Protocol design with Alloy

Alcino Cunha



Protocol design

Distributed algorithms (protocols) are hard to design
Many critical systems nowadays are distributed
Testing is ineffective

- Too many interleavings

- Bugs are subtle, due to specific race conditions

Formal verification is mandatory



“If you’re not writing a program, don’t use a programming language.”

—Leslie Lamport



Protocol design

1. Model the (static) network configuration
2. Model the behaviour of the protocol with a transition system

- Declare the mutable data structures of the state

- Specify the initial conditions and all events that originate transitions
3. Validate the model

4. Specify and verify expected properties



_eader election Iin a ring




_eader election Iin a ring

One and at most one leader will be elected!



_eader election Iin a ring



Network configuration



Network configuration

 Nodes are organised in a ring

 Nodes have unique comparable ids



Ring network

sig Node {
succ : one Node

}



Ring network
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Ring network

sig Node {

succ : one Node
}
fact {

// all nodes reachable from each node
all n : Node | Node in n."succ

// at least one node

some Node



INng network
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Node identifiers

Node ids must be comparable
No need to use numbers
Any totally ordered set suffices

util/ordering can be used to impose a total order on a signature



Unique identifiers

open util/ordering[Id]
sig Id {}

sig Node {
succ : one Node,
1d : one Id

}

fact {
// 1ds are unique
all i : Id | lone id.i



Network configuration
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Network configuration
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Network configuration

O O (leaderelection) Run example

— e —— !
i= E @ E Projection: none

Txt Table Tree Theme Magic Layout Evaluator New

¥
[

h;ucc:3i Node1l
id: Id1
SUCC
NodeO
id: Id2 SucCc
SUcCC
Node?2

id: 1IdO




Mutable structures




Mutability

e In Alloy 6 mutable signatures and fields can be declared with keyword var
- Previously only possible with the Electrum extension

- It was possible to model behaviour in Alloy 5 by explicitly modelling the
concept of state (confusing and error prone)

o Static field inside mutable signature yields a warning

e Same for static signature extending or inside mutable one



Mutable structures

open util/ordering[Id]
sig Id {}

sig Node {
succ : one Node,
1d : one Id,
var 1nbox : set Id,
var outbox : set Id

}

var sig Elected in Node {}



Instances

Instances are now infinite sequences (traces) of snapshots
A snapshot (state) is a valuation for all signatures and fields

Analysis commands only return traces that can be represented finitely, traces
that loop back at some point

Static signatures and fields have the same value in all states

The scope of a signature sets the maximum number of different atoms in the
full trace, not a maximum per state

If there are mutable top-level signatures univ (and iden) are also mutable



Trace visualisation

When mutable structures are declared the visualisation changes

It now depicts two consecutive states of the trace side-by-side

- By default mutable structures are depicted with dashed lines

A representation of the infinite trace is shown above

- Different states have different numbers and the loop back is explicitly depicted

- Clicking on a state focus on that (and the succeeding) state

- It also possible to move forwards and backwards in the trace with the buttons = and «

We now have four different New instance buttons (more on that later...)



Trace visualisation
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Trace visualisation
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Property specification



Temporal logic

To specify properties about traces we need a temporal logic
Temporal logic adds temporal operators

- They allow us to “quantify” the validity of a formula over time

A formula without temporal operators holds only in the initial state

Alloy 6 has both future and past temporal operators



Temporal operators

always ¢
eventually ¢
after ¢

historically ¢
once ¢
before ¢

//
//
//

//
//
//

<= S =

<= S =

wlill always be true
wlll eventually be true
will be true 1n the next state

was always true
was once true

was true 1n previous state



Future operators

always ¢




Mixing operators

always (¢ implies always vy)

always (¢ implies eventually y)

¢ W ¢

always (¢ implies after vy)

¢ W




Mixing operators

eventually (always o)

¢ ¢

always (eventually ¢)

¢ ¢




Past operators

always (y implies historically ¢)

¢
¢ ¢ ¢ v

always (y implies once @)

always (¢ implies before ¢)

¢ W ¢




Expected properties

e One and at most one leader will be elected
- There will never be more than one leader
- Eventually there will be at least one leader

- Once a leader is elected it stays elected



Expected properties

assert AtMostOneleader {
always (lone Elected)

assert AtLeastOneleader {
eventually (some Elected)

assert LeaderStaysLeader {
always (all n : Elected | always n in Elected)



Counter-example
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Transition systems



Transition systems

 The admissible behaviour can be modelled with a transition system

- Initial states capture the starting conditions

- Transitions originate from events performed by entities of the system or
the environment

e Since traces are infinite every state must have at least one outgoing
transition

- If the system has nothing to do a stutter transition must occur



Leader election

* In the Initial states
- There are no messages Iin inboxes and outboxes
- There are no elected nodes
» Besides stuttering, transitions originate from one of the following events
- A node initiates the protocol, by putting its own identifier in the outbox
- The network sends a message from an outbox to the inbox of the successor

- A node reads and processes a message Iin its inbox



Leader election
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Declarative modelling

e A transition system can be modelled by a temporal logic formula that specifies what are the valid traces

- Initial states are specified by formulas without temporal operators

- Events are specified by formulas that relate consecutive states

» Typically inside (parametrised) predicates
» Besides after, operator ' can be used to evaluate expressions in the next state

- In every state of a valid trace one of the events must occur

fact init { .. }
pred eventl { .. and after .. }
pred event2 { .. and after .. }

fact events { always (eventl or event2 or ..) }



Leader election

fact 1init {
no inbox

no outbox
no Elected

fact events {

always (
some n : Node | initiate[n] or
some n : Node, 1 : Id send[n,1] or
some n : Node, 1 : Id process[n, 1]




Anatomy of an event

* The specification of an event is a conjunction of three kinds of formulas

- Guards, that specify when can an event occur

- Effects, that specify what changes when an event occurs

- Frame conditions, special effects that specify what does not change
 (Guards usually have no temporal operators

- But can use past temporal operators to recall something about the past

 Effects and frame conditions use only after and



Initiate

pred i1nitiate [n : Node] {

// guard
historically n.id not in n.outbox

// effect

n.outbox’ = n.outbox + n.id

// frame conditions

all m : Node - n | m.outbox’ = m.outbox
all m : Node | m.inbox’ = m.inbox
Elected’ = Elected


http://n.id

Initiate

pred 1nitiate [n : Node] {
// guard
historically n.id not in n.outbox

// effect
outbox’ = outbox + n->n.id

// frame conditions
inbox’ = 1nbox
Elected’ = Elected



Send

pred send [n : Node, 1 : Id] {
// guard
1 in n.outbox

// effects
outbox’ = outbox - n->1
inbox’ = 1nbox + n.succ->1

// frame conditions
Elected’ = Elected



Process

pred process [n : Node, 1 : Id] {
// guard
1 1n n.1inbox

// effects
inbox’ = inbox - n->1
outbox + n->1

gt[i,n.1d] implies outbox’

else outbox’ = outbox
1 = n.id implies Elected’ = Elected + n
else Elected’ = Elected



Process

pred process [n : Node, 1 : Id] {
// guard

1 1in n.1inbox

// effects

1nbox’ = 1nbox - n->1

outbox’ = outbox + n->(1 & n.id.nexts)
Elected’ = Elected + (n & 1d.1)



Validation



Validation

 run commands should be used to validate the model
- Optionally a formula can be given to look for specific scenarios
* |t is also possible to perform “simulation” with the New instance buttons

- New config, returns a trace with a different configuration (a different value to the
immutable structures)

- New trace, returns any different trace with the same configuration
- New Init, returns a trace with the same config, but a different initial state

- New fork, returns a trace with the same prefix, but a different next state



Consistency check

run example {}

Executing "Run example”
Solver=sat4j Steps=1..10 Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20 Mode=batch
1..10 steps. 88603 vars. 1895 primary vars. 220976 clauses. 2776ms.
No instance found. Predicate may be inconsistent. 1386ms.






Inconsistency

 The model does not allow any (infinite) trace
* Once the protocol completes no event is possible

* At least a stuttering event should be possible at that point



A possible fix

pred nop {
// guards
no i1nbox and no outbox

all n : Node | once initiate[n]

// frame conditions

outbox' = outbox
inbox' = 1nbox
Elected' = Elected



fact events {
always (
nop or
some n
some n

some 1l

A possible fix

Node | initiate[n] or
Node, 1 Id send[n,1] or
Node, 1 Id process[n, 1]




Stuttering



A clock specification

pred clock spec {
h =0 and m = 0
always {
m’'=(m+1)360 and 9_ \\x(// 9
m=59 1implies h’'=(h+1)%12 and

m!=59 implies h'’=h 7 é 5

1'1 2 1

\\ll/



Cecl n'est pas une montre?!

check clock spec

Executing "Check clock_spec”
Solver=sat4j Steps=1..10 Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20 Mode=batch

1..2 steps. 55 vars. 12 primary vars. 59 clauses. 3ms.
Counterexample found. Assertion is invalid. 3ms.




A clock specification

pred clock spec {
h =0 and m = 0
always {
m’'=(m+1)360 and

m=59 1implies h’'=(h+1)%12 and 1 \/ 3

m!=59 implies h’=h
or £ Sl
7 5 5

m’=m and h'’'=h

1'1 2 1

\\ll/



check clock spec

Executing "Check clock_spec"
Solver=sat4j Steps=1..10 Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20 Mode=batch
1..10 steps. 151901 vars. 1875 primary vars. 413006 clauses. 1042ms.
No counterexample found. Assertion may be valid. 298ms.




Stuttering

* |t Is good practice to allow the system to stutter in every state
e Stuttering can represent events by the environment or not (yet) modelled

o Stuttering allow us to check refinements



Stuttering

pred stutter {

// frame
outbox’
i1nbox'
Elected’

conditions

outbox
inbox
Elected



The ideal fix

fact events {
always (
stutter or

some n : Node | initiate[n] or
some n : Node, 1 : Id send[n,1] or
some n : Node, 1 : Id process([n,1]




Back to validation



Simulation




Model checking



Model checking

* Model checking is the process of automatically verifying if a temporal logic specification holds in a
finite transition system model of a system

- If the specification is false a counter-example is returned
- A finite transition system may have infinite non-looping traces
- But every invalid specification can be falsified with a looping trace
* Bounded model checking explores only a finite number of steps before looping back
- The default verification method in Alloy 6 is bounded model checking via SAT
- The default number of steps is 10 but can be changed with keyword steps in scopes

- Alloy 6 also supports unbounded model checking if model checkers NuSMV or nuXmv are installed



Expected properties

assert AtMostOneleader {
always (lone Elected)

assert AtLeastOneleader {
eventually (some Elected)

assert LeaderStaysLeader {
always (all n : Elected | always n in Elected)



Safety vs Liveness

e AtMostOneLeader and LeaderStaysLeader are safety properties
- They prevent some undesired behaviours from happening

- Easier to model-check, since it suffices to search for a finite sequence of steps that leads
to a bad state

- It is irrelevant what happens afterwards, and any continuation leads to a counter-example
* AtLeastOneLeader IS a liveness property
- |If forces some desired behaviours to happen

- Harder to model-check, since it is necessary to search for a complete infinite trace where
the desired behaviour never happened



At most one leader

assert AtMostOneLeader {
always (lone Elected)

}
check AtMostOneleader

Executing "Check AtMostOnelLeader”
Solver=sat4j Steps=1..10 Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20 Mode=batch
1..10 steps. 79442 vars. 1675 primary vars. 206995 clauses. 337ms.
No counterexample found. Assertion may be valid. 99ms.



At most one leader

assert AtMostOneLeader {
always (lone Elected)

}
check AtMostOnelLeader for 3 but 20 steps

Executing "Check AtMostOnelLeader for 3 but 20 steps”
Solver=sat4j Steps=1..20 Bitwidth=4 MaxSeq=3 SkolemDepth=1 Symmetry=20 Mode=batch
1..20 steps. 494769 vars. 6050 primary vars. 1275400 clauses. 4146ms.
No counterexample found. Assertion may be valid. 450ms.



At most one leader

assert AtMostOneLeader {
always (lone Elected)

}
check AtMostOnelLeader for 3 but 1.. steps

Option Solver changed to Electrod/nuXmv

Executing "Check AtMostOnelLeader for 3 but 1.. steps”
Solver=nuXmv Steps=1..2147483647 Bitwidth=4 MaxSeq=3 SkolemDepth=1 Symmetry=20 Mode=batch
No translation information available. 44ms.
No counterexample found. Assertion mpay be valid. 2260ms.



eader stays leader

assert LeaderStaysLeader {
always (all n : Elected | always n in Elected)

h
check LeaderStayslLeader for 3 but 1l.. steps

Executing "Check LeaderStayslLeader for 3 but 1.. steps”
Solver=nuXmv Steps=1..2147483647 Bitwidth=4 MaxSeq=3 SkolemDepth=1 Symmetry=20 Mode=batch
No translation information available. 12ms.
No counterexample found. Assertion may be valid. 1749ms.



At least one leader

assert AtLeastOneLeader {
eventually (some Elected)

}
check AtLeastOneleader

Executing "Check AtLeastOnelLeader"
Solver=sat4j Steps=1..10 Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20 Mode=batch

1..1 steps. 1178 vars. 44 primary vars. 2526 clauses. 9ms.
Counterexample found. Assertion jis invalid. 7ms.



At least one leader
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Fairness

* Fairness assumptions are necessary for verifying most liveness properties

 The goal is to exclude counter-examples where an event becomes
“continuously” enabled but never occurs

- In weak fairness “continuously” means permanently

- In strong fairness “continuously” means infinitely often



Fairness

// Weak fairness
always ((always enabled) implies (eventually happens))

(eventually always enabled) implies (always eventually happens)

// Strong fairness

(always eventually enabled) implies (always eventually happens)



Fair leader election

pred fairness {
all n : Node, 1 : Id {
eventually always (historically n.id not in n.outbox)
implies
always eventually initiate[n]

eventually always (1 1n n.inbox)
implies
always eventually process[n,i]

eventually always (1 in n.outbox)
implies
always eventually send[n,i]



At least one leader

assert AtLeastOneLeader {
fairness implies eventually (some Elected)

}
check AtLeastOnelLeader for 3 but 1.. steps

Executing "Check AtLeastOnelLeader for 3 but 1.. steps”
Solver=nuXmv Steps=1..2147483647 Bitwidth=4 MaxSeq=3 SkolemDepth=1 Symmetry=20 Mode=batch
No translation information available. 43ms.
No counterexample found. Assertion may be valid. 11682ms.






Abstraction



At least one leader

assert AtLeastOneLeader {
fairness implies eventually (some Elected)

}
check AtLeastOnelLeader for 4 but 1.. steps

Executing "Check AtLeastOnelLeader for 4 but 1.. steps”
Solver=nuXmv Steps=1..2147483647 Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20 Mode=batch

No translation information available. 15ms.
No counterexample found. Assertion may be valid



Abstraction

« Why?
- Improve efficiency
- Improve generality
- Improve understandability
e How?
- Merge events (if interleaving is not likely a problem)
- Remove structures
- Make the specification more declarative

- Make the specification more liberal



Merging send

open util/ordering[Id]
sig Id {}

sig Node {
succ : one Node,
1d : one Id,
var 1nbox : set Id,
var—outbox—r+—set Td

var sig Elected in Node {}



Merging send

fact 1init {
no inbox
no-—outbox

no Elected

fact events {

always (
some n : Node | initiate[n] or
some—hr—+ Nede;—3+—+—Fd sendfn;3+1—or
some n : Node, 1 : Id process[n, 1]




Merging send

pred 1nitiate [n : Node] {
// guard
historically n.id not in n.succ.1inbox

// effect

inbox’ = inbox + n.succ->n.id

// frame conditions
Elected’ = Elected



Merging send

pred process [n : Node, 1 : Id] {
// guard

1 in n.1i1nbox

// effects
1nbox’ = 1nbox - n->1 + n.succ->(1 & n.id.nexts)
Elected’ = Elected + (n & 1d.1)



Merging send

pred stutter {

// frame
inbox'
Elected’

conditions

inbox
Elected



Scenario exploration
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Scenario exploration

;—,
||

Viz Txt

Il
ll
saa
Il

Table Tree

o

Theme Magic Layout

(leaderelection) Run scenario for exactly 3 Node, 3 Id

053]

Evaluator

projction: none

New Config New Trace New Init

Nodel
id: Id1

NodeO
id: Id2

inbox: 1d2

Node?2
id: 1dO

New Fork

—

Nodel
id: Id1

Node?2
id: IdO

—



Removing Id

open util/ordering[Node]

sig—Fd—}

sig Node {
succ : one Node,
+d——one—Td+
var i1nbox : set Node

var sig Elected in Node {}



Removing Id

pred 1nitiate [n : Node] {
// guard
historically n not 1in n.succ.1i1nbox

// effect

inbox’ = i1nbox + n.succ->n

// frame conditions
Elected’ = Elected



Removing Id

pred process [n : Node, 1 : Node] {

// guard

1 in n.1i1nbox

// effects
inbox’ =
Elected’ =

inbox - n->1 + n.succ->(1 & n.nexts)
Elected + (n & 1)



Removing Elected

open util/ordering[Node]

sig Node {
succ : one Node,
var 1nbox : set Node,

}
g Elected_in Node {)

fun Elected : set Node ({
{ n : Node | n not in n.inbox and once (n in n.inbox) }



fact 1nit {
no inbox
noElected

}

fact events {

always (
some n
some n

Removing Elected

: Node | initiate[n] or
: Node, i : Node | process[n,i]



Removing Elected

pred initiate [n : Node] {
// guard
historically n not in n.succ.inbox
// effect
inbox' = 1nbox + n.succ->n
}
pred process [n : Node, 1 : Node] {
// guard
1 in n.inbox
// effects
inbox' = inbox - n->1 + n.succ->(1 & n.nexts)
}
pred stutter {
// frame conditions
inbox' = inbox



At least one leader

assert AtLeastOneLeader {
fairness implies eventually (some Elected)

}
check AtLeastOnelLeader for 4 but 1.. steps

Executing "Check AtLeastOnelLeader for 4 but 1.. steps”
Solver=nuXmv Steps=1..2147483647 Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20 Mode=batch

No translation information available. 15ms.
No counterexample found. Assertion may be valid



At least one leader

assert AtLeastOneLeader {
fairness implies eventually (some Elected)

}
check AtLeastOnelLeader for 4 but 1.. steps

Executing "Check AtLeastOneLeader for 4 but 1.. steps”
Solver=nuXmv Steps=1..2147483647 Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20 Mode=batch

No translation information available. 8ms.
No counterexample found. Assertion may be valid{ 10942ms.



Liberating initiate

pred i1nitiate [n : Node] {
// guard
histoerically n noetin n.suece-inbox

// effect

inbox’ inbox + n.succ->n

fun Elected : set Node {
{ n : Node | once (n not in n.inbox and once (n in n.inbox)) }



“The core of software development, therefore, is the design of
abstractions. An abstraction is [...] an idea reduced to its essential form.”

—Daniel Jackson



“31. Simplicity does not precede complexity, but follows it.”

—Alan Perlis



