as they relate to $=$).

Axioms:

- \blacktriangleright *reflexivity:* $\forall x. x = x$
- \blacktriangleright symmetry: $\forall x, y$. $x = y \rightarrow y = x$
- **Figure 1** transitivity: $\forall x, y, z$, $x = y \land y = z \rightarrow x = z$
- \triangleright *congruence for functions:* for every function $f \in \mathcal{T}$ with ar(f) = *n*,

 $\forall \overline{x}, \overline{y}.$ $(x_1 = y_1 \land ... \land x_n = y_n) \rightarrow f(x_1, ..., x_n) = f(y_1, ..., y_n)$

 \triangleright *congruence for predicates:* for every predicate $P \in \mathcal{T}$ with ar(P) = *n*,

 $\forall \overline{x}, \overline{y}, (x_1 = y_1 \land \ldots \land x_n = y_n) \rightarrow (P(x_1, \ldots, x_n) \leftrightarrow P(y_1, \ldots, y_n))$

 σ \mathcal{T}_F -validity is undecidable, but efficiently decidable for the QF fragment.

```
Maria João Frade (HASLab, DI-UM) SMT SMT MFES 2022/23 10/70
```
Linear integer arithmetic $\mathcal{T}_{\mathbb{Z}}$

- Vocabulary: $V_{\mathbb{Z}} = \{..., -2, -1, 0, 1, 2, ..., -3, -2, 2, 3, ..., +, -, >, =\}$
- \bullet Each symbol is interpreted with its standard mathematical meaning in $\mathbb Z$.
	- \triangleright Note: \dots , -3 ^{*-*}, -2 ^{*-*}, 2 ^{*-*}, 3 ^{*-*}, \dots are unary functions. For example, the intended meaning of $3 \cdot x$ is $x + x + x$, and of $-2 \cdot x$ is $-x - x$.

$\mathcal{T}_{\mathbb{Z}}$ and $\mathcal{T}_{\mathbb{N}}$ have the same expressiveness

- For every formula of $\mathcal{T}_\mathbb{Z}$ there is an equisatisfiable formula of $\mathcal{T}_\mathbb{N}$.
- For every formula of $\mathcal{T}_{\mathbb{N}}$ there is an equisatisfiable formula of $\mathcal{T}_{\mathbb{Z}}$.

Let ϕ be a formula of $\mathcal{T}_{\mathbb{Z}}$ and ψ a formula of $\mathcal{T}_{\mathbb{N}}$. ϕ and ψ are *equisatisfiable* if

ϕ is \mathcal{T}_z -satisfiable if ψ is \mathcal{T}_z -satisfiable

 σ $\mathcal{T}_{\mathbb{Z}}$ is both complete and decidable via the rewriting of $\mathcal{T}_{\mathbb{Z}}$ -formulae into τ_{N} -formulae.

Maria João Frade (HASLab, DI-UM) SMT SMT MFES 2022/23 12/70

$\mathcal{T}_{\mathbb{Z}}$ versus $\mathcal{T}_{\mathbb{N}}$

Consider the $\mathcal{T}_{\mathbb{Z}}$ -formula $\forall x, y.\exists z. y + 3x - 4 > -2z$

• For each variable *v* ranging over the integers, introduce two variables, v_p and *vⁿ* ranging over the non-negative integers.

$$
\forall x_p, x_n, y_p, y_n \exists z_p, z_n. (y_p - y_n) + 3(x_p - x_n) - 4 > -2(z_p - z_n)
$$

• Eliminate negation.

 $\forall x_n, x_n, y_n, y_n \exists z_n, z_n, y_n + 3x_n + 2z_n > 2z_n + y_n + 3x_n + 4$

Eliminate *>* and numbers.

 $\forall x_n, x_n, y_p, y_n \exists z_p, z_n \exists u. \quad \neg(u = 0) \ \land \ y_p + x_p + x_p + x_p + z_n + z_p =$ $z_n + z_n + y_n + x_n + x_n + x_n + 1 + 1 + 1 + 1 + u$

This is a \mathcal{T}_{N} -formula equisatisfiable to the original one.

Maria João Frade (HASLab, DI-UM) SMT SMT MFES 2022/23 13/70

Linear rational arithmetic \mathcal{T}_{Ω}

- The full theory of rational numbers (with addition and multiplication) is *undecidable*, since the property of being a natural number can be encoded in it.
- \bullet But the theory of *linear arithmetic over rational numbers* \mathcal{T}_0 is decidable, and actually more efficiently than the corresponding theory of integers.
- Vocabulary: $V_0 = \{0, 1, +, -, =, \geq\}$
- **Axioms:** 10 axioms (see Manna's book)
- Rational coefficients can be expressed in \mathcal{T}_0 .

The formula $\frac{5}{2}x + \frac{4}{3}y \le 6$ can be written as the $\mathcal{T}_{\mathbb{Q}}$ -formula

 $36 \ge 15x + 8y$

 σ \mathcal{T}_0 is decidable and its quantifier-free fragment is efficiently decidable.

Maria João Frade (HASLab, DI-UM) SMT SMT MFES 2022/23 15/70

$\mathcal{T}_{\mathbb{N}}$ versus $\mathcal{T}_{\mathbb{Z}}$

The $\mathcal{T}_{\mathbb{N}}$ -formula

 $\forall x.\exists y. x = y + 1$

is equisatisfiable to the $\mathcal{T}_{\mathbb{Z}}$ -formula

 $\forall x. x > -1 \rightarrow \exists y. y > -1 \land x = y + 1$

To decide $\mathcal{T}_{\mathbb{Z}}$ -validity for a $\mathcal{T}_{\mathbb{Z}}$ -formula ϕ

- transform $\neg \phi$ to an equisatisfiable $\mathcal{T}_{\mathbb{N}}$ -formula $\neg \psi$
- decide $\mathcal{T}_{\mathbb{N}}$ -validity of ψ

Maria João Frade (HASLab, DI-UM) SMT SMT MEES 2022/23 14/70

Reals $\mathcal{T}_{\mathbb{R}}$

- \bullet Surprisingly, the *theory of reals* $\mathcal{T}_{\mathbb{R}}$ is decidable even in the presence of multiplication and quantifiers.
- Vocabulary: $V_{\mathbb{R}} = \{0, 1, +, \times, -, =, \geq\}$
- **Axioms:** 17 axioms (see Manna's book)

The inclusion of multiplication allows a formula like $\exists x. x^2 = 3$ to be expressed $(x^2$ abbreviates $x \times x$). This formula should be $\mathcal{T}_\mathbb{R}$ -valid, since the assignment $x \mapsto \sqrt{3}$ satisfies $x^2 = 3$.

 σ $\mathcal{T}_{\mathbb{R}}$ is decidable (Tarski, 1949). However, it has a high time complexity (doubly exponential).

Maria João Frade (HASLab, DI-UM) SMT SMT MFES 2022/23 16/70

Difference arithmetic

- **•** Difference logic is a fragment (a sub-theory) of linear arithmetic.
- Atomic formulas have the form $x y \leq c$, for variables x and y and constant *c*.
- Conjunctions of difference arithmetic inequalities can be checked very efficiently for satisfiability by searching for negative cycles in weighted directed graphs.

Graph representation: each variable corresponds to a node, and an inequality of the form $x - y \leq c$ corresponds to an edge from *y* to *x* with weight *c*.

 \bullet The quantifier-free satisfiability problem is solvable in $\mathcal{O}(|V||E|)$.

Other theories

Fixed-size bit-vectors

- \blacktriangleright Model bit-level operations of machine words, including 2^n -modular operations (where n is the word size), shift operations, etc.
- \triangleright Decision procedures for the theory of fixed-size bit vectors often rely on appropriate encodings in propositional logic.

Algebraic data structures

- \triangleright The theories describe data structures that are ubiquitous in programming like lists, stacks, binary trees, etc.
- \triangleright These theories are built around the theory of equality with uninterpreted functions, and are normally efficiently decidable for the quantifier-free fragment.

Arrays \mathcal{T}_A and $\mathcal{T}_A^=$

- Arrays are modeled in logic as applicative data structures.
- Vocabulary: $V_A = \{read, write, =\}$
- Axioms:
	- \triangleright (reflexivity), (symmetry) and (transitivity) of \mathcal{T}_{F}
	- $\forall a, i, j, i = j \rightarrow read(a, i) = read(a, j)$
	- $\forall a, i, j, v, i = j \rightarrow read(write(a, i, v), j) = v$
	- $\forall a, i, j, v. \ \neg(i = j) \rightarrow read(write(a, i, v), j) = read(a, j)$
- \bullet = is only defined for array elements.
- $\mathcal{T}_{\mathsf{A}}^{\mathsf{=}}$ is the theory \mathcal{T}_{A} plus an axiom (extensionality) to capture $=$ on arrays.
	- $\forall a, b. \ (\forall i. \ read(a, i) = read(b, i)) \leftrightarrow a = b$
- Both \mathcal{T}_A and $\mathcal{T}_A^=$ are undecidable. But their quantifier-free fragments are decidable.
- Alternative fragments are often preferred that subsume the quantifier-free fragment (allowing restricted forms of index quantification).

```
Maria João Frade (HASLab, DI-UM) SMT National SMT MFES 2022/23 18/70
```
Combining theories

• In practice, the most of the formulae we want to check need a combination of theories.

Checking $x+2 = y \rightarrow f(\text{read}(write(a, x, 3), y-2)) = f(y-x+1)$ involves 3 theories: equality and uninterpreted functions, arrays and arithmetic.

• Given theories \mathcal{T}_1 and \mathcal{T}_2 such that $\mathcal{V}_1 \cap \mathcal{V}_2 = \{=\}$, the *combined theory* $\mathcal{T}_1 \cup \mathcal{T}_2$ has vocabulary $\mathcal{V}_1 \cup \mathcal{V}_2$ and axioms $A_1 \cup A_2$

[Nelson&Oppen, 1979] showed that if

- **Example 3** satisfiability of the quantifier-free fragment of \mathcal{T}_1 is decidable,
- **Example 3** satisfiability of the quantifier-free fragment of \mathcal{T}_2 is decidable, and
- \triangleright certain technical requirements are met.

then the satisfiability in the quantifier-free fragment of $\mathcal{T}_1 \cup \mathcal{T}_2$ is decidable.

Most methods available are based on the Nelson-Oppen combination method.

Maria João Frade (HASLab, DI-UM) SMT SMT MFES 2022/23 19/70

Maria João Frade (HASLab, DI-UM) SMT SMT MFES 2022/23 20/70

The SMT-LIB repository

- Catalog of theory declarations semi-formal specification of theories of interest
	- \triangleright A theory defines a vocabulary of sorts and functions. The meaning of the theory symbols are specified in the theory declaration.
- Catalog of logic declarations semi-formal specification of fragments of (combinations of) theories
	- \triangleright A logic consists of one or more theories, together with some restrictions on the kinds of expressions that may be used within that logic.
- **•** Library of benchmarks
- Utility tools (parsers, converters, ...)
- Useful links (documentation, solvers, ...)
- See http://smtlib.cs.uiowa.edu

Maria João Frade (HASLab, DI-UM) SMT SMT MFES 2022/23 25/70

Theorem provers / SAT checkers

 ϕ is valid iff $\neg \phi$ is unsatisfiable

It may happen that, for a given formula, a SMT solver returns a timeout, while another SMT solver returns a concrete answer.

Maria João Frade (HASLab, DI-UM) SMT SMT MFES 2022/23 27/70

The SMT-LIB language

- Textual, command-based I/O format for SMT solvers.
	- ▶ Two versions: SMT-LIB 1, SMT-LIB 2 (last version: 2.6)
- Intended mostly for machine processing.
- All input to and output from a conforming solver is a sequence of one or more *S-expressions*

 \langle S-exp \rangle ::= \langle token \rangle | $(\langle$ S-exp $\rangle^*)$

- SMT-LIB language expresses logical statements in a many-sorted first-order logic. Each well-formed expression has a unique *sort* (type).
- **•** Typical usage:
	- \triangleright Asserting a series of logical statements, in the context of a given logic.
	- \triangleright Checking their satisfiability in the logic.
	- \triangleright Exploring resulting models (if SAT) or proofs (if UNSAT)

Maria João Frade (HASLab, DI-UM) SMT SMT MFES 2022/23 26/70

SMT-LIB 2 example

(set-logic QF UFLIA) $($ declare-fun \times () Int) (declare-fun y () Int) (declare-fun z () Int) $(assert (distinct x y z))$ (s) (assert $(>(+ \times v)$ $(* 2 z))$) (assert (*>*= x 0)) (assert (*>*= y 0)) (assert (*>*= z 0)) (check-sat) (get-model) $(get-value (x y z))$

SMT-LIB 2 example

SMT-LIB 2 example

 $x = x + 1$; $a[i] = x + 2;$ $y = a[i];$

MARIA JOS 2022/23 32/70

SMT MFES 2022/23 30 / 70

Single-assignment (SA) form

- A program is in *single-assignment (SA) form* if all its variables satisfies the following proprety:
	- ▶ *Once a variable has been used (i.e., read or assigned) it is not assigned again.*
- To encode a (branching) program into a logical formula, one should first convert the program into a SA form in wich multiple indexed version of each variable are used (a new version for each assignment made).

Program model in SMT-LIB 2

Conditional normal form

The second step for the logical enconding of the program is to convert the SA program into *conditional normal form*: a sequence of statements of the form (if b then S), where S is an atomic statement.

• The idea is that every atomic statement is guarded by the conjunction of the conditions in the execution path leading to it.

SMT solvers APIs

- Several SAT solvers have APIs for different programming languages that allow an incremental use of the solver.
- **•** For instance, Z3Py: the Z3 Python API.

- There are many available SMT solvers:
	- \triangleright some are targeted to specific theories;
	- \triangleright many support SMT-LIB format;
	- \blacktriangleright many provide non-standard features.
- **•** Features to have into account:
	- \blacktriangleright the efficiency of the solver for the targeted theories;
	- \blacktriangleright the solver's license:
	- \blacktriangleright the ways to interface with the solver;
	- \blacktriangleright the "support" (is it being actively developed?).

See https://smtlib.cs.uiowa.edu

pySMT library

- The pySMT library allows a Python program to communicate with several SMT solvers based on a common language.
- This makes it possible to code a problem independently of the SMT solver, and run the same problem with several SMT solvers.

Applications

SMT solvers are the core engine of many tools for

- **•** program analysis
- **•** program verification
- **•** test-cases generation
- **•** bounded model checking of SW
- modeling
- **•** planning and scheduling
- ...

Maria João Frade (HASLab, DI-UM) SMT SMT MFES 2022/23 44/70

Program verification/analysis

The general architecture of program verification/analysis tools is powered by a *Verification Conditions Generator (VCGen)* that produces verification conditions (also called "proof obligations") that are then passed to a SMT solver to be "discharged". Examples of such tools: Boogie, Why3, Frama-C, ESC/JAVA2.

Scheduling

Job-shop-scheduling decision problem

- **•** Consider *n* jobs.
- **•** Each job has *m* tasks of varying duration that must be performed consecutively on *m* machines.
- The start of a new task can be delayed as long as needed in order for a machine to become available, but tasks cannot be interrupted once they are started.

Given a total maximum time *max* and the duration of each task, the problem consists of deciding whether there is a schedule such that the end-time of every task is less than or equal to *max* time units.

Two types of constraints:

- Precedence between two tasks in the same job.
- Resource: a machine cannot run two different tasks at the same time.

Maria João Frade (HASLab, DI-UM) SMT SMT MFES 2022/23 47/70

Deductive program verification

Program with pre-condition, post-condition and loop invariant

PRE: $n > 1 \land i = 1 \land m = A[0]$ while (i *<* n) INV: $i \le n \wedge \forall j, 0 \le j \le i \to m > A[j]$ if $(A[i] > m)$ $m = A[i];$ $i = i+1$: POS: $\forall j. 0 \leq j < n \rightarrow m \geq A[j]$

Proof obligations

- \bullet Initialization: PRE \rightarrow INV
- **A** Preservation:

 $(i < n \wedge \text{INV}) \rightarrow (A[i] > m \rightarrow \text{INV}[(i+1)/i][A[i]/m]) \wedge (A[i] \leq m \rightarrow \text{query}$ $INV[(i + 1)/i]$

• Utility: $(\text{INV} \land i > n) \rightarrow \text{POS}$

Maria João Frade (HASLab, DI-UM) SMT SMT MFES 2022/23 46/70

Scheduling

- \bullet d_{ij} duration of the *j*-th task of the job *i*
- \bullet t_{ij} start-time for the *j*-th task of the job *i*
- **Constraints**
	- **Precedence:** for every *i, j,* $t_{i,j+1} > t_{i,j} + d_{i,j}$
	- ▶ Resource: for every $i \neq i'$, $(t_{ij} \geq t_{i'j} + d_{i'j}) \vee (t_{i'j} \geq t_{ij} + d_{ij})$
	- \triangleright The start time of the first task of every job i must be greater than or equal to zero $t_{i1} > 0$
	- \blacktriangleright The end time of the last task must be less than or equal to max $t_{im} + d_{im} \leq max$

Find a solution for this problem

Maria João Frade (HASLab, DI-UM) SMT SMT MFES 2022/23 48/70

The "lazy" approach

Methodology:

- \triangleright Abstract the input formula to a propositional one.
- \blacktriangleright Feed it to a (DPLL-based) SAT solver.
- \triangleright Use a theory decision procedure to refine the formula and guide the SAT solver.
- Why "lazy"? Theory information used lazily when checking *T* -consistency of propositional models.

e Characteristics:

- \triangleright SAT solver and theory solver continuously interact.
- \blacktriangleright Modular and flexible.
- **Tools: Z3, CVC4, Yices 2, MathSAT, Barcelogic, ...**

Maria João Frade (HASLab, DI-UM) SMT SMT MFES 2022/23 53/70

Boolean abstraction

 $\psi:$ $g(a) = c$ $g(a) = c \wedge (f(g(a)) \neq f(c) \vee g(a) = d) \wedge c \neq d$
 P_1 prop (ψ) : $P_1 \wedge (\neg P_2 \vee P_3) \wedge \neg P_4$

- The boolean abstraction constructed this way over-approximates satisfiability of the formula.
	- **Even** if ψ is not *T*-satisfiable, prop (ψ) can be satisfiable.
- However, if boolean abstraction prop (ψ) is unsatisfiable, then ψ is also unsatisfiable.

Boolean abstraction

Define a bijective function prop, called *boolean abstraction function*, that maps each SMT formula to a overapproximate SAT formula.

Given a formula ψ with atoms $\{a_1, \ldots, a_n\}$ and a set of propositional variables ${P_1, \ldots, P_n}$ not occurring in ψ ,

- The *abstraction mapping*, prop, from formulas over $\{a_1, \ldots, a_n\}$ to propositional formulas over $\{P_1, \ldots, P_n\}$, is defined as the homomorphism induced by prop $(a_i) = P_i$.
- \bullet The inverse prop⁻¹ simply replaces propositional variables P_i with their associated atom *ai*.

$$
\psi: \qquad \underbrace{g(a) = c}_{P_1} \land \underbrace{(f(g(a)) \neq f(c)}_{\neg P_2} \lor \underbrace{g(a) = d}_{P_3}) \land \underbrace{c \neq d}_{\neg P_4}
$$

prop(ψ) : $P_1 \wedge (\neg P_2 \vee P_3) \wedge \neg P_4$

Maria João Frade (HASLab, DI-UM) SMT SMT MFES 2022/23 54/70

Boolean abstraction

For an assignment *A* of prop(ψ), let the set $\Phi(A)$ of first-order literals be defined as follows

$$
\Phi(\mathcal{A}) = \{ \text{prop}^{-1}(P_i) \mid \mathcal{A}(P_i) = 1 \} \cup \{ \neg \text{prop}^{-1}(P_i) \mid \mathcal{A}(P_i) = 0 \}
$$

$$
\psi: \qquad \underbrace{g(a) = c}_{P_1} \land (\underbrace{f(g(a)) \neq f(c)}_{\neg P_2} \lor \underbrace{g(a) = d}_{P_3}) \land \underbrace{c \neq d}_{\neg P_4}
$$
\n
$$
\text{prop}(\psi): \qquad P_1 \land (\neg P_2 \lor P_3) \land \neg P_4
$$

• Consider the SAT assignment for $prop(\psi)$,

$$
\mathcal{A} = \{P_1 \mapsto 1, P_2 \mapsto 0, P_4 \mapsto 0\}
$$

 $\Phi(A) = \{g(a) = c, f(g(a)) \neq f(c), c \neq d\}$ is not *T*-satisfiable.

 \bullet This is because τ -atoms that may be related to each other are abstracted using different boolean variables.

Maria João Frade (HASLab, DI-UM) SMT SMT MES 2022/23 56/70

The "lazy" approach (simplest version)

- \bullet Given a CNF *F*, **SAT-Solver**(*F*) returns a tuple (r, A) where *r* is SAT if *F* is satisfiable and UNSAT otherwise, and *A* is an assignment that satisfies *F* if *r* is SAT.
- **•** Given a set of literals *S*, **T-Solver**(*S*) returns a tuple (r, J) where *r* is SAT if *S* is *T* -satisfiable and UNSAT otherwise, and *J* is a justification if *r* is UNSAT.
- Given an *T* -unsatisfiable set of literals *S*, a *justification* (a.k.a. *unsat core*) for *S* is any unsatisfiable subset *J* of *S*. A justification *J* is *non-redundant* (or $minimal$) if there is no strict subset J' of J that is also unsatisfiable.

Maria João Frade (HASLab, DI-UM) SMT SMT MFES 2022/23 57/70

SMT-Solver($q(a) = c \wedge (f(q(a)) \neq f(c) \vee q(a) = d) \wedge c \neq d$)

• $F = \text{prop}(\psi) = P_1 \wedge (\neg P_2 \vee P_3) \wedge \neg P_4$

———————————————

———————————————

- SAT-Solver(*F*) = SAT, $A = \{P_1 \mapsto 1, P_2 \mapsto 0, P_4 \mapsto 0\}$
- $\Phi(\mathcal{A}) = \{g(a) = c, f(g(a)) \neq f(c), c \neq d\}$ $T-Solver(\Phi(A)) = UNSAT$, $J = \{q(a) = c, f(q(a)) \neq f(c), c \neq d\}$
- $C = \neg P_1 \lor P_2 \lor P_4$
- \bullet $F = P_1 \wedge (\neg P_2 \vee P_2) \wedge \neg P_4 \wedge (\neg P_1 \vee P_2 \vee P_4)$ $SAT-Solver(F) = SAT$, $A = {P_1 \mapsto 1, P_2 \mapsto 1, P_3 \mapsto 1, P_4 \mapsto 0}$
- $\Phi(\mathcal{A}) = \{g(a) = c, f(g(a)) = f(c), g(a) = d, c \neq d\}$ $T\text{-}Solver(\Phi(A)) = \text{UNSAT}, J = \{g(a) = c, f(g(a)) = f(c), g(a) = d, c \neq d\}$
- $C = \neg P_1 \lor \neg P_2 \lor \neg P_3 \lor P_4$
- \bullet $F = P_1 \wedge (\neg P_2 \vee P_3) \wedge \neg P_4 \wedge (\neg P_1 \vee P_2 \vee P_4) \wedge (\neg P_1 \vee \neg P_2 \vee \neg P_3 \vee P_4)$ $SAT-Solver(F) =$ UNSAT

Maria João Frade (HASLab, DI-UM) SMT SMT MFES 2022/23 59/70

The "lazy" approach (simplest version)

Basic SAT and theory solver integration

SMT-Solver (ψ) { $F \leftarrow \textsf{prop}(\psi)$ loop *{* $(r, \mathcal{A}) \leftarrow$ **SAT-Solver** (F) if $r =$ UNSAT then return UNSAT $(r, J) \leftarrow$ **T-Solver**($\Phi(A)$) if *r* = SAT then return SAT $C \leftarrow \bigvee_{B \in J} \neg \mathsf{prop}(B)$ $F \leftarrow F \wedge C$ *} }*

If a valuation A satisfying F is found, but $\Phi(A)$ is T-unsatisfiable, we add to F a clause C which has the effect of excluding A when the SAT solver is invoked again in the next iteration. This clause is called a *"theory lemma"* or a *"theory conflict clause"*.

Maria João Frade (HASLab, DI-UM) SMT SMT MFES 2022/23 58/70

SMT-Solver($x = 3 \wedge (f(x + y) = f(y) \vee y = 2) \wedge x = y$)

- $F = \text{prop}(\psi) = P_1 \wedge (P_2 \vee P_3) \wedge P_4$
- SAT-Solver(*F*) = SAT, $A = {P_1 \mapsto 1, P_2 \mapsto 0, P_3 \mapsto 1, P_4 \mapsto 1}$
- $\Phi(\mathcal{A}) = \{x = 3, f(x + y) \neq f(y), y = 2, x = y\}$ $T-Solver(\Phi(A)) = UNSAT$, $J = \{x = 3, y = 2, x = y\}$
- $C = \neg P_1 \lor \neg P_2 \lor \neg P_4$
- \bullet $F = P_1 \wedge (P_2 \vee P_3) \wedge P_4 \wedge (\neg P_1 \vee \neg P_3 \vee \neg P_4)$ $SAT-Solver(F) = SAT$, $\mathcal{A} = \{P_1 \mapsto 1, P_2 \mapsto 1, P_3 \mapsto 0, P_4 \mapsto 1\}$
- $\Phi(\mathcal{A}) = \{x = 3, f(x + y) = f(y), y \neq 2, x = y\}$ T-Solver($\Phi(A)$) = **SAT**

———————————————

Maria João Frade (HASLab, DI-UM) SMT SMT MFES 2022/23 60/70

The "lazy" approach (enhancements)

Several enhancements are possible to increase efficiency of this basic algorithm:

- If $\Phi(A)$ is *T*-unsatisfiable, identify a small justification (or unsat core) of it and add its negation as a clause.
- Check *T* -satisfiability of partial assignment *A* as it grows.
- **If** $\Phi(\mathcal{A})$ is *T*-unsatisfiable, backtrack to some point where the assignment was still *T* -satisfiable.

Maria João Frade (HASLab, DI-UM) SMT SMT MFES 2022/23 61/70

Integration with DPLL

- Lazy SMT solvers are based on the integration of a SAT solver and one (or more) theory solver(s).
- The basic architectural schema described by the SMT-solver algorithm is also called "lazy offline" approach, because the SAT solver is re-invoked from scratch each time an assignment is found *T* -unsatisfiable. S **framework**
- Some more enhancements are possible if one does not use the SAT solver as a "blackbox".
	- \triangleright Check *T*-satisfiability of partial assignment *A* as it grows.
	- If $\Phi(A)$ is *T*-unsatisfiable, backtrack to some point where the assignment was still *T* -satisfiable.
- To this end we need to integrate the theory solver right into the DPLL algorithm of the SAT solver. This architectural schema is called "lazy online" approach.
- Combination of DPLL-based SAT solver and decision procedure for conjunctive *T* formula is called *DPLL(T) framework*.

```
Maria João Frade (HASLab, DI-UM) SMT SMT MFES 2022/23 63/70
```
Unsat cores

- \bullet Given a $\mathcal T$ -unsatisfiable set of literals S , a justification (a.k.a. unsat core) for *S* is any unsatisfiable subset *J* of *S*.
- \bullet So, the easiest justification S is the set S itself.
- However, conflict clauses obtained this way are too weak.
	- \blacktriangleright Suppose $\Phi(\mathcal{A})=\{x=0, x=3, l_1, l_2, \ldots, l_{50}\}.$ This set is unsat.
	- ▶ Theory conflict clause $C = \bigvee_{B \in \Phi(\mathcal{A})} \neg \text{prop}(B)$ prevents that exact same assignment. But it doesn't prevent many other bad assignments involving $x = 0$ and $x = 3$. **30 2 Decimiliers** Final Logician Proposition Proposition Prevents for Exact
	- In fact, there are 2^{50} unsat assignments containing $x = 0$ and $x = 3$, but C just prevents one of them! otherwise
- Efficiency can be improved if we have a more precise justification. Ideally, a minimal unsat core. This way we block many assignments using just one theory conflict clause. $\frac{1}{1}$. function DC implements $\frac{1}{2}$ a. $\frac{1}{2}$ a. Then way we block many assignments in

Maria João Frade (HASLab, DI-UM) SMT **MFES 2022/23** 62/70 $\frac{1}{2}$ which $\frac{1}{2}$ is $\frac{1}{2}$ on $\frac{1}{2}$

ł

DPLL framework for SAT solvers ł **1. Else Backbrack** For SAT solvers

 $\mathcal{L}(\mathcal{S}) = \mathcal{L}(\mathcal{S})$, while $\mathcal{L}(\mathcal{S}) = \mathcal{L}(\mathcal{S})$ and $\mathcal{L}(\mathcal{S}) = \mathcal{L}(\mathcal{S})$ does not an approximately dominant $\mathcal{L}(\mathcal{S})$

7. *backtrack*-*level* := Analyze-Conflict();

7. *backtrack*-*level* := Analyze-Conflict();

Main benefits of lazy approach

• Every tool does what it is good at:

- \triangleright SAT solver takes care of Boolean information.
- \blacktriangleright Theory solver takes care of theory information.
- Modular approach:
	- \triangleright SAT and theory solvers communicate via a simple API.
	- \triangleright SMT for a new theory only requires new theory solver.
- Almost all competitive SMT solvers integrate theory solvers use $DPLL(\mathcal{T})$ framework.

Maria João Frade (HASLab, DI-UM) SMT Natia João Frade (HASLab, DI-UM) SMT

Solving SMT problems

- The theory solver works only with sets of literals.
- In practice, we need to deal not only with
	- \blacktriangleright arbitrary Boolean combinations of literals,
	- \blacktriangleright but also with formulas with quantifiers
- Some more sophisticated SMT solvers are able to handle formulas involving quantifiers. But usually one loses decidability...

Maria João Frade (HASLab, DI-UM) SMT NES 2022/23 70/70