

Introduction

- Stated differently, we are often interested in moving away from pure logical validity (i.e. validity in all models) towards a more refined notion of validity restricted to a specific class of models.
- There are two ways for specifying such a class of models:
 - To provide a set of axioms (sentences that are expected to hold in them).
 - To pinpoint the models of interest.
- First-order theories provide a basis for the kind of reasoning just described.

SMT

Maria João Frade (HASLab, DI-UM)

MFES 2022/23 5 / 70

Theories - basic concepts

Let $\ensuremath{\mathcal{T}}$ be a first-order theory.

- \mathcal{T} is said to be a *consistent* theory if at least one \mathcal{T} -structure exists.
- \mathcal{T} is said to be a *complete* theory if, for every \mathcal{V} -sentence ϕ , either $\mathcal{T} \models \phi$ or $\mathcal{T} \models \neg \phi$.
- \mathcal{T} is said to be a *decidable* theory if there exists a decision procedure for checking \mathcal{T} -validity.
- A subset A ⊆ T is called an *axiom set* for the theory T, when T is the deductive closure of A, i.e. φ ∈ T iff A ⊨ φ.
- A theory T is *finitely* (resp. *recursively*) *axiomatizable* if it possesses a finite (resp. recursive) set of axioms.
- A *fragment* of a theory is a syntactically-restricted subset of formulae of the theory.

SMT

Maria João Frade (HASLab, DI-UM)

MFES 2022/23 7 / 70

Theories - basic concepts

Let $\ensuremath{\mathcal{V}}$ be a vocabulary of a first-order language.

- A first-order *theory T* is a set of *V*-sentences that is closed under derivability (i.e., *T* ⊨ φ implies φ ∈ *T*).
- \bullet A $\mathcal{T}\mbox{-structure}$ is a $\mathcal{V}\mbox{-structure}$ that validates every formula of \mathcal{T} .
- A formula ϕ is \mathcal{T} -valid if every \mathcal{T} -structure validates ϕ .
- A formula ϕ is \mathcal{T} -satisfiable if some \mathcal{T} -structure validates ϕ .
- Two formulae ϕ and ψ are \mathcal{T} -equivalent if $\mathcal{T} \models \phi \leftrightarrow \psi$ (i.e, for every \mathcal{T} -structure $\mathcal{M}, \mathcal{M} \models \phi$ iff $\mathcal{M} \models \psi$).

SMT

Maria João Frade (HASLab, DI-UM)

MFES 2022/23 6 / 70

Theories - some results

- For a given V-structure M, the theory Th(M)= {φ | M ⊨ φ, for all } is complete.
 - These semantically defined theories are useful when one is interested in reasoning in some specific mathematical domain such as the natural numbers, rational numbers, etc.
 - Such theories may lack an axiomatisation, which seriously compromises its use in purely deductive reasoning.
- If a theory is complete and recursive axiomatizable, it can be shown to be decidable.

Maria João Frade (HASLab, DI-UM)

Theories - decidability problem

- The decidability criterion for \mathcal{T} -validity is crucial for mechanised reasoning in the theory \mathcal{T} .
- It may be necessary (or convenient) to restrict the class of formulas under consideration to a suitable *fragment* (i.e., syntactical constraint).
- The *T*-validity problem in a fragment refers to the decision about whether or not φ ∈ *T* when φ belongs to the fragment under consideration.

SMT

• A fragment of interest is the quantifier-free (QF) fragment.

Maria João Frade (HASLab, DI-UM)

MFES 2022/23 9 / 70

Presburger arithmetic $\mathcal{T}_{\mathbb{N}}$

- The theory of *Presburger arithmetic* $\mathcal{T}_{\mathbb{N}}$ is the additive fragment of the theory of Peano.
- Vocabulary: $\mathcal{V}_{\mathbb{N}} = \{0, 1, +, =\}$
- Axioms:
 - axioms of \mathcal{T}_{E}
 - $\blacktriangleright \quad \forall x. \ \neg(x+1=0)$
 - $\blacktriangleright \ \forall x,y. \ x+1=y+1 \rightarrow x=y$
 - $\blacktriangleright \quad \forall x. \ x + 0 = x$

- (successor) (plus zero) (plus successor)
- ► $\forall x, y. \ x + (y+1) = (x+y) + 1$
- for every formula ϕ with $FV(\phi) = \{x\}$ (axiom schema of induction)

 $\phi[0/x] \land (\forall x. \ \phi \to \phi[x+1/x]) \to \forall x. \ \phi$

• $\mathcal{T}_{\mathbb{N}}$ is both complete and decidable (Presburger, 1929), but it has double exponential complexity.

SMT

Maria João Frade (HASLab, DI-UM)

MFES 2022/23 11 / 70

(zero)

Equality and uninterpreted functions \mathcal{T}_{E}

- The **vocabulary** of the theory of *equality* \mathcal{T}_E consists of
 - equality (=), which is the only interpreted symbol (whose meaning is defined via the axioms of T_E);
 - constant, function and predicate symbols, which are uninterpreted (except as they relate to =).

• Axioms:

- reflexivity: $\forall x. \ x = x$
- symmetry: $\forall x, y. \ x = y \rightarrow y = x$
- ▶ transitivity: $\forall x, y, z. \ x = y \land y = z \rightarrow x = z$
- congruence for functions: for every function $f \in \mathcal{T}$ with ar(f) = n,

 $\forall \overline{x}, \overline{y}. (x_1 = y_1 \land \ldots \land x_n = y_n) \to f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n)$

• congruence for predicates: for every predicate $P \in \mathcal{T}$ with ar(P) = n,

 $\forall \overline{x}, \overline{y}. (x_1 = y_1 \land \ldots \land x_n = y_n) \to (P(x_1, \ldots, x_n) \leftrightarrow P(y_1, \ldots, y_n))$

• T_{E} -validity is undecidable, but efficiently decidable for the QF fragment.

SMT

```
Maria João Frade (HASLab, DI-UM)
```

```
MFES 2022/23 10 / 70
```

Linear integer arithmetic $\mathcal{T}_{\mathbb{Z}}$

- Vocabulary: $\mathcal{V}_{\mathbb{Z}} = \{\dots, -2, -1, 0, 1, 2, \dots, -3 \cdot, -2 \cdot, 2 \cdot, 3 \cdot, \dots, +, -, >, =\}$
- Each symbol is interpreted with its standard mathematical meaning in \mathbb{Z} .
 - Note: ..., -3·, -2·, 2·, 3·, ... are unary functions. For example, the intended meaning of 3 · x is x + x + x, and of −2 · x is −x − x.

$\mathcal{T}_{\mathbb{Z}}$ and $\mathcal{T}_{\mathbb{N}}$ have the same expressiveness

- For every formula of $\mathcal{T}_{\mathbb{Z}}$ there is an equisatisfiable formula of $\mathcal{T}_{\mathbb{N}}$.
- For every formula of $\mathcal{T}_{\mathbb{N}}$ there is an equisatisfiable formula of $\mathcal{T}_{\mathbb{Z}}.$

Let ϕ be a formula of $\mathcal{T}_{\mathbb{Z}}$ and ψ a formula of $\mathcal{T}_{\mathbb{N}}$. ϕ and ψ are *equisatisfiable* if

ϕ is $\mathcal{T}_{\mathbb{Z}}$ -satisfiable iff ψ is $\mathcal{T}_{\mathbb{N}}$ -satisfiable

• $\mathcal{T}_{\mathbb{Z}}$ is both complete and decidable via the rewriting of $\mathcal{T}_{\mathbb{Z}}$ -formulae into $\mathcal{T}_{\mathbb{N}}$ -formulae.

Maria João Frade (HASLab, DI-UM)

$\mathcal{T}_{\mathbb{Z}}$ versus $\mathcal{T}_{\mathbb{N}}$

Consider the $\mathcal{T}_{\mathbb{Z}}$ -formula $\forall x, y. \exists z. \ y + 3x - 4 > -2z$

• For each variable v ranging over the integers, introduce two variables, v_p and v_n ranging over the non-negative integers.

$$\forall x_p, x_n, y_p, y_n. \exists z_p, z_n. \ (y_p - y_n) + 3(x_p - x_n) - 4 > -2(z_p - z_n)$$

• Eliminate negation.

$$\forall x_p, x_n, y_p, y_n. \exists z_p, z_n. \ y_p + 3x_p + 2z_p > 2z_n + y_n + 3x_n + 4z_n + 3x_n + 3x_n + 4z_n + 3x_n + 3$$

• Eliminate > and numbers.

 $\begin{array}{l} \forall x_p, x_n, y_p, y_n. \exists z_p, z_n. \exists u. \ \neg(u=0) \ \land \ y_p + x_p + x_p + x_p + z_n + z_p = \\ z_n + z_n + y_n + x_n + x_n + x_n + 1 + 1 + 1 + 1 + u \end{array}$

SMT

This is a $\mathcal{T}_{\mathbb{N}}$ -formula equisatisfiable to the original one.

Maria João Frade (HASLab, DI-UM)

MFES 2022/23 13 / 70

Linear rational arithmetic $\mathcal{T}_{\mathbb{O}}$

- The full theory of rational numbers (with addition and multiplication) is *undecidable*, since the property of being a natural number can be encoded in it.
- But the theory of *linear arithmetic over rational numbers* $\mathcal{T}_{\mathbb{Q}}$ is decidable, and actually more efficiently than the corresponding theory of integers.
- Vocabulary: $\mathcal{V}_{\mathbb{Q}} = \{0, 1, +, -, =, \geq\}$
- Axioms: 10 axioms (see Manna's book)
- \bullet Rational coefficients can be expressed in $\mathcal{T}_{\mathbb{Q}}.$

The formula $\frac{5}{2}x + \frac{4}{3}y \le 6$ can be written as the $\mathcal{T}_{\mathbb{Q}}$ -formula

 $36 \ge 15x + 8y$

SMT

• $\mathcal{T}_{\mathbb{Q}}$ is decidable and its quantifier-free fragment is efficiently decidable.

Maria João Frade (HASLab, DI-UM)

MFES 2022/23 15 / 70

$\mathcal{T}_{\mathbb{N}}$ versus $\mathcal{T}_{\mathbb{Z}}$

The $\mathcal{T}_{\mathbb{N}}$ -formula

$$\forall x. \exists y. \ x = y + 1$$

is equisatisfiable to the $\mathcal{T}_{\mathbb{Z}}\text{-}\mathsf{formula}$

 $\forall x. \ x > -1 \rightarrow \exists y. \ y > -1 \land x = y + 1$

To decide $\mathcal{T}_{\mathbb{Z}}$ -validity for a $\mathcal{T}_{\mathbb{Z}}$ -formula ϕ

- $\bullet\,$ transform $\neg\phi$ to an equisatisfiable $\mathcal{T}_{\mathbb{N}}\text{-formula}\,\,\neg\psi$
- decide $\mathcal{T}_{\mathbb{N}}$ -validity of ψ

Maria João Frade (HASLab, DI-UM)

MFES 2022/23 14 / 70

Reals $\mathcal{T}_{\mathbb{R}}$

• Surprisingly, the *theory of reals* $\mathcal{T}_{\mathbb{R}}$ is decidable even in the presence of multiplication and quantifiers.

SMT

- Vocabulary: $\mathcal{V}_{\mathbb{R}} = \{0, 1, +, \times, -, =, \geq\}$
- Axioms: 17 axioms (see Manna's book)

The inclusion of multiplication allows a formula like $\exists x. x^2 = 3$ to be expressed $(x^2 \text{ abbreviates } x \times x)$. This formula should be $\mathcal{T}_{\mathbb{R}}$ -valid, since the assignment $x \mapsto \sqrt{3}$ satisfies $x^2 = 3$.

• $\mathcal{T}_{\mathbb{R}}$ is decidable (Tarski, 1949). However, it has a high time complexity (doubly exponential).

Maria João Frade (HASLab, DI-UM)

Difference arithmetic

- *Difference logic* is a fragment (a sub-theory) of linear arithmetic.
- Atomic formulas have the form $x y \le c$, for variables x and y and constant c.
- Conjunctions of difference arithmetic inequalities can be checked very efficiently for satisfiability by searching for negative cycles in weighted directed graphs.

Graph representation: each variable corresponds to a node, and an inequality of the form $x - y \le c$ corresponds to an edge from y to x with weight c.

• The quantifier-free satisfiability problem is solvable in $\mathcal{O}(|V||E|)$.

SMT

```
Maria João Frade (HASLab, DI-UM)
```

MFES 2022/23 17 / 70

Other theories

• Fixed-size bit-vectors

- ▶ Model bit-level operations of machine words, including 2ⁿ-modular operations (where n is the word size), shift operations, etc.
- Decision procedures for the theory of fixed-size bit vectors often rely on appropriate encodings in propositional logic.

• Algebraic data structures

- The theories describe data structures that are ubiquitous in programming like lists, stacks, binary trees, etc.
- These theories are built around the theory of equality with uninterpreted functions, and are normally efficiently decidable for the quantifier-free fragment.

SMT

Arrays \mathcal{T}_A and $\mathcal{T}_A^=$

- Arrays are modeled in logic as applicative data structures.
- Vocabulary: $\mathcal{V}_{A} = \{read, write, =\}$
- Axioms:
 - (reflexivity), (symmetry) and (transitivity) of T_E
 - $\blacktriangleright \quad \forall a, i, j. \ i = j \rightarrow read(a, i) = read(a, j)$
 - $\blacktriangleright \quad \forall a, i, j, v. \ i = j \rightarrow read(write(a, i, v), j) = v$
 - $\blacktriangleright \quad \forall a, i, j, v. \ \neg(i = j) \rightarrow read(write(a, i, v), j) = read(a, j)$
- \bullet = is only defined for array elements.
- $\mathcal{T}_A^=$ is the theory \mathcal{T}_A plus an axiom (extensionality) to capture = on arrays.
 - $\forall a, b. \ (\forall i. \ read(a, i) = read(b, i)) \leftrightarrow a = b$
- Both \mathcal{T}_A and $\mathcal{T}_A^=$ are undecidable. But their quantifier-free fragments are decidable.
- Alternative fragments are often preferred that subsume the quantifier-free fragment (allowing restricted forms of index quantification).

SMT

```
Maria João Frade (HASLab, DI-UM)
```

MFES 2022/23 18 / 70

Combining theories

• In practice, the most of the formulae we want to check need a combination of theories.

 $\begin{array}{ll} \mbox{Checking} & x+2=y \rightarrow f(read(write(a,x,3),y-2))=f(y-x+1) \\ \mbox{involves 3 theories: equality and uninterpreted functions, arrays and arithmetic.} \end{array}$

• Given theories \mathcal{T}_1 and \mathcal{T}_2 such that $\mathcal{V}_1 \cap \mathcal{V}_2 = \{=\}$, the *combined theory* $\mathcal{T}_1 \cup \mathcal{T}_2$ has vocabulary $\mathcal{V}_1 \cup \mathcal{V}_2$ and axioms $A_1 \cup A_2$

[Nelson&Oppen, 1979] showed that if

- \blacktriangleright satisfiability of the quantifier-free fragment of \mathcal{T}_1 is decidable,
- \blacktriangleright satisfiability of the quantifier-free fragment of \mathcal{T}_2 is decidable, and
- certain technical requirements are met,

then the satisfiability in the quantifier-free fragment of $\mathcal{T}_1 \cup \mathcal{T}_2$ is decidable.

• Most methods available are based on the Nelson-Oppen combination method.

MFES 2022/23 19 / 70

Maria João Frade (HASLab, DI-UM)

	Satisfiability Modulo Theories
SMT solvers	• The Satisfiability Modulo Theories (SMT) problem is a variation of the SAT problem for first-order logic, with the interpretation of symbols constrained by (a combination of) specific theories (i.e., it is the problem of determining, for a theory T and given a formula ϕ , whether ϕ is T -satisfiable).
	 SMT solvers address this problem by using as building blocks a propositional SAT solver, and state-of-the-art theory solvers
	 theories need not be finitely or even first-order axiomatizable specialized inference methods are used for each theory
	• The underlying logic of SMT solvers is many-sorted first-order logic with equality.
Maria João Frade (HASLab, DI-UM) SMT MFES 2022/23 21/70	Maria João Frade (HASLab, DI-UM) SMT MFES 2022/23 22 / 70
SMT-solvers basic architecture	SMT solvers
Basic architecture	 In the last two decades, SMT procedures have undergone dramatic progress. There has been enormous improvements in efficiency and expressiveness of SMT procedures for the more commonly occurring theories.
SAT-solver	The annual competition ¹ for SMT procedures plays an important rule in driving progress in this area.
Nelson and Oppen combination module	 A key ingredient is SMT-LIB², an online resource that proposes, as a standard, a unified notation and a collection of benchmarks for performance evaluation and comparison of tools.
DP for linear arithmetic uninterpreted functions DP for arrays Lists	 Some SMT solvers: Z3, CVC4, Alt-Ergo, Yices 2, MathSAT, Boolector, Usually, SMT solvers accept input either in a proprietary format or in
	¹ http://www.smtcomp.org ² http://smtlib.cs.uiowa.edu

The SMT-LIB repository

- Catalog of theory declarations semi-formal specification of theories of interest
 - A theory defines a vocabulary of sorts and functions. The meaning of the theory symbols are specified in the theory declaration.
- Catalog of logic declarations semi-formal specification of fragments of (combinations of) theories

SMT

iff

- A logic consists of one or more theories, together with some restrictions on the kinds of expressions that may be used within that logic.
- Library of benchmarks
- Utility tools (parsers, converters, ...)
- Useful links (documentation, solvers, ...)
- See http://smtlib.cs.uiowa.edu

Maria João Frade (HASLab, DI-UM)

MFES 2022/23 25 / 70

 ϕ is valid

 $\neg \phi$ is unsatisfiable

It may happen that, for a given formula, a SMT solver returns a timeout, while another SMT solver returns a concrete answer.

SMT

Maria João Frade (HASLab, DI-UM)

27 / 70

The SMT-LIB language

- $\bullet\,$ Textual, command-based I/O format for SMT solvers.
 - ► Two versions: SMT-LIB 1, SMT-LIB 2 (last version: 2.6)
- Intended mostly for machine processing.
- All input to and output from a conforming solver is a sequence of one or more *S*-expressions

 $\langle S-exp \rangle$::= $\langle token \rangle \mid (\langle S-exp \rangle^*)$

- SMT-LIB language expresses logical statements in a many-sorted first-order logic. Each well-formed expression has a unique *sort* (type).
- Typical usage:
 - Asserting a series of logical statements, in the context of a given logic.
 - Checking their satisfiability in the logic.
 - Exploring resulting models (if SAT) or proofs (if UNSAT)

SMT

Maria João Frade (HASLab, DI-UM)

MFES 2022/23 26 / 70

SMT-LIB 2 example

(set-logic QF_UFLIA) (declare-fun \times () Int) (declare-fun y () Int) (declare-fun z () Int) (assert (distinct $\times y z$)) (assert (>= $\times 0$)) (assert (>= $\times 0$)) (assert (>= z 0)) (check-sat) (get-model) (get-value ($\times y z$))

<pre>sat (model (define-fun z () Int 1) (define-fun y () Int 0) (define-fun x () Int 3)) ((x 3) (y 0) (z 1))</pre>			
Maria João Frade (HASLab, DI-UM)	SMT	MFES 2022/23	28 / 70

SMT-LIB 2 example

<pre>(set-logic QF_UFLIA) (set-option :produce-unsat-cores true) (declare-fun x () Int) (declare-fun y () Int) (declare-fun z () Int) (assert (! (distinct x y z) :named a1)) (assert (! (> (+ x y) (* 2 z)) :named a2)) (assert (! (> = x 0) :named a3)) (assert (! (> = x 0) :named a3)) (assert (! (> = z 0) :named a4)) (assert (! (> = z 0) :named a5)) (assert (! (> = z x) :named a6)) (assert (! (> x y) :named a7)) (assert (! (> y z) :named a8)) (check-sat) (get-unsat-core)</pre>		 Use the logic QF_AUFLIA integer arrays extended with f An access to array a[i] is end An assigment a[i] = v is end in everything equal to array a Assignments such as x = x+1 x1) which represent the value encoding would be in this case
unsat (a7 a2 a6) Maria João Frade (HASLab, DI-UM) SMT	MFES 2022/23 29 / 70	Maria João Frade (HASLab, DI-UM)
SMT-LIB 2 example		Logical enconding of a (
$\begin{array}{llllllllllllllllllllllllllllllllllll$		 The logical enconding of a (br follows: Onvert the program into Convert the SA program Convert each CNF staten Let us see each of these steps
unsat		
Maria João Frade (HASLab, DI-UM) SMT	MFES 2022/23 31 / 70	Maria João Frade (HASLab, DI-UM)

SMT-LIB 2 example

program:

x = x + 1;a[i] = x + 2;y = a[i];

A (quantifier-free linear formulas over the theory of free sort and function symbol).

encoded by (select a i).

- encoded by (store a i v). The result is a new array a except in position i which now has the value v.
- +1 are encoded by introducing variables (e.g. x0 and ue of x before and after the assignment. The logical ase (= x1 (+ x0 1)).

SMT

MFES 2022/23 30 / 70

(branching) program

branching) program should performed as

- to single-assignment (SA) form.
- m into conditional normal form (CNF).
- ement into a logical formula.

os...

Single-assignment (SA) form

- A program is in *single-assignment (SA) form* if all its variables satisfies the following proprety:
 - Once a variable has been used (i.e., read or assigned) it is not assigned again.
- To encode a (branching) program into a logical formula, one should first convert the program into a SA form in wich multiple indexed version of each variable are used (a new version for each assignment made).

Program model in SMT-LIB 2

(set-logic QF_LIA)	
(declare-fun x1 () Int)	
(declare-fun x2 () Int)	
(declare-fun x3 () Int)	
(declare-fun y0 () Int)	
(declare-fun y1 () Int)	
(declare-fun y2 () Int)	
(declare-fun z0 () Int)	
(declare-fun z1 () Int)	
(assert (= x1 (+ y0 z0)))	
(assert (=> (> x1 y0) (= x2 (+ x1 10))))	
(assert (=> (not (> x1 y0)) (= y1 (+ x1 5))))	
(assert (= x3 (ite (> x1 y0) x2 x1)))	
(assert (= y2 (ite (> x1 y0) y0 y1)))	
(assert (= z1 (+ x3 y2)))	
Maria João Frade (HASLab, DI-UM) SMT	MFES 2022/23

35 / 70

Conditional normal form

Maria João Frade (HASLab, DI-UM)

The second step for the logical enconding of the program is to convert the SA program into conditional normal form: a sequence of statements of the form (if b then S), where S is an atomic statement.

• The idea is that every atomic statement is guarded by the conjunction of the conditions in the execution path leading to it.

MFES 2022/23

36 / 70

SMT solvers APIs

- Several SAT solvers have APIs for different programming languages that allow an incremental use of the solver.
- For instance, Z3Py: the Z3 Python API.

- There are many available SMT solvers:
 - some are targeted to specific theories;
 - many support SMT-LIB format;
 - many provide non-standard features.
- Features to have into account:
 - the efficiency of the solver for the targeted theories;

SMT

- the solver's license;
- the ways to interface with the solver;
- the "support" (is it being actively developed?).

• See https://smtlib.cs.uiowa.edu

pySMT library

- The pySMT library allows a Python program to communicate with several SMT solvers based on a common language.
- This makes it possible to code a problem independently of the SMT solver, and run the same problem with several SMT solvers.

	User application		l †
Formula Manager Oracles	PvSMT: Formula API Simplifier Substituter	Serializer Type Checker	Python
•	PySMT: Solver API		
Converter Converter	ter Converter Converter	Converter Converter SMT-LIB IO	
Python API Python API Python Z3 MATHSAT CVC		Python API Python API POSIX Pipe PICOSAT BOOLECTOR SMT-LIB solver	Native
	C147		40 (70
aria João Frade (HASLab, DI-UM)	SMT	MFES 2022/23	42 / 70

Applications

SMT solvers are the core engine of many tools for

- program analysis
- program verification
- test-cases generation
- bounded model checking of SW
- modeling
- planning and scheduling
- ...

MFES 2022/23 43 / 70

MFES 2022/23 41 / 70

Maria João Frade (HASLab, DI-UM)

Program verification/analysis

The general architecture of program verification/analysis tools is powered by a *Verification Conditions Generator (VCGen)* that produces verification conditions (also called "proof obligations") that are then passed to a SMT solver to be "discharged". Examples of such tools: Boogie, Why3, Frama-C, ESC/JAVA2.

Scheduling

Job-shop-scheduling decision problem

- Consider n jobs.
- Each job has *m* tasks of varying duration that must be performed consecutively on *m* machines.
- The start of a new task can be delayed as long as needed in order for a machine to become available, but tasks cannot be interrupted once they are started.

Given a total maximum time max and the duration of each task, the problem consists of deciding whether there is a schedule such that the end-time of every task is less than or equal to max time units.

Two types of constraints:

- Precedence between two tasks in the same job.
- Resource: a machine cannot run two different tasks at the same time.

SMT

Maria João Frade (HASLab, DI-UM)

MFES 2022/23 47 / 70

Deductive program verification

Program with pre-condition, post-condition and loop invariant

Proof obligations

- $\bullet \ \ \textbf{Initialization:} \ \ \mathsf{PRE} \to \mathsf{INV}$
- Preservation: $(i < n \land INV) \rightarrow (A[i] > m \rightarrow INV[(i+1)/i][A[i]/m]) \land (A[i] \le m \rightarrow INV[(i+1)/i])$

SMT

• Utility: $(INV \land i \ge n) \rightarrow POS$

Maria João Frade (HASLab, DI-UM)

MFES 2022/23 46 / 70

Scheduling

- d_{ij} duration of the *j*-th task of the job *i*
- t_{ij} start-time for the *j*-th task of the job *i*
- Constraints
 - Precedence: for every $i, j, t_{i j+1} \ge t_{i j} + d_{i j}$
 - Resource: for every $i \neq i'$, $(t_{ij} \geq t_{i'j} + d_{i'j}) \lor (t_{i'j} \geq t_{ij} + d_{ij})$
 - The start time of the first task of every job i must be greater than or equal to zero $t_{i1} \ge 0$
 - ▶ The end time of the last task must be less than or equal to max $t_{im} + d_{im} \le max$

Find a solution for this problem

d_{ij}	Machine 1	Machine 2		
Job 1	2	1	and	max = 8
Job 2	3	1	and	max = 0
Job 3	2	3		

SMT

Maria João Frade (HASLab, DI-UM)

MFES 2022/23 48 / 70

The "lazy" approach

• Methodology:

- Abstract the input formula to a propositional one.
- Feed it to a (DPLL-based) SAT solver.
- Use a theory decision procedure to refine the formula and guide the SAT solver.
- Why "lazy"? Theory information used lazily when checking *T*-consistency of propositional models.

SMT

• Characteristics:

- ► SAT solver and theory solver continuously interact.
- Modular and flexible.
- Tools: Z3, CVC4, Yices 2, MathSAT, Barcelogic, ...

Maria João Frade (HASLab, DI-UM)

MFES 2022/23 53 / 70

55 / 70

Boolean abstraction

$$\begin{split} \psi : \qquad \underbrace{g(a) = c}_{P_1} \wedge (\underbrace{f(g(a)) \neq f(c)}_{\neg P_2} \vee \underbrace{g(a) = d}_{P_3}) \wedge \underbrace{c \neq d}_{\neg P_4} \\ \mathsf{prop}(\psi) : \qquad P_1 \wedge (\neg P_2 \vee P_3) \wedge \neg P_4 \end{split}$$

- The boolean abstraction constructed this way over-approximates satisfiability of the formula.
 - Even if ψ is not \mathcal{T} -satisfiable, prop (ψ) can be satisfiable.
- However, if boolean abstraction $\mathrm{prop}(\psi)$ is unsatisfiable, then ψ is also unsatisfiable.

SMT

Boolean abstraction

• Define a bijective function prop, called *boolean abstraction function*, that maps each SMT formula to a overapproximate SAT formula.

Given a formula ψ with atoms $\{a_1,\ldots,a_n\}$ and a set of propositional variables $\{P_1,\ldots,P_n\}$ not occurring in ψ ,

- The *abstraction mapping*, prop, from formulas over $\{a_1, \ldots, a_n\}$ to propositional formulas over $\{P_1, \ldots, P_n\}$, is defined as the homomorphism induced by $prop(a_i) = P_i$.
- The inverse prop⁻¹ simply replaces propositional variables P_i with their associated atom a_i .

$$\begin{split} \psi : \qquad \underbrace{g(a) = c}_{P_1} \wedge (\underbrace{f(g(a)) \neq f(c)}_{\neg P_2} \vee \underbrace{g(a) = d}_{P_3}) \wedge \underbrace{g(a) = d}_{P_3} \end{pmatrix} \wedge \underbrace{g(a) = d}_{P_3} \wedge \underbrace{g($$

SMT

Maria João Frade (HASLab, DI-UM)

MFES 2022/23 54 / 70

Boolean abstraction

For an assignment \mathcal{A} of prop (ψ) , let the set $\Phi(\mathcal{A})$ of first-order literals be defined as follows

$$\Phi(\mathcal{A}) = \{\mathsf{prop}^{-1}(P_i) \mid \mathcal{A}(P_i) = 1\} \cup \{\neg\mathsf{prop}^{-1}(P_i) \mid \mathcal{A}(P_i) = 0\}$$

$$\psi: \qquad \underbrace{g(a) = c}_{P_1} \land (\underbrace{f(g(a)) \neq f(c)}_{\neg P_2} \lor \underbrace{g(a) = d}_{P_3}) \land \underbrace{c \neq d}_{\neg P_4}$$
$$\mathsf{p}(\psi): \qquad P_1 \land (\neg P_2 \lor P_3) \land \neg P_4$$

• Consider the SAT assignment for $prop(\psi)$,

$$\mathcal{A} = \{P_1 \mapsto 1, P_2 \mapsto 0, P_4 \mapsto 0\}$$

 $\Phi(\mathcal{A}) = \{g(a) = c, f(g(a)) \neq f(c), c \neq d\} \text{ is not } \mathcal{T}\text{-satisfiable.}$

• This is because *T*-atoms that may be related to each other are abstracted using different boolean variables.

SMT

Maria João Frade (HASLab, DI-UM)

pro

MFES 2022/23

The "lazy" approach (simplest version)

- Given a CNF F, SAT-Solver(F) returns a tuple (r, A) where r is SAT if F is satisfiable and UNSAT otherwise, and A is an assignment that satisfies F if r is SAT.
- Given a set of literals S, **T-Solver**(S) returns a tuple (r, J) where r is SAT if S is \mathcal{T} -satisfiable and UNSAT otherwise, and J is a justification if r is UNSAT.
- Given an \mathcal{T} -unsatisfiable set of literals S, a *justification* (a.k.a. *unsat core*) for S is any unsatisfiable subset J of S. A justification J is *non-redundant* (or *minimal*) if there is no strict subset J' of J that is also unsatisfiable.

SMT

Maria João Frade (HASLab, DI-UM)

MFES 2022/23 57 / 70

SMT-Solver($g(a) = c \land (f(g(a)) \neq f(c) \lor g(a) = d) \land c \neq d$)

- $F = \operatorname{prop}(\psi) = P_1 \wedge (\neg P_2 \vee P_3) \wedge \neg P_4$
- SAT-Solver(F) = SAT, $\mathcal{A} = \{P_1 \mapsto 1, P_2 \mapsto 0, P_4 \mapsto 0\}$
- $\Phi(\mathcal{A}) = \{g(a) = c, f(g(a)) \neq f(c), c \neq d\}$ T-Solver $(\Phi(\mathcal{A})) = \text{UNSAT}, J = \{g(a) = c, f(g(a)) \neq f(c), c \neq d\}$
- $C = \neg P_1 \lor P_2 \lor P_4$
- $F = P_1 \land (\neg P_2 \lor P_3) \land \neg P_4 \land (\neg P_1 \lor P_2 \lor P_4)$ SAT-Solver(F) = SAT, $\mathcal{A} = \{P_1 \mapsto 1, P_2 \mapsto 1, P_3 \mapsto 1, P_4 \mapsto 0\}$
- $\Phi(\mathcal{A}) = \{g(a) = c, f(g(a)) = f(c), g(a) = d, c \neq d\}$ T-Solver $(\Phi(\mathcal{A}))$ = UNSAT, $J = \{g(a) = c, f(g(a)) = f(c), g(a) = d, c \neq d\}$
- $C = \neg P_1 \lor \neg P_2 \lor \neg P_3 \lor P_4$
- $F = P_1 \land (\neg P_2 \lor P_3) \land \neg P_4 \land (\neg P_1 \lor P_2 \lor P_4) \land (\neg P_1 \lor \neg P_2 \lor \neg P_3 \lor P_4)$ SAT-Solver(F) =UNSAT

SMT

Maria João Frade (HASLab, DI-UM)

MFES 2022/23 59 / 70

The "lazy" approach (simplest version)

Basic SAT and theory solver integration

```
\begin{array}{l} \textbf{SMT-Solver} (\psi) \left\{ \\ F \leftarrow \text{prop}(\psi) \\ \textbf{loop} \left\{ \\ (r, \mathcal{A}) \leftarrow \textbf{SAT-Solver}(F) \\ \textbf{if} r = \textbf{UNSAT} \textbf{ then return UNSAT} \\ (r, J) \leftarrow \textbf{T-Solver}(\Phi(\mathcal{A})) \\ \textbf{if} r = \textbf{SAT} \textbf{ then return SAT} \\ C \leftarrow \bigvee_{B \in J} \neg \text{prop}(B) \\ F \leftarrow F \wedge C \\ \end{array} \right\}
```

If a valuation \mathcal{A} satisfying F is found, but $\Phi(\mathcal{A})$ is \mathcal{T} -unsatisfiable, we add to F a clause C which has the effect of excluding \mathcal{A} when the SAT solver is invoked again in the next iteration. This clause is called a "theory lemma" or a "theory conflict clause".

SMT

Maria João Frade (HASLab, DI-UM)

MFES 2022/23 58 / 70

SMT-Solver($x = 3 \land (f(x+y) = f(y) \lor y = 2) \land x = y$)

- $F = \operatorname{prop}(\psi) = P_1 \wedge (P_2 \vee P_3) \wedge P_4$
- SAT-Solver(F) = SAT, $\mathcal{A} = \{P_1 \mapsto 1, P_2 \mapsto 0, P_3 \mapsto 1, P_4 \mapsto 1\}$
- $\Phi(\mathcal{A}) = \{x = 3, f(x+y) \neq f(y), y = 2, x = y\}$ T-Solver($\Phi(\mathcal{A})$) = UNSAT, $J = \{x = 3, y = 2, x = y\}$
- $C = \neg P_1 \lor \neg P_3 \lor \neg P_4$
- $F = P_1 \land (P_2 \lor P_3) \land P_4 \land (\neg P_1 \lor \neg P_3 \lor \neg P_4)$ SAT-Solver(F) = SAT, $\mathcal{A} = \{P_1 \mapsto 1, P_2 \mapsto 1, P_3 \mapsto 0, P_4 \mapsto 1\}$
- $\Phi(\mathcal{A}) = \{x = 3, f(x + y) = f(y), y \neq 2, x = y\}$ T-Solver $(\Phi(\mathcal{A})) = \mathsf{SAT}$

Maria João Frade (HASLab, DI-UM)

The "lazy" approach (enhancements)

Several enhancements are possible to increase efficiency of this basic algorithm:

- If Φ(A) is *T*-unsatisfiable, identify a small justification (or unsat core) of it and add its negation as a clause.
- Check \mathcal{T} -satisfiability of partial assignment \mathcal{A} as it grows.
- If $\Phi(A)$ is \mathcal{T} -unsatisfiable, backtrack to some point where the assignment was still \mathcal{T} -satisfiable.

SMT

Maria João Frade (HASLab, DI-UM)

MFES 2022/23 61 / 70

Integration with DPLL

- Lazy SMT solvers are based on the integration of a SAT solver and one (or more) theory solver(s).
- The basic architectural schema described by the SMT-solver algorithm is also called "lazy offline" approach, because the SAT solver is re-invoked from scratch each time an assignment is found \mathcal{T} -unsatisfiable.
- Some more enhancements are possible if one does not use the SAT solver as a "blackbox".
 - Check \mathcal{T} -satisfiability of partial assignment \mathcal{A} as it grows.
 - If Φ(A) is *T*-unsatisfiable, backtrack to some point where the assignment was still *T*-satisfiable.
- To this end we need to integrate the theory solver right into the DPLL algorithm of the SAT solver. This architectural schema is called "lazy online" approach.

SMT

 Combination of DPLL-based SAT solver and decision procedure for conjunctive *T* formula is called DPLL(*T*) framework.

```
Maria João Frade (HASLab, DI-UM)
```

MFES 2022/23 63 / 70

Unsat cores

- Given a \mathcal{T} -unsatisfiable set of literals S, a justification (a.k.a. unsat core) for S is any unsatisfiable subset J of S.
- $\bullet\,$ So, the easiest justification S is the set S itself.
- However, conflict clauses obtained this way are too weak.
 - Suppose $\Phi(A) = \{x = 0, x = 3, l_1, l_2, \dots, l_{50}\}$. This set is unsat.
 - Theory conflict clause C = V_{B∈Φ(A)} ¬prop(B) prevents that exact same assignment. But it doesn't prevent many other bad assignments involving x = 0 and x = 3.
 - In fact, there are 2⁵⁰ unsat assignments containing x = 0 and x = 3, but C just prevents one of them!
- Efficiency can be improved if we have a more precise justification. Ideally, a minimal unsat core. This way we block many assignments using just one theory conflict clause.

SMT

Maria João Frade (HASLab, DI-UM)

MFES 2022/23 62 / 70

DPLL framework for SAT solvers

$\mathsf{DPLL}(\mathcal{T})$ framework for SMT solvers

$DPLL(\mathcal{T})$ framework

- We can go further in the integration of the theory solver into the DPLL algorithm:
 - > Theory solver can communicate which literals are implied by current partial assignment.
 - These kinds of clauses implied by theory are called theory propagation lemmas.
 - Adding theory propagation lemmas prevents bad assignments to boolean abstraction.

SMT

$DPLL(\mathcal{T})$ framework

- Suppose SAT solver has made partial assignment A in Decide step and performed BCP (Boolean Constraints Propagation, i.e. in Deduce step).
- If no conflict detected, immediately invoke theory solver.
- Use theory solver to decide if $\Phi(\mathcal{A})$ is \mathcal{T} -unsatisfiable.
- If $\Phi(\mathcal{A})$ is \mathcal{T} -unsatisfiable, add the negation of its unsat core (the conflict clause) to clause database and continue doing BCP, which will detect conflict.

SMT

• As before, Analyze-Conflict decides what level to backtrack to.

Maria João Frade (HASLab, DI-UM)

MFES 2022/23 66 / 70

$DPLL(\mathcal{T})$ framework

Maria João Frade (HASLab, DI-UM)

67 / 70

Maria João Frade (HASLab, DI-UM)

Main benefits of lazy approach

• Every tool does what it is good at:

- ► SAT solver takes care of Boolean information.
- Theory solver takes care of theory information.
- Modular approach:
 - ► SAT and theory solvers communicate via a simple API.
 - SMT for a new theory only requires new theory solver.
- Almost all competitive SMT solvers integrate theory solvers use $\mathsf{DPLL}(\mathcal{T})$ framework.

SMT

Maria João Frade (HASLab, DI-UM)

MFES 2022/23 69 / 70

Solving SMT problems

- The theory solver works only with sets of literals.
- In practice, we need to deal not only with
 - arbitrary Boolean combinations of literals,
 - but also with formulas with quantifiers
- Some more sophisticated SMT solvers are able to handle formulas involving quantifiers. But usually one loses decidability...

SMT

Maria João Frade (HASLab, DI-UM)

MFES 2022/23 70 / 70