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Introduction
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What is a (formal) logic?

A formal logic consists of

A logical language in which (well-formed) sentences are expressed. It
consists of

I logical symbols whose interpretations are fixed
I non-logical symbols whose interpretations vary

A semantics that defines the intended interpretation of the symbols
and expressions of the logical language.

A proof system that is a framework of rules for deriving valid
judgments.
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Logic and computer science

Logic and computer science share a symbiotic relationship.
I Logic provides language and methods for the study of theoretical

computer science.
I Computers provide a concrete setting for the implementation of logic.

Logic is a fundamental part of computer science.
I Program analysis: static analysis, software verification, test case

generation, program understanding, ...
I Artificial intelligence: constraint satisfaction, automated game playing,

planning, ...
I Hardware verification: correctness of circuits, ATPG, ...
I Programming Languages: logic programming, type systems,

programming language theory, ...
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What is SAT?

The Boolean satisfiability (SAT) problem:
I Find an assignment to the propositional variables of the formula such

that the formula evaluates to TRUE, or prove that no such assignment
exists.

SAT is an NP-complete decision problem.
I SAT was the first problem to be shown NP-complete.
I There are no known polynomial time algorithms for SAT.
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What is SAT?

Usually SAT solvers deal with formulas in conjunctive normal form
(CNF)

I literal: propositional variable or its negation. A, ¬A, B, ¬B, C, ¬C

I clause: disjuntion of literals. (A _ ¬B _ C)
I conjunctive normal form: conjuction of clauses.

(A _ ¬B _ C) ^ (B _ ¬A) ^ ¬C

SAT is a success story of computer science
I Modern SAT solvers can check formulas with hundreds of thousands

variables and millions of clauses in a reasonable amount of time.
I A huge number of practical applications.
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Why should we care?

No matter what your research area or interest is, SAT solving is likely
to be relevant.

Very good toolkit because many di�cult problems can be reduced
deciding satisfiabilty of formulas in logic.

Maria João Frade (HASLab, DI-UM) PL & SAT VF 2022/23 8 / 75



(Classical) Propositional Logic
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Propositional logic

The language of propositional logic is based on propositions, or
declarative sentences which one can, in principle, argue as being
“true” or “false”.

Propositional symbols are the atomic formulas of the language. More
complex sentences are constructed using logical connectives.

In classical propositional logic (PL) each sentence is either true or
false.

In fact, the content of the propositions is not relevant to PL. PL is
not the study of truth, but of the relationship between the truth of
one statement and that of another.
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Syntax

The alphabet of the propositional language is organised into the following
categories.

Propositional variables: P, Q, R, . . . 2 VProp (a countably infinite set)

Logical connectives: ? (false) ,> (true), ¬ (not), ^ (and), _ (or), !
(implies), $ (equivalent)

Auxiliary symbols: “(“ and “)”.

The set Form of formulas of propositional logic is given by the abstract syntax

Form 3 A, B ::= P | ? | > | (¬A) | (A ^B) | (A _B) | (A! B) | (A$ B)

We let A, B, C, F, G, H, . . . range over Form.

Outermost parenthesis are usually dropped. In absence of parentheses, we adopt
the following convention about precedence. Ranging from the highest precedence
to the lowest, we have respectively: ¬, ^, _, ! and $. All binary connectives
are right-associative.
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Semantics

The meaning of PL is given by the truth values true and false, where
true 6= false. We will represent true by 1 and false by 0.

An assignment is a function A : VProp!{0, 1}, that assigns to every
propositional variable a truth value.
An assignment A naturally extends to all formulas, A : Form!{0, 1}.
The truth value of a formula is computed using truth tables:

F A B ¬A A ^B A _B A! B A$ B ? >

A1(F ) 0 1 1 0 1 1 0 0 1
A2(F ) 0 0 1 0 0 1 1 0 1
A3(F ) 1 1 0 1 1 1 1 0 1
A4(F ) 1 0 0 0 1 0 0 0 1
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Semantics

Let A be an assignment and let F be a formula.
If A(F ) = 1, then we say F holds under assignment A, or A models F .
We write A |= F i↵ A(F ) = 1, and A 6|= F i↵ A(F ) = 0.

An alternative (inductive) definition of A |= F is

A |= >
A 6|= ?
A |= P i↵ A(P ) = 1
A |= ¬A i↵ A 6|= A

A |= A ^B i↵ A |= A and A |= B

A |= A _B i↵ A |= A or A |= B

A |= A! B i↵ A 6|= A or A |= B

A |= A$ B i↵ A |= A i↵ A |= B
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Validity, satisfiability, and contradiction

A formula F is

valid i↵ it holds under every assignment. We write |= F .
A valid formula is called a tautology.

satisfiable i↵ it holds under some assignment.

unsatisfiable i↵ it holds under no assignment.
An unsatisfiable formula is called a contradiction.

refutable i↵ it is not valid.

Proposition
F is valid i↵ ¬F is unsatisfiable

(A ^ (A! B))! B is valid. A! B is satisfiable and refutable.
A ^ ¬A is a contradiction.
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Consequence and equivalence

F |= G i↵ for every assignment A, if A |= F then A |= G. We say
G is a consequence of F .

F ⌘ G i↵ F |= G and G |= F . We say F and G are equivalent.

Let � = {F1, F2, F3, . . . } be a set of formulas.

A |= � i↵ A |= Fi for each formula Fi in �. We say A models �.

� |= G i↵ A |= � implies A |= G for every assignment A. We say
G is a consequence of �.

Proposition

F |= G i↵ |= F ! G

� |= G and � finite i↵ |=
V

�! G
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Some basic equivalences

A _A ⌘ A

A ^A ⌘ A

A _B ⌘ B _A

A ^B ⌘ B ^A

A ^ (A _B) ⌘ A

A ^ (B _ C) ⌘ (A ^B) _ (A ^ C)
A _ (B ^ C) ⌘ (A _B) ^ (A _ C)

¬(A _B) ⌘ ¬A ^ ¬B

¬(A ^B) ⌘ ¬A _ ¬B

A ^ ¬A ⌘ ?

A _ ¬A ⌘ >

A ^ > ⌘ A

A _ > ⌘ >

A ^ ? ⌘ ?

A _ ? ⌘ A

¬¬A ⌘ A

A! B ⌘ ¬A _B
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Consistency

Let � = {F1, F2, F3, . . . } be a set of formulas.

� is consistent or satisfiable i↵ there is an assignment that models �.

We say that � is inconsistent or unsatisfiable i↵ it is not consistent
and denote this by � |= ?.

Proposition

{F, ¬F} |= ?

If � |= ? and � ✓ �0, then �0
|= ?.

� |= F i↵ �, ¬F |= ?
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Substitution

Formula G is a subformula of formula F if it occurs syntactically
within F .

Formula G is a strict subformula of F if G is a subformula of F and
G 6= F

Substitution theorem
Suppose F ⌘ G. Let H be a formula that contains F as a subformula.
Let H

0 be the formula obtained by replacing some occurrence of F in H

with G. Then H ⌘ H
0.
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Decidability

Given formulas F and G as input, we may ask:

Decision problems

Validity problem: “Is F valid ?”
Satisfiability problem: “Is F satisfiable ?”
Consequence problem: “Is G a consequence of F ?”
Equivalence problem: “Are F and G equivalent ?”

All these problems are decidable!
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Decidability

Any algorithm that works for one of these problems also works for all of
these problems!

F is satisfiable i↵ ¬F is not valid
F |= G i↵ ¬(F ! G) is not satisfiable
F ⌘ G i↵ F |= G and G |= F

F is valid i↵ F ⌘ >

Truth-table method
For the satisfiability problem, we first compute a truth table for F and
then check to see if its truth value is ever one.

This algorithm certainly works, but is very ine�cient.
It’s exponential-time! O(2n)

If F has n atomic formulas, then the truth table for F has 2n rows.

Maria João Frade (HASLab, DI-UM) PL & SAT VF 2022/23 20 / 75



Complexity

Computing a truth table for a formula is exponential-time in order to
the number of propositional variables.

There are several techniques and algorithms for SAT solving that
perform better in average.

There are no known polynomial time algorithms for SAT.
I If it exists, then P = NP, because the SAT problem for PL is

NP-complete (it was the first one to be shown NP-complete).

Cook’s theorem (1971)

SAT is NP-complete.

Conjecture: Any algorithm that solves SAT is exponential in the
number of variables, in the worst-case.
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An example

The unicorn puzzle

If the unicorn is mythical, then it is immortal.

If the unicorn is not mythical, then it is a mortal mammal.

If the unicorn is either immortal or a mammal, then it is horned.

The unicorn is magical if it is horned.

Questions:
I Is the unicorn magical?
I Is it horned?
I Is it mythical?
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An example

Consider the following propositional variables:
I M - the unicorn is mythical
I I - the unicorn is immortal
I A - the unicorn is mammal
I H - the unicorn is horned
I G - the unicorn is magical

If the unicorn is mythical, then it is immortal.
M ! I

If the unicorn is not mythical, then it is a mortal mammal.
¬M ! (¬I ^A)

If the unicorn is either immortal or a mammal, then it is horned.
(I _A)! H

The unicorn is magical if it is horned.
H ! G
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An example

Let � be { M ! I, ¬M ! (¬I ^A), (I _A)! H, H ! G }

Questions:

Is the unicorn magical? � |= G ?

Is it horned? � |= H ?

Is it mythical? � |= M ?

Recall that

� |= F i↵ �, ¬F UNSAT
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SAT solving algorithms
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SAT solving algorithms

There are several techniques and algorithms for SAT solving.

Usually SAT solvers receive as input a formula in a specific syntatical
format.

So, one has first to transform the input formula to this specific format
preserving satisfiability.
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Normal forms

SAT solvers usually take input in conjunctive normal form.

A literal is a propositional variable or its negation.
I A literal is negative if it is a negated atom, and positive otherwise.

A formula A is in negation normal form (NNF), if the only connectives
used in A are ¬, ^ and _, and negation only appear in literals.

A clause is a disjunction of literals.

A formula is in conjunctive normal form (CNF) if it is a conjunction
of clauses, i.e., it has the form

^

i

�_

j

lij
�

where lij is the j-th literal in the i-th clause.
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Normalization

Transforming a formula F to equivalent formula F
0 in NNF can be

computed by repeatedly replace any subformula that is an instance of the
left-hand-side of one of the following equivalences by the corresponding
right-hand-side

A! B ⌘ ¬A _B ¬¬A ⌘ A

¬(A ^B) ⌘ ¬A _ ¬B ¬(A _B) ⌘ ¬A ^ ¬B

This algoritm is linear on the size of the formula.
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Normalization

To transform a formula already in NNF into an equivalent CNF, apply
recursively the following equivalences (left-to-right):

A _ (B ^ C) ⌘ (A _B) ^ (A _ C) (A ^B) _ C ⌘ (A _ C) ^ (B _ C)

A ^ ? ⌘ ? ? ^A ⌘ ? A ^ > ⌘ A > ^A ⌘ A

A _ ? ⌘ A ? _A ⌘ A A _ > ⌘ > > _A ⌘ >

This algorithm converts a NNF formula into an equivalent CNF, but its
worst case is exponential on the size of the formula.
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Example

Compute the CNF of ((P ! Q)! P )! P

The first step is to compute its NNF by transforming implications into
disjunctions and pushing negations to proposition symbols:

((P ! Q)! P )! P ⌘ ¬((P ! Q)! P ) _ P

⌘ ¬(¬(P ! Q) _ P ) _ P

⌘ ¬(¬(¬P _Q) _ P ) _ P

⌘ ¬((P ^ ¬Q) _ P ) _ P

⌘ (¬(P ^ ¬Q) ^ ¬P ) _ P

⌘ ((¬P _Q) ^ ¬P ) _ P

To reach a CNF, distributivity is then applied to pull the conjunction
outside:

((¬P _Q) ^ ¬P ) _ P ⌘ (¬P _Q _ P ) ^ (¬P _ P )
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Worst-case example

Compute the CNF of (P1 ^Q1) _ (P2 ^Q2) _ . . . _ (Pn ^Qn)

(P1 ^Q1) _ (P2 ^Q2) _ . . . _ (Pn ^Qn)
⌘ (P1 _ (P2 ^Q2) _ . . . _ (Pn ^Qn)) ^ (Q1 _ (P2 ^Q2) _ . . . _ (Pn ^Qn))
⌘ . . .

⌘ (P1 _ . . . _ Pn) ^
(P1 _ . . . _ Pn�1 _Qn) ^
(P1 _ . . . _ Pn�2 _Qn�1 _ Pn) ^
(P1 _ . . . _ Pn�2 _Qn�1 _Qn) ^
. . . ^

(Q1 _ . . . _Qn)

The original formula has 2n literals, while the equivalent CNF has 2n

clauses, each with n literals.
The size of the formula increases exponentially.
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Definitional CNF

Equisatisfiability

Two formulas F and F
0 are equisatisfiable when F is satisfiable i↵ F

0 is
satisfiable.

Any propositional formula can be transformed into a equisatisfiable CNF
formula with only linear increase in the size of the formula.
The price to be paid is n new Boolean variables, where n is the number of
logical conectives in the formula.
This transformation can be done via Tseitin’s encoding [Tseitin, 1968].

This tranformation compute what is called the definitional CNF of a
formula, because they rely on the introduction of new proposition symbols
that act as names for subformulas of the original formula.
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Tseitin’s encoding

Tseitin transformation
1 Introduce a new fresh variable for each compound subformula.

2 Assign new variable to each subformula.

3 Encode local constraints as CNF.

4 Make conjunction of local constraints and the root variable.

This transformation produces a formula that is equisatisfiable: the
result is satisfiable if and only the original formula is satisfiable.

One can get a satisfying assignment for original formula by projecting
the satisfying assignment onto the original variables.

There are various optimizations that can be performed in order to reduce
the size of the resulting formula and the number of additional variables.

Maria João Frade (HASLab, DI-UM) PL & SAT VF 2022/23 33 / 75

Tseitin’s encoding: an example

Encode P ! Q ^R

1

A1z }| {
P ! Q ^R| {z }

A2

2 We need to satisfy A1 together with the following equivalences

A1 $ (P ! A2) A2 $ (Q ^R)

3 These equivalences can be rewritten in CNF as
(A1 _ P ) ^ (A1 _ ¬A2) ^ (¬A1 _ ¬P _A2) and
(¬A2 _Q) ^ (¬A2 _R) ^ (A2 _ ¬Q _ ¬R), respectively.

4 The CNF which is equisatisfiable with P ! (Q ^R) is

A1 ^ (A1 _ P ) ^ (A1 _ ¬A2) ^ (¬A1 _ ¬P _A2)
^ (¬A2 _Q) ^ (¬A2 _R) ^ (A2 _ ¬Q _ ¬R)

Maria João Frade (HASLab, DI-UM) PL & SAT VF 2022/23 34 / 75

CNFs validity

The strict shape of CNFs make them particularly suited for checking
validity problems.

I A CNF is a tautology i↵ all of its clauses are closed (there exists a
proposition symbol P , such that both P and ¬P are in the clause).

However, the applicability of this simple criterion for validity is
compromised by the potential exponential growth in the CNF
transformation.

This limitation is overcomed considering instead SAT, with
satisfiability preserving CNFs (definitional CNF). Recall that

F is valid i↵ ¬F is unsatisfiable
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SAT solving algorithms

The majority of modern SAT solvers can be classified into two main
categories:

SAT solvers based on a stochastic local search

I the solver guesses a full assignment, and then, if the formula is
evaluated to false under this assignment, starts to flip values of
variables according to some heuristic.

SAT solvers based on the DPLL framework

I optimizations to the Davis-Putnam-Logemann-Loveland algorithm
(DPLL) which corresponds to backtrack search through the space of
possible variable assignments.

DPLL-based SAT solvers, however, are considered better in most cases.
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Stochastic local search

Local search is incomplete; usually it cannot prove unsatisfiability.

However, it can be very e↵ective in specific contexts.

The algorithm:
I Start with a (random) assignment and repeat a number of times:

F If not all clauses satisfied, change the value of a variable.

F If all clauses satisfied, it is done.

I Repeat (random) selection of assignment a number of times.

The algorithm terminates when a satisfying assigment is found or
when a time bound is elapsed (inconclusive answer).
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DPLL framework

A CNF is satisfied by an assignment if all its clauses are satisfied. And a
clause is satisfied if at least one of its literals is satisfied.

The ideia is to incrementally construct an assignment compatible with a
CNF.

I An assignment of a formula F is a function mapping F ’s variables to 1
or 0. We say it is

F full if all of F ’s variables are assigned,

F and partial otherwise.

Most current state-of-the-art SAT solvers are based on the
Davis-Putnam-Logemann-Loveland (DPLL) framework: the tool can be
thought of as traversing and backtracking on a binary tree, in which

I internal nodes represent partial assignments;
I and each branch represents an assignment to a variable.
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State of a clause under an assignment

Given a partial assigment, a clause is

satisfied if one or more of its literals are satisfied,

confliting if all of its literals are assigned but not satisfied.

unit if it is not satisfied and all but one of its literals are assigned,

unresolved otherwise.

Let A(P ) = 1, A(R) = 0, A(Q) = 1

(P _X _ ¬Q) is satisfied

(¬P _R) is confliting

(¬P _ ¬Q _X) is unit

(¬P _X _A) is unsolved
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Unit propagation (a.k.a. Boolean Constraint Propagation)

Unit clause rule
Given a unit clause, its only unassigned literal must be assigned value
1 for the clause to be satisfied.

Unit propagation is the iterated application of the unit clause rule.

This technique is extensively used.

Consider the partial assignment A(P ) = 0, A(Q) = 1

Under this assignment

I (P _ ¬R _ ¬Q) is a unit clause.
I (¬Q _X _R) is not a unit clause.

Performing unit propagation

I from (P _¬R _¬Q) we have that R must be assigned the value 0, i.e.
A(R) = 0.

I now (¬Q_X _R) becames a unit clause, and X must be assigned the
value 1, i.e., A(X) = 1.
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DPLL algorithm

Traditionally the DPLL algorithm is presented as a recursive procedure.

The procedure DPLL is called with the CNF and a partial assignment.

We will represent a CNF by a set of sets of literals.

We will represent the partial assignment by a set of literals (P denote that
P is set to 1, and ¬P that P is set to 0).

The algorithm:

I Progresses by making a decision about a variable and its value.
I Propagates implications of this decision that are easy to detect,

simplifying the clauses.
I Backtracks in case a conflict is detected in the form of a falsified clause.
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CNFs as sets of sets of literals

Recall that CNFs are formulas with the following shape (each lij

denotes a literal):

(l11 _ l12 _ . . . _ l1k) ^ . . . ^ (ln1 _ ln2 _ . . . _ lnj)

Associativity, commutativity and idempotence of both disjunction and
conjunction allow us to treat each CNF as a set of sets of literals S

S = {{l11, l12, . . . , l1k}, . . . , {ln1, ln2, . . . , lnj}}

An empty inner set will be identified with ?, and an empty outer set
with >. Therefore,

I if {} 2 S, then S is equivalent to ?;
I if S = {}, then S is >.
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Simplification of a clause under an assignment

The opposite of a literal l, written �l, is defined by

�l =

⇢
¬P , if l = P

P , if l = ¬P

When we set a literal l to be true,

any clause that has the literal l is now guaranteed to be satisfied, so
we throw it away for the next part of the search;

any clause that had the literal �l, on the other hand, must rely on
one of the other literals in the clause, hence we throw out the literal
�l before going forward.

Simplification of S assuming l holds

S|l =
�
c\{�l} | c 2 S and l 62 c
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Simplification of a clause under an assignment

If a CNF S contains a clause that consists of a single literal (a unit clause), we
know for certain that the literal must be set to true and S can be simplified.

One should apply this rule while it is possible and worthwhile.

unit propagate (S, A) {

while {} 62 S and S has a unit clause l do {

S  S|l ;
A A [ {l}

}

}
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DPLL algorithm

DPLL is called with a CNF S and a partial assignment A (initially ;).

DPLL(S, A) {

unit propagate(S, A);
if S = {} then return SAT;
else if {} 2 S then return UNSAT;
else { l a literal of S ;

if DPLL (S|l, A [ {l}) = SAT then return SAT;
else return DPLL (S|�l, A [ {�l})

}

}

DPLL complete algorithm for SAT.

Unsatisfiability of the complete formula can only be detected after
exhaustive search.
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DPLL algorithm

Is (¬P _Q) ^ (¬P _R) ^ (Q _R) ^ (¬Q _ ¬R) ^ (P _ ¬R _Q) satisfiable?

S A
DPLL {{¬P, Q}, {¬P, R}, {Q, R}, {¬Q, ¬R}, {P, ¬R, Q}} {}
unit propagate

{{¬P, Q}, {¬P, R}, {Q, R}, {¬Q, ¬R}, {P, ¬R, Q}} {}
choose l = P
DPLL S|l {{Q}, {R}, {Q, R}, {¬Q, ¬R}} {P}
unit propagate

{{}} {P, Q, R}
�l = ¬P
DPLL S|�l {{Q, R}, {¬Q, ¬R}, {¬R, Q}} {¬P}
unit propagate

{{Q, R}, {¬Q, ¬R}, {¬R, Q}} {¬P}
choose l = Q
DPLL S|l {{¬R}} {¬P, Q}
unit propagate

{} {¬P, Q, ¬R}
SAT
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DPLL framework: heuristics & optimizations

Many di↵erent techniques are applied to achieve e�ciency in DPLL-based SAT
solvers.

Decision heuristic: a very important feature in SAT solving is the strategy by
which the literals are chosen.

Look-ahead: exploit information about the remaining search space.

I unit propagation
I pure literal rule

Look-back: exploit information about search which has already taken place.

I non-chronological backtracking (a.k.a. backjumping)
I clause learning

Other techniques:

I preprocessing (detection of subsumed clauses, simplification, ...)
I (random) restart (restarting the solver when it seams to be is a

hopeless branch of the search tree)
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DPLL-based iterative algorithm [Marques-Silva&Sakallah,1996]

At each step:

Decide on the assignment of a variable (which is called the decision variable, and
it will have a decision level associated with it).

Deduce the consequences of the decision made. (Variables assigned will have the

same decision level as the decision variable.)

I If all the clauses are satisfied, then the instance is satisfiable.

I If there exists a conflicting clause, then analyze the conflit and determine the

decision level to backtrack. (The solver may perform some analysis and

record some information from the current conflict in order to prune the

search space for the future.)

F Decision level < 0 indicates that the formula is unsatisfiable.

I Otherwise, proceed with another decision.

Di↵erent DPLL-based modern solvers di↵er mainly in the detailed implementation of

each of these functions.

Maria João Frade (HASLab, DI-UM) PL & SAT VF 2022/23 48 / 75



DPLL-based iterative algorithm
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Algorithm 2.2.1: DPLL-SAT

Input: A propositional CNF formula B
Output: “Satisfiable” if the formula is satisfiable and “Unsatisfiable”

otherwise

1. function DPLL
2. if BCP() = “conflict” then return “Unsatisfiable”;
3. while (true) do
4. if ¬Decide() then return “Satisfiable”;
5. else
6. while (BCP() = “conflict”) do
7. backtrack-level := Analyze-Conflict();
8. if backtrack-level < 0 then return “Unsatisfiable”;
9. else BackTrack(backtrack-level);

full

conflict

SAT
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dl � 0

BackTrack

Analyze-
ConflictBCP
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no

partial
assignment

Decide
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Fig. 2.4. DPLL-SAT: high-level overview of the Davis-Putnam-Loveland-Logemann
algorithm. The variable dl is the decision level to which the procedure backtracks

2.2.3 BCP and the Implication Graph

We now demonstrate Boolean constraints propagation (BCP), reaching a con-
flict, and backtracking. Each assignment is associated with the decision level
at which it occurred. If a variable xi is assigned 1 (true) (owing to either
a decision or an implication) at decision level dl, we write xi@dl. Similarly,

�� ��xi@dl

¬xi@dl reflects an assignment of 0 (false) to this variable at decision level
dl. Where appropriate, we refer only to the truth assignment, omitting the
decision level, in order to make the notation simpler.

DPLL(T ) framework
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Theory Solver

conflict clause

DPLL(T ) framework

Suppose SAT solver has made partial assignment A in Decide step and
performed BCP (unit propagation).

If no conflict detected, immediately invoke theory solver.

Use theory solver to decide if �(A) is T -unsatisfiable.

If �(A) is T -unsatisfiable, add the negation of its unsat core (the conflict
clause) to clause database and continue doing BCP, which will detect
conflict.

As before, AnalyzeConflict decides what level to backtrack to
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Conflict analysis and learning

Non-chronological backtracking does not necessarily flip the last assignment
and can backtrack to an earlier decision level.

The process of adding conflict clauses is generally referred to as learning.

The conflict clauses record the reasons deduced from the conflict to avoid
making the same mistake in the future search. For that implication graphs
are used.

Conflict-driven backtracking uses the conflict clauses learned to determine
the actual reasons for the conflict and the decision level to backtrack in
order to prevent the repetition of the same conflict.
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Conflict analysis and learning
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Conflict analysis and learning
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Conflict-driven backtracking

After detecting the conflict and adding the clause learned the solver
determines which decision level to backtrack to according to the
conflict-driven backtracking strategy.

For instance:

The backtracking level is set to the second most recent decision level
in the clause learned, while erasing all decisions and implications
made after that level.

In the case of (x5 _ ¬x1), the solver backtracks to decision level 3,
and erases all assignments from decision level 4 onwards, including
the assignments to x1, x2, x3 and x4.
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Conflict-Driven Clause Learning (CDCL) solvers

DPLL framework.

New clauses are learnt from conflicts.

Structure (implication graphs) of conflicts exploited.

Backtracking can be non-chronological.

E�cient data structures (compact and reduced maintenance overhead).

Backtrack search is periodically restarted.

Can deal with hundreds of thousand variables and tens of million clauses!

Maria João Frade (HASLab, DI-UM) PL & SAT VF 2022/23 60 / 75



Modern SAT solvers

In the last two decades, satisfiability procedures have undergone dramatic
improvements in e�ciency and expressiveness. Breakthrough systems like
GRASP (1996), SATO (1997), Cha↵ (2001) and MiniSAT (2003) have
introduced several enhancements to the e�ciency of DPLL-based SAT
solving.

New SAT solvers are introduced every year.

The satisfiability library SAT Live!1 is an online resource that proposes, as a
standard, a unified notation and a collection of benchmarks for performance
evaluation and comparison of tools.

1
http://www.satlive.org
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DIMACS CNF format

DIMACS CNF format is a standard format for CNF used by most
SAT solvers.

Plain text file with following structure:

c <comments>

...

p cnf <num.of variables> <num.of clauses>

<clause> 0

<clause> 0

...
I Every number 1, 2, . . . corresponds to a variable (variable names have

to be mapped to numbers).
I A negative number denote the negation of the corresponding variable.
I Every clause is a list of numbers, separated by spaces. (One or more

lines per clause).
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DIMACS CNF format

Example

A1 ^ (A1 _ P ) ^ (¬A1 _ ¬P _A2) ^ (A1 _ ¬A2)

We have 3 variables and 4 clauses.

CNF file:
p cnf 3 4

1 0

1 3 0

-1 -3 2 0

1 -2 0

Maria João Frade (HASLab, DI-UM) PL & SAT VF 2022/23 63 / 75

Minisat demo
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SAT solver API

Several SAT solvers have API’s for di↵erent programming languages that
allow an incremental use of the solver.

For instance, PySAT2 is a Python toolkit which provides a simple and
unified interface to a number of state-of-art SAT solvers, enabling to
prototype with SAT oracles in Python while exploiting incrementally the
power of the original low-level implementations of modern SAT solvers.

2
https://pysathq.github.io
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Variations on the Boolean Satisfiability Problem

So far, we considered the basic Boolean satisfiability problem:

Given a propositional formula F , is F satisfiable?

Some common variants of Boolean SAT:
I MaxSAT problem: Given formula F in CNF, find assignment

maximizing the number of satisfied clauses of F .

I Partial MaxSAT problem: Given CNF formula F where each clause is
marked as hard or soft, find an assignment that satisfies all hard
clauses and maximizes the number satisfied soft clauses.

I Partial Weighted MaxSAT problem: Find assignment maximizing the
sum of weights of satisfied soft clauses
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Modeling with PL
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SAT example: Schedule a meeting

When can the meeting take place?

– Anne cannot meet on Friday.
– Peter can only meet either on Monday, Wednesday or Thursday.
– Mike cannot meet neither on Tuesday nor on Thursday.

Create 5 variables to represent the days of week.

The constraints can be encoded into the following proposition:

¬Fri ^ (Mon _ Wed _ Thu) ^ (¬Tue ^¬Thu)

How can we use a SAT solver to explore the possible solutions to this
problem?
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SAT example: Schedule a meeting

First, encode de problem in DIMACS CNF format.
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SAT example: Schedule a meeting

Check SAT and see the model produced.

The meeting can take place on Monday.

Add a clausule to exclude Monday (-1) and check SAT again.

The meeting can take place on Wednesday.

Add a clausule to exclude Wednesday (-3) and check SAT again.

No more solutions.
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SAT example: Schedule a meeting

Using the PySAT toolkit.

Change the code to print all possible solutions to the problem.
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Modeling with PL

Equivalence checking of if-then-else chains
Original C code

if(!a && !b) h();
else if(!a) g();
else f();

Optimized C code

if(a) f();
else if(b) g();
else h();

Are these two programs equivalent?

1 Model the variables a and b and the procedures that are called using
the Boolean variables a, b, f , g, and h.

2 Compile if-then-else chains into Boolean formulae
compile(if x then y else z) ⌘ (x ^ y) _ (¬x ^ z)

3 Check the validity of the following formula
compile(original) $ compile(optimized)

by reformulating it as a SAT problem.
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SAT example: Graph coloring

Graph coloring

Can one assign one of K colors to each of the vertices of graph
G = (V, E) such that adjacent vertices are assigned di↵erent colors?

Create |V |⇥K variables:
I xij = 1 i↵ vertex i is assigned color j;
I xij = 0 otherwise.

For each edge (u, v), require di↵erent assigned colors to u and v:

for each 1  j  K, (xuj ! ¬xvj)

...
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SAT example: Graph coloring

Each vertex is assigned exactly one color.

I At least one color to each vertex:

for each 1  i  |V |,

K_

j=1

xij

I At most one color to each vertex:

for each 1  i  |V |,

K̂

a=1

(xia !

K̂

b=1,b 6=a

¬xib)

since _ and ^ are commutative and idempotent, a better encoding is

for each 1  i  |V |,

K�1̂

a=1

(xia !

K̂

b=a+1

¬xib)

or equivalently,

for each 1  i  |V |,

K�1̂

a=1

K̂

b=a+1

(¬xia _ ¬xib)
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SAT example: Graph coloring

Let’s make a Python program to solve this problem!
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