First-Order Logic

Maria João Frade

HASLab - INESC TEC
Departamento de Informática, Universidade do Minho
2022/2023

(Classical) First-Order Logic

Roadmap

- Classical First-Order Logic

- syntax; semantics; decision problems SAT and VAL;
- normal forms; Herbrandization; Skolemization;
- FOL with equality; many-sorted FOL.
- Modeling with FOL
- Formalization of domain models in FOL.

Introduction

First-order logic (FOL) is a richer language than propositional logic. Its lexicon contains not only the symbols \wedge, \vee, \neg, and \rightarrow (and parentheses) from propositional logic, but also the symbols \exists and \forall for "there exists" and "for all", along with various symbols to represent variables, constants, functions, and relations.

There are two sorts of things involved in a first-order logic formula:

- terms, which denote the objects that we are talking about;
- formulas, which denote truth values.

Examples:

"Not all birds can fly."

"Every mother is older than her children."
"John and Peter have the same maternal grandmother."

Syntax

The alphabet of a first-order language is organised into the following categories.

- Variables: $x, y, z, \ldots \in \mathcal{X}$ (arbitrary elements of an underlying domain)
- Constants: $a, b, c, \ldots \in \mathcal{C}$ (specific elements of an underlying domain)
- Functions: $f, g, h, \ldots \in \mathcal{F}$ (every function f has a fixed arity, $\operatorname{ar}(f)$)
- Predicates: $P, Q, R, \ldots \in \mathcal{P}$ (every predicate P has a fixed arity, ar (P))
- Logical connectives: $\top, \perp, \wedge, \vee, \neg, \rightarrow, \forall$ (for all), \exists (there exists)
- Auxiliary symbols: ".", "(" and ")".

We assume that all these sets are disjoint. \mathcal{C}, \mathcal{F} and \mathcal{P} are the non-logical symbols of the language. These three sets constitute the vocabulary $\mathcal{V}=\mathcal{C} \cup \mathcal{F} \cup \mathcal{P}$.

Syntax

Convention

We adopt some syntactical conventions to lighten the presentation of formulas:

- Outermost parenthesis are usually dropped.
- In absence of parentheses, we adopt the following convention about precedence. Ranging from the highest precedence to the lowest, we have respectively: \neg, \wedge, \vee and \rightarrow. Finally we have that \rightarrow binds more tightly than \forall and \exists.
- All binary connectives are right-associative.
- Nested quantifications such as $\forall x . \forall y . \phi$ are abbreviated to $\forall x, y . \phi$.
- $\forall \bar{x} . \phi$ denotes the nested quantification $\forall x_{1}, \ldots, x_{n} . \phi$.

Syntax

Terms

The set of terms of a first-order language over a vocabulary \mathcal{V} is given by the following abstract syntax

$$
\operatorname{Term}_{\mathcal{V}} \ni t::=x|c| f\left(t_{1}, \ldots, t_{\operatorname{ar}(f)}\right)
$$

Formulas

The set Form $\mathcal{V}_{\mathcal{V}}$, of formulas of FOL, is given by the abstract syntax

```
Form \(_{\mathcal{V}} \ni \phi, \psi::=P\left(t_{1}, \ldots, t_{\operatorname{ar}(P)}\right)|\perp| \top|(\neg \phi)|(\phi \wedge \psi) \mid(\phi \vee \psi)\)
    \(|(\phi \rightarrow \psi)|(\forall x . \phi) \mid(\exists x . \phi)\)
```

An atomic formula has the form \perp, T, or $P\left(t_{1}, \ldots, t_{\operatorname{ar}(P)}\right)$. A ground term is a term without variables. Ground formulas are formulas without variables, i.e., quantifier-free formulas ϕ such that all terms occurring in ϕ are ground terms.

Maria João Frade (HASLab, DI-UM) FOL MFES 2022/23 6/49

Modeling with FOL

"Not all birds can fly."

We can code this sentence assuming the two unary predicates B and F expressing

$$
\begin{aligned}
& B(x)-x \text { is a bird } \\
& F(x)-x \text { can fly }
\end{aligned}
$$

The declarative sentence "Not all birds can fly" can now be coded as

$$
\neg(\forall x . B(x) \rightarrow F(x))
$$

or, alternatively, as

$$
\exists x . B(x) \wedge \neg F(x)
$$

Modeling with FOL

"Every mother is older than her children."

"John and Peter have the same maternal grandmother."
Using constants symbols j and p for John and Peter, and predicates $=$, mother and older expressing that

$$
\text { mother }(x, y)-x \text { is mother of } y
$$

these sentences could be expressed by

$$
\operatorname{older}(x, y)-x \text { is older than } y
$$

$$
\forall x . \forall y . \text { mother }(x, y) \rightarrow \operatorname{older}(x, y)
$$

$\forall x, y, u, v$. mother $(x, y) \wedge \operatorname{mother}(y, j) \wedge \operatorname{mother}(u, v) \wedge \operatorname{mother}(v, p) \rightarrow x=u$
A different and more elegant encoding is to represent y 'mother in a more direct way, by using a function instead of a relation. We write $m(y)$ to mean y 'mother. This way the two sentences above have simpler encondings.

$$
\forall x . \operatorname{older}(m(x), x) \quad \text { and } \quad m(m(j))=m(m(p))
$$

Maria João Frade (HASLab, DI-UM) FOL MFES 2022/23 9/49

Free and bound variables

- The free variables of a formula ϕ are those variables occurring in ϕ that are not quantified. $\mathrm{FV}(\phi)$ denotes the set of free variables occurring in ϕ.
- The bound variables of a formula ϕ are those variables occurring in ϕ that do have quantifiers. $\mathrm{BV}(\phi)$ denote the set of bound variables occurring in ϕ.

Note that variables can have both free and bound occurrences within the same formula. Let ϕ be $\exists x . R(x, y) \wedge \forall y . P(y, x)$, then

$$
\mathrm{FV}(\phi)=\{y\} \text { and } \mathrm{BV}(\phi)=\{x, y\} .
$$

- A formula ϕ is closed (or a sentence) if it does not contain any free variables.
- If $\operatorname{FV}(\phi)=\left\{x_{1}, \ldots, x_{n}\right\}$, then
its universal closure is $\forall x_{1} \ldots . \forall x_{n} . \phi$
its existential closure is $\exists x_{1} \ldots \exists x_{n} . \phi$

Modeling with FOL

$$
\begin{aligned}
& \text { Assume further the following predicates and constant symbols } \\
& \begin{array}{ll}
\text { flower }(x)-x \text { is a flower } & \text { likes }(x, y)-x \text { likes } y \\
\text { sport }(x)-x \text { is a sport } & \text { brother }(x, y)-x \text { is brother of } y \\
a-\text { Anne } &
\end{array}
\end{aligned}
$$

- "Anne likes John's brother." $\exists x$. $\operatorname{brother}(x, j) \wedge \operatorname{likes}(a, x)$
- "John likes all sports." $\forall x \cdot \operatorname{sports}(x) \rightarrow \operatorname{likes}(j, x)$
- "John's mother likes flowers." $\forall x$. flower $(x) \rightarrow \operatorname{likes}(m(j), x)$
- "John's mother does not like some sports." $\exists y . \operatorname{sport}(y) \wedge \neg l i k e s(m(j), y)$
- "Peter only likes sports." $\forall x \cdot \operatorname{likes}(p, x) \rightarrow \operatorname{sports}(x)$
- "Anne has two children."

$$
\begin{gathered}
\exists x_{1}, x_{2} . \text { mother }\left(a, x_{1}\right) \wedge \text { mother }\left(a, x_{2}\right) \wedge x_{1} \neq x_{2} \wedge \\
\forall z . \text { mother }(a, z) \rightarrow z=x_{1} \vee z=x_{2}
\end{gathered}
$$

Substitution

Substitution

- We define $u[t / x]$ to be the term obtained by replacing each occurrence of variable x in u with t
- We define $\phi[t / x]$ to be the formula obtained by replacing each free occurrence of variable x in ϕ with t

Care must be taken, because substitutions can give rise to undesired effects!

Substitution

Let us illustrate the problem.

Let ϕ be $\exists x$. likes $(x, y) \wedge \forall y$. older (y, x), and t be the term $m(x)$

- Now let us perform the substitution $\phi[t / y]$
$(\exists x$. likes $(x, y) \wedge \forall y$. older $(y, x))[(m(x) / y]=\exists x$. likes $(x, m(x)) \wedge \forall y$. older (y, x) which is wrong!

The meaning of the formula has completly changed.
The free variable x in $m(x)$ was captured inadvertently by the $\exists x$.

- This can be fixed if we change the name of the bounded varible in $\exists x$, by renaming it to a fresh variable.
$(\exists z . \operatorname{likes}(z, y) \wedge \forall y . \operatorname{older}(y, z))[(m(x) / y]=\exists z . \operatorname{likes}(z, m(x)) \wedge \forall y . \operatorname{older}(y, z)$ which is OK!

Substitution

Given a term t, a variable x and a formula ϕ, we say that t is free for x in ϕ if no free x in ϕ occurs in the scope of $\forall z$ or $\exists z$ for any variable z occurring in t.

From now on we will assume that all substitutions satisfy this condition.
That is when performing the $\phi[t / x]$ we are always assuming that t is free for x in ϕ.

Substitution

Convention

We write $\phi\left(x_{1}, \ldots, x_{n}\right)$ to denote a formula having free variables x_{1}, \ldots, x_{n}. We write $\phi\left(t_{1}, \ldots, t_{n}\right)$ to denote the formula obtained by replacing each free occurrence of x_{i} in ϕ with the term t_{i}. When using this notation, it should always be assumed that each t_{i} is free for x_{i} in ϕ.

Also note that when writhing $\phi\left(x_{1}, \ldots, x_{n}\right)$ we do not mean that x_{1}, \ldots, x_{n} are the only free variables of ϕ.

Semantics

\mathcal{V}-structure

Let \mathcal{V} be a vocabulary. A \mathcal{V}-structure \mathcal{M} is a pair $\mathcal{M}=(D, I)$ where D is a nonempty set called the interpretation domain, and I is an interpretation function that assigns constants, functions and predicates over D to the symbols of \mathcal{V} as follows:

- for each constant symbol $c \in \mathcal{C}$, the interpretation of c is a constant $I(c) \in D$;
- for each $f \in \mathcal{F}$, the interpretation of f is a function $I(f): D^{\operatorname{ar}(f)} \rightarrow D$;
- for each $P \in \mathcal{P}$, the interpretation of P is a function $I(P): D^{\operatorname{ar}(P)} \rightarrow\{0,1\}$ In particular, 0-ary predicate symbols are interpreted as truth values.
\mathcal{V}-structures are also called models for \mathcal{V}.

Semantics

Assignment

An assignment for a domain D is a function $\alpha: \mathcal{X} \rightarrow D$

We denote by $\alpha[x \mapsto a]$ the assignment which maps x to a and any other variable y to $\alpha(y)$

Given a \mathcal{V}-structure $\mathcal{M}=(D, I)$ and given an assignment $\alpha: \mathcal{X} \rightarrow D$, we define an interpretation function for terms, $\alpha_{\mathcal{M}}: \operatorname{Term}_{\mathcal{V}} \rightarrow D$, as follows:

$$
\begin{array}{ll}
\alpha_{\mathcal{M}}(x) & =\alpha(x) \\
\alpha_{\mathcal{M}}(c) & =I(c) \\
\alpha_{\mathcal{M}}\left(f\left(t_{1}, \ldots, t_{n}\right)\right) & =I(f)\left(\alpha_{\mathcal{M}}\left(t_{1}\right), \ldots, \alpha_{\mathcal{M}}\left(t_{n}\right)\right)
\end{array}
$$

Semantics

Satisfaction relation

Given a \mathcal{V}-structure $\mathcal{M}=(D, I)$ and given an assignment $\alpha: \mathcal{X} \rightarrow D$, we define the satisfaction relation $\mathcal{M}, \alpha=\phi$ for each $\phi \in \operatorname{Form}_{\mathcal{V}}$ as follows:

```
\(\mathcal{M}, \alpha \models \top\)
\(\mathcal{M}, \alpha \not \models \perp\)
\(\mathcal{M}, \alpha \models P\left(t_{1}, \ldots, t_{n}\right) \quad\) iff \(\quad I(P)\left(\alpha_{\mathcal{M}}\left(t_{1}\right), \ldots, \alpha_{\mathcal{M}}\left(t_{n}\right)\right)=1\)
\(\mathcal{M}, \alpha=\neg \phi \quad\) iff \(\mathcal{M}, \alpha \neq \phi\)
\(\mathcal{M}, \alpha \models \phi \wedge \psi \quad\) iff \(\mathcal{M}, \alpha \models \phi\) and \(\mathcal{M}, \alpha \models \psi\)
\(\mathcal{M}, \alpha \models \phi \vee \psi \quad\) iff \(\mathcal{M}, \alpha=\phi\) or \(\mathcal{M}, \alpha \models \psi\)
\(\mathcal{M}, \alpha \models \phi \rightarrow \psi \quad\) iff \(\mathcal{M}, \alpha \not \models \phi\) or \(\mathcal{M}, \alpha \models \psi\)
\(\mathcal{M}, \alpha \models \forall x . \phi \quad\) iff \(\mathcal{M}, \alpha[x \mapsto a] \models \phi\) for all \(a \in D\)
\(\mathcal{M}, \alpha \models \exists x . \phi \quad\) iff \(\quad \mathcal{M}, \alpha[x \mapsto a] \models \phi\) for some \(a \in D\)
```

Maria João Frade (HASLab, DI-UM) FOL MFES 2022/23 18/49

Consequence and equivalence

Given a set of formulas Γ, a model \mathcal{M} and an assignment α, \mathcal{M} is said to satisfy Γ with α, denoted by $\mathcal{M}, \alpha \models \Gamma$, if $\mathcal{M}, \alpha \vDash \phi$ for every $\phi \in \Gamma$.
Γ entails ϕ (or that ϕ is a logical consequence of Γ), denoted by $\Gamma \models \phi$, iff for all structures \mathcal{M} and assignments α, whenever $\mathcal{M}, \alpha \models \Gamma$ holds, then $\mathcal{M}, \alpha \models \phi$ holds as well.
ϕ is logically equivalent to ψ, denoted by $\phi \equiv \psi$, iff $\{\phi\} \models \psi$ and $\{\psi\} \models \phi$.

Deduction theorem
$\Gamma, \phi=\psi \quad$ iff $\quad \Gamma \equiv \phi \rightarrow \psi$

Consistency

The set Γ is consistent or satisfiable iff there is a model \mathcal{M} and an assigment α such that $\mathcal{M}, \alpha \models \phi$ holds for all $\phi \in \Gamma$.

We say that Γ is inconsistent iff it is not consistent and denote this by $\Gamma \models \perp$.

Proposition

- $\{\phi, \neg \phi\} \models \perp$
- If $\Gamma \models \perp$ and $\Gamma \subseteq \Gamma^{\prime}$, then $\Gamma^{\prime} \models \perp$.
- $\Gamma \models \phi \quad$ iff $\quad \Gamma, \neg \phi \models \perp$

Maria João Frade (HASLab, DI-UM)

Adquate sets of connectives for FOL

Renaming of bound variables

If y is free for x in ϕ and $y \notin \mathrm{FV}(\phi)$, then the following equivalences hold.

- $\forall x . \phi \equiv \forall y . \phi[y / x]$
- $\exists x . \phi \equiv \exists y . \phi[y / x]$

Lemma

The following equivalences hold in first-order logic.

$$
\begin{aligned}
\forall x . \phi \wedge \psi & \equiv(\forall x . \phi) \wedge(\forall x . \psi) & \exists x . \phi \vee \psi & \equiv(\exists x . \phi) \vee(\exists x . \psi) \\
\forall x . \phi & \equiv(\forall x . \phi) \wedge \phi[t / x] & \exists x . \phi & \equiv(\exists x . \phi) \vee \phi[t / x] \\
\neg \forall x . \phi & \equiv \exists x . \neg \phi & \neg \exists x . \phi & \equiv \forall x . \neg \phi
\end{aligned}
$$

As in propositional logic, there is some redundancy among the connectives and quantifiers since $\forall x . \phi \equiv \neg \exists x . \neg \phi$ and $\exists x . \phi \equiv \neg \forall x . \neg \phi$.

Substitution

- Formula ψ is a subformula of formula ϕ if it occurs syntactically within ϕ.
- Formula ψ is a strict subformula of ϕ if ψ is a subformula of ϕ and $\psi \neq \phi$

Substitution theorem

Suppose $\phi \equiv \psi$. Let θ be a formula that contains ϕ as a subformula. Let θ^{\prime} be the formula obtained by safe replacing (i.e., avoiding the capture of free variables of ϕ) some occurrence of ϕ in θ with ψ. Then $\theta \equiv \theta^{\prime}$.

Decidability

Given formulas ϕ and ψ as input, we may ask:

Decision problems

Validity problem:
"Is ϕ valid ?"
Satisfiability problem: "Is ϕ satisfiable ?"
Consequence problem: "Is ψ a consequence of ϕ ?"
Equivalence problem: "Are ϕ and ψ equivalent ?"

These are, in some sense, variations of the same problem.

ϕ is valid	iff	$\neg \phi$ is unsatisfiable
$\phi \models \psi$	iff	$\neg(\phi \rightarrow \psi)$ is unsatisfiable
$\phi \equiv \psi$	iff	$\phi \models \psi$ and $\psi \models \phi$
ϕ is satisfiable	iff	$\neg \phi$ is not valid

Maria Joăo Frade (HASLab, DI-UM)

Decidability

A solution to a decision problem is a program that takes problem instances as input and always terminates, producing a correct "yes" or "no" output.

- A decision problem is decidable if it has a solution.
- A decision problem is undecidable if it is not decidable.

Theorem (Church \& Turing)

- The decision problem of validity in first-order logic is undecidable: no program exists which, given any ϕ, decides whether $\vDash \phi$.
- The decision problem of satisfiability in first-order logic is undecidable: no program exists which, given any ϕ, decides whether ϕ is satisfiable.
Maria João Frade (HASLab, DI-UM) FOL MFES 2022/23 25/49

Normal forms

A first-order formula is in negation normal form (NNF) if the implication connective is not used in it, and negation is only applied to atomic formulas

If x does not occur free in ψ, then the following equivalences hold.

$(\forall x \cdot \phi) \wedge \psi$	$\equiv \forall x . \phi \wedge \psi$		$\psi \wedge(\forall x \cdot \phi) \equiv \forall x \cdot \psi \wedge \phi$
$(\forall x \cdot \phi) \vee \psi \equiv \forall x . \phi \vee \psi$		$\psi \vee(\forall x \cdot \phi) \equiv \forall x \cdot \psi \vee \phi$	
$(\exists x \cdot \phi) \wedge \psi \equiv \exists x \cdot \phi \wedge \psi$		$\psi \wedge(\exists x \cdot \phi) \equiv \exists x \cdot \psi \wedge \phi$	
$(\exists x \cdot \phi) \vee \psi \equiv \exists x . \phi \vee \psi$		$\psi \vee(\exists x \cdot \phi) \equiv \exists x \cdot \psi \vee \phi$	

The applicability of these equivalences can always be assured by appropriate renaming of bound variables.

Semi-decidability

However, there is a procedure that halts and says "yes" if ϕ is valid.

A decision problem is semi-decidable if exists a procedure that, given an input,

- halts and answers "yes" iff "yes" is the correct answer,
- halts and answers "no" if "no" is the correct answer, or
- does not halt if "no" is the correct answer

Unlike a decidable problem, the procedure is only guaranteed to halt if the correct answer is "yes"

The decision problem of validity in first-order logic is semi-decidable.
Maria João Frade (HASLab, DI-UM) FOL MFES 2022/23 26/49

Normal forms

A formula is in prenex form if it is of the form $Q_{1} x_{1} \cdot Q_{2} x_{2} \ldots Q_{n} x_{n} \cdot \psi$ where each Q_{i} is a quantifier (either \forall or \exists) and ψ is a quantifier-free formula.

Prenex form of $\forall x .(\forall y . P(x, y) \vee Q(x)) \rightarrow \exists z \cdot P(x, z)$

First we compute the NNF and then we go for the prenex form.

$$
\begin{array}{lll}
& \forall x \cdot(\forall y \cdot P(x, y) \vee Q(x)) \rightarrow \exists z \cdot P(x, z) & \equiv \\
& \forall x \cdot \neg(\forall y \cdot P(x, y) \vee Q(x)) \vee \exists z \cdot P(x, z) & \equiv \\
\text { (NNF) } & \forall x \cdot \exists y \cdot(\neg P(x, y) \wedge \neg Q(x)) \vee \exists z \cdot P(x, z) & \equiv \\
\text { (prenex) } & \forall x \cdot \exists y \cdot \exists z \cdot(\neg P(x, y) \wedge \neg Q(x)) \vee P(x, z) &
\end{array}
$$

Herbrand/Skolem normal forms

Let ϕ be a first-order formula in prenex normal form.

- The Herbrandization of ϕ (written ϕ^{H}) is an existential formula obtained from ϕ by repeatedly and exhaustively applying the following transformation:

$$
\exists x_{1}, \ldots, x_{n} \cdot \forall y . \psi \rightsquigarrow \exists x_{1}, \ldots, x_{n} \cdot \psi\left[f\left(x_{1}, \ldots, x_{n}\right) / y\right]
$$

with f a fresh function symbol with arity n (i.e. f does not occur in ψ),

- The Skolemization of $\phi\left(\right.$ written $\left.\phi^{S}\right)$ is a universal formula obtained from ϕ by repeatedly applying the transformation:

$$
\forall x_{1}, \ldots, x_{n} \cdot \exists y . \psi \rightsquigarrow \forall x_{1}, \ldots, x_{n} \cdot \psi\left[f\left(x_{1}, \ldots, x_{n}\right) / y\right]
$$

with f a fresh function symbol with arity n.

- Herbrand normal form (resp. Skolem normal form) formulas are those obtained by the process of Herbrandization (resp. Skolemization).

Herbrandization/Skolemization

A formula ϕ and its Herbrandization/Skolemization are not logically equivalent.

Proposition

Let ϕ be a first-order formula in prenex normal form.

- ϕ is valid iff its Herbrandization ϕ^{H} is valid
- ϕ is satisfiable iff its Skolemization ϕ^{S} is satisfiable.

Herbrandization/Skolemization change the underlying vocabulary. These additional symbols are called Herbrand/Skolem functions.

FOL with equality

To understand the significant difference between having equality with the status of any other predicate, or with a fixed interpretation as in first-order logic with equality, consider the formulas

- $\exists x_{1}, x_{2} . \forall y . y=x_{1} \vee y=x_{2}$

With a fixed interpretation of equality, the validity of this formula implies that the cardinality of the interpretation domain is at most two - the quantifiers can actually be used to fix the cardinality of the domain, which is not otherwise possible in first-order logic.

- $\exists x_{1}, x_{2} \neg\left(x_{1}=x_{2}\right)$

The validity of this formula implies that there exist at least two distinct elements in the domain, thus its cardinality must be at least two.

Many-sorted FOL

- A natural variant of first-order logic that can be considered is the one that results from allowing different domains of elements to coexist in the framework. This allows distinct "sorts" or types of objects to be distinguished at the syntactical level, constraining how operations and predicates interact with these different sorts.
- Having full support for different sorts of objects in the language allows for cleaner and more natural encodings of whatever we are interested in modeling and reasoning about.
- By adding to the formalism of FOL the notion of sort, we can obtain a flexible and convenient logic called many-sorted first-order logic, which has the same properties as FOL.

SMT solvers

- When judging the validity/satisfiability of first-order formulas we are typically interested in a particular domain of discourse, which in addition to a specific underlying vocabulary includes also properties that one expects to hold. We work with respect to some background theory.
- The Satisfiability Modulo Theories (SMT) problem is a variation of the SAT problem for first-order logic, with the interpretation of symbols constrained by (a combination of) specific theories.
- SMT solvers are tools that aim to answer the SMT problem.
- The underlying logic of SMT solvers is many-sorted first-order logic with equality.
- SMT solvers are the core engine of many tools for analyzing and verifying software, planning, etc.
- We will see more about this topic later.

Many-sorted FOL

- A many-sorted vocabulary (signature) is composed of a set of sorts, a set of function symbols, and a set of predicate symbols.
- Each function symbol f has associated with a type of the form $S_{1} \times \ldots \times S_{\operatorname{ar}(f)} \rightarrow S$ where $S_{1}, \ldots, S_{\operatorname{ar}(f)}, S$ are sorts.
- Each predicate symbol P has associated with it a type of the form $S_{1} \times \ldots \times S_{\text {ar }(P)}$.
- Each variable is associated with a sort.
- The formation of terms and formulas is done only accordingly to the typing policy, i.e., respecting the "sorts".
- The domain of discourse of any structure of a many-sorted vocabulary is fragmented into different subsets, one for every sort.
- The notions of assignment and structure for a many-sorted vocabulary, and the interpretation of terms and formulas are defined in the expected way.

Modeling with FOL

Modeling with FOL

- Being able to express an idea in FOL is an essential skill for Forma Methods in Software Engineering
- We will see some examples. In particular, we will formalize in FOL systems decribed by domain models.
- The underlying logic is first-order logic with equality (without sorts).

Modeling with FOL

Use the predicates
admires $(x, y): \quad x$ admires $y \quad \operatorname{Professor}(x): \quad x$ is a professor attended $(x, y): \quad x$ attended $y \quad$ Student $(x): \quad x$ is a student Lecture (x) : $\quad x$ is a lecture
and the constant Mary to translate the following into predicate logic:

- No student attended every lecture

$$
\neg(\exists x . \text { Student }(x) \wedge(\forall y . \text { Lecture }(y) \rightarrow \text { attended }(x, y)))
$$

- No lecture was attended by every student.

$$
\neg(\exists x . \text { Lecture }(x) \wedge(\forall y . \text { Student }(y) \rightarrow \operatorname{attended}(y, x)))
$$

- No lecture was attended by any student.

$$
\neg(\exists l \text {. Lecture }(l) \wedge \forall s . \text { Student }(s) \rightarrow \neg \text { attended }(s, l))
$$

or equivalently

$$
\forall l \text {. Lecture }(l) \rightarrow \exists s \text {. Student }(s) \wedge \text { attended }(s, l)
$$

Modeling with FOL

Use the predicates

admires $(x, y):$	x admires y	$\operatorname{Professor}(x):$	x is a professor
attended $(x, y):$	x attended y	$\operatorname{Student}(x):$	x is a student
		$\operatorname{Lecture}(x):$	x is a lecture

and the constant Mary to translate the following into predicate logic: and the constant Mary to translate the following into predicate logic:

- Mary admires every professor.

$$
\forall x . \text { Professor }(x) \rightarrow \text { admires(Mary, } x)
$$

- Some professor admires Mary.
$\exists x$. Professor $(x) \wedge$ admires $(x$, Mary $)$
- Mary admires herself.
admires(Mary, Mary)

Domain models

- A domain model is a conceptual model of a system that describes the various entities involved in that system and their relationships.

- It is used in software development as a first step to realize a new domain and resolve ambiguities in requirements.
- A domain model is a selective and structured representation of domain knowledge relevant to a given software development project.

Domain models

Domain models

- There is no standard notation for domain models.
- We are going to use the notation used in the Desenvolvimento de Sistemas de Software course. So, we assume that:
- all entities present in a diagram are disjoint, unless between two entities there is a relation/association "is a" which denotes a specialization/extension;
- if there are multiple specializations for the same entity, those specializations are disjoint;
- the relation/association "is a" may be a subset or a membership relation. If it is a membership relation, the entity that "belongs to" another will be modeled as a constant.

Formalizing a domain model

Next we write the set of formulas that describe the system. These formulas are of a different nature:

- codification of specialization relationships (which may be subset or membership relations, depending on the case);
- partitioning the universe of discourse with the types of the entities;
- disjunction of specialization entities;
- typing associations;
- multiplicity restrictions on associations;
- restrictions annotated informally.

Example: Instagram (simplified)

A simplified domain model for Instagram:

Predicates:

$$
\begin{array}{ll}
\text { User(-) } & \text { Photo(-) } \quad \operatorname{Ad}(-) \\
\operatorname{sees}(-,-) & \operatorname{posts}(-,-) \\
\text { follows }(-,-)
\end{array}
$$

Maria João Frade (HASLab, DI-UM)

Example: Instagram (simplified)

- Disjunction of specialization entities.
(there is nothing to add)
- Typing associations.

$$
\begin{aligned}
& \forall x, y \text {. follows }(x, y) \rightarrow \operatorname{User}(x) \wedge \operatorname{User}(y) \\
& \forall x, y \cdot \operatorname{sees}(x, y) \rightarrow \operatorname{User}(x) \wedge \operatorname{Photo}(y) \\
& \forall x, y \cdot \operatorname{posts}(x, y) \rightarrow \operatorname{User}(x) \wedge \operatorname{Photo}(y)
\end{aligned}
$$

Example: Instagram (simplified)

- Codification of specialization relationships (in this case, a subset relation).

$$
\forall x \cdot \operatorname{Ad}(x) \rightarrow \operatorname{Photo}(x)
$$

- Partitioning the universe of discourse with the types of the entities

$$
\forall x \text {. User }(x) \leftrightarrow \neg \operatorname{Photo}(x)
$$

Alternative: any element of the universe

- at most is of one of these "types" $\forall x$. User $(x) \rightarrow \neg \operatorname{Photo}(x)$
- must be of one of these "types" $\quad \forall x$. User $(x) \vee \operatorname{Photo}(x)$

Maria João Frade (HASLab, DI-UM)

FOL
MFES 2022/23
$46 / 49$

Example: Instagram (simplified)

- Multiplicity restrictions on associations.
$(\forall y . \operatorname{Photo}(y) \rightarrow \exists x \cdot \operatorname{posts}(x, y)) \wedge(\forall x, y, z \cdot \operatorname{posts}(x, z) \wedge \operatorname{posts}(y, z) \rightarrow x=y)$ That is:
- every photo has to be posted by some user

$$
\forall y \cdot \operatorname{Photo}(y) \rightarrow \exists x \cdot \operatorname{posts}(x, y)
$$

- every photo is posted by no more than one user

$$
\forall x, y, z \cdot \operatorname{posts}(x, z) \wedge \operatorname{posts}(y, z) \rightarrow x=y
$$

Therefore, every photo é posted by a single user.

Example: Instagram (simplified)

- Restrictions annotated informally.
- An user cannot follow itself. $\forall x$. \neg follows (x, x)
- An user only sees (non ad) photos posted by followed users. Ads can be seen by everyone.
$\forall x, y \cdot \operatorname{sees}(x, y) \rightarrow(\operatorname{Ad}(y) \vee(\forall z \cdot \operatorname{posts}(z, y) \rightarrow$ follows $(x, z)))$

