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Protocol design
• Distributed algorithms (protocols) are hard to design


• Many critical systems nowadays are distributed


• Testing is ineffective


- Too many interleavings


- Bugs are subtle, due to specific race conditions


• Formal verification is mandatory



–Leslie Lamport

“If you’re not writing a program, don’t use a programming language.” 



Protocol design
1. Model the (static) network configuration


2. Model the behaviour of the protocol with a transition system


- Declare the mutable data structures of the state


- Specify the initial conditions and all events that originate transitions


3. Validate the model


4. Specify and verify expected properties



Leader election in a ring
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Leader election in a ring

One and at most one leader will be elected!



Leader election in a ring
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Network configuration



Network configuration

• Nodes are organised in a ring


• Nodes have unique comparable ids



Ring network

sig Node {
  succ : one Node
} 



Ring network



Ring network
sig Node {
  succ : one Node
}

fact {
  // all nodes reachable from each node
  all n : Node | Node in n.^succ
  // at least one node
  some Node
}



Ring network



Node identifiers

• Node ids must be comparable


• No need to use numbers


• Any totally ordered set suffices


• util/ordering can be used to impose a total order on a signature



Unique identifiers
open util/ordering[Id]
sig Id {}

sig Node {
  succ : one Node,
  id : one Id
}

fact {
  // ids are unique
  all i : Id | lone id.i
}



Network configuration



Network configuration



Network configuration



Mutable structures



Mutability

• In Alloy 6 mutable signatures and fields can be declared with keyword var


- Previously only possible with the Electrum extension


- It was possible to model behaviour in Alloy 5 by explicitly modelling the 
concept of state (confusing and error prone) 


• Static field inside mutable signature yields a warning


• Same for static signature extending or inside mutable one



Mutable structures
open util/ordering[Id]
sig Id {}

sig Node {
  succ : one Node,
  id : one Id,
  var inbox : set Id,
  var outbox : set Id
}
var sig Elected in Node {}



Instances
• Instances are now infinite sequences (traces) of snapshots 

• A snapshot (state) is a valuation for all signatures and fields


• Analysis commands only return traces that can be represented finitely, traces 
that loop back at some point


• Static signatures and fields have the same value in all states


• The scope of a signature sets the maximum number of different atoms in the 
full trace, not a maximum per state


• If there are mutable top-level signatures univ (and iden) are also mutable



Trace visualisation
• When mutable structures are declared the visualisation changes


• It now depicts two consecutive states of the trace side-by-side


- By default mutable structures are depicted with dashed lines


• A representation of the infinite trace is shown above


- Different states have different numbers and the loop back is explicitly depicted


- Clicking on a state focus on that (and the succeeding) state


- It also possible to move forwards and backwards in the trace with the buttons → and ←


• We now have four different New instance buttons (more on that later…)



Trace visualisation



Trace visualisation



Property specification



Temporal logic

• To specify properties about traces we need a temporal logic


• Temporal logic adds temporal operators 

- They allow us to “quantify” the validity of a formula over time


• A formula without temporal operators holds only in the initial state


• Alloy 6 has both future and past temporal operators



Temporal operators

always          //  will always be true
eventually      //  will eventually be true
after           //  will be true in the next state

historically    //  was always true
once            //  was once true
before          //  was true in previous state

ϕ ϕ
ϕ ϕ

ϕ ϕ

ϕ ϕ
ϕ ϕ

ϕ ϕ



Future operators

ϕ ϕ ϕ ϕ ϕ ϕ ϕϕ

always ϕ

ϕ

eventually ϕ

ϕ

ϕ

after ϕ



Mixing operators


ϕ
ψ ψ ψ ψ ψ

always (  implies always )ϕ ψ

ϕ ψ ϕ 
ϕ
ψ

always (  implies eventually )ϕ ψ

ϕ ψ ϕ ψ

always (  implies after )ϕ ψ



Mixing operators

ϕ ϕ ϕ ϕ

always (eventually )ϕ

ϕ ϕ ϕ ϕ ϕ

eventually (always )ϕ



Past operators

ϕ ϕ ϕ 
ϕ
ψϕ

always (  implies historically )ψ ϕ

ϕ ψ

always (  implies once )ψ ϕ


ϕ
ψ

ϕ ψ ϕ ψ

always (  implies before )ψ ϕ



Expected properties

• One and at most one leader will be elected


- There will never be more than one leader


- Eventually there will be at least one leader


- Once a leader is elected it stays elected



Expected properties
assert AtMostOneLeader { 
  always (lone Elected)
}

assert AtLeastOneLeader {
  eventually (some Elected)
}

assert LeaderStaysLeader {
  always (all n : Elected | always n in Elected)
}



Counter-example



Transition systems



Transition systems
• The admissible behaviour can be modelled with a transition system


- Initial states capture the starting conditions


- Transitions originate from events performed by entities of the system or 
the environment


• Since traces are infinite every state must have at least one outgoing 
transition


- If the system has nothing to do a stutter transition must occur



Leader election
• In the initial states 


- There are no messages in inboxes and outboxes 


- There are no elected nodes


• Besides stuttering, transitions originate from one of the following events


- A node initiates the protocol, by putting its own identifier in the outbox


- The network sends a message from an outbox to the inbox of the successor


- A node reads and processes a message in its inbox



Leader election
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Node 2 initiates
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Node 5 initiates
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Message is sent
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Node 2 processes
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Node 5 processes
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Declarative modelling
• A transition system can be modelled by a temporal logic formula that specifies what are the valid traces


- Initial states are specified by formulas without temporal operators


- Events are specified by formulas that relate consecutive states

‣ Typically inside (parametrised) predicates

‣ Besides after, operator ’ can be used to evaluate expressions in the next state


- In every state of a valid trace one of the events must occur

fact init { … }
pred event1 { … and after … }
pred event2 { … and after … }
…
fact events { always (event1 or event2 or …) }



Leader election
fact init {
  no inbox
  no outbox
  no Elected
}

fact events {
 always (
    some n : Node | initiate[n] or
    some n : Node, i : Id | send[n,i] or
    some n : Node, i : Id | process[n,i]
  )
}



Anatomy of an event
• The specification of an event is a conjunction of three kinds of formulas


- Guards, that specify when can an event occur


- Effects, that specify what changes when an event occurs


- Frame conditions, special effects that specify what does not change


• Guards usually have no temporal operators


- But can use past temporal operators to recall something about the past


• Effects and frame conditions use only after and ‘



Initiate
pred initiate [n : Node] {
  // guard
  historically n.id not in n.outbox

  // effect
  n.outbox’ = n.outbox + n.id

  // frame conditions
  all m : Node - n | m.outbox’ = m.outbox
  all m : Node | m.inbox’ = m.inbox
  Elected’ = Elected
}

http://n.id


Initiate
pred initiate [n : Node] {
  // guard
  historically n.id not in n.outbox

  // effect
  outbox’ = outbox + n->n.id

  // frame conditions
  inbox’   = inbox
  Elected’ = Elected
}



Send
pred send [n : Node, i : Id] {
  // guard
  i in n.outbox

  // effects
  outbox’ = outbox - n->i
  inbox’  = inbox  + n.succ->i

  // frame conditions
  Elected’ = Elected
}



Process
pred process [n : Node, i : Id] {
  // guard
  i in n.inbox

  // effects
  inbox’ = inbox - n->i
  gt[i,n.id] implies outbox’  = outbox  + n->i
             else    outbox’  = outbox
  i = n.id   implies Elected’ = Elected + n
             else    Elected’ = Elected
}



Process
pred process [n : Node, i : Id] {
  // guard
  i in n.inbox

  // effects
  inbox’   = inbox   - n->i
  outbox’  = outbox  + n->(i & n.id.nexts)
  Elected’ = Elected + (n & id.i)
}



Validation



Validation
• run commands should be used to validate the model


- Optionally a formula can be given to look for specific scenarios


• It is also possible to perform “simulation” with the New instance buttons


- New config, returns a trace with a different configuration (a different value to the 
immutable structures)


- New trace, returns any different trace with the same configuration


- New init, returns a trace with the same config, but a different initial state


- New fork, returns a trace with the same prefix, but a different next state



Consistency check

run example {}



😯



Inconsistency

• The model does not allow any (infinite) trace


• Once the protocol completes no event is possible


• At least a stuttering event should be possible at that point



A possible fix 
pred nop {
  // guards
  no inbox and no outbox
  all n : Node | once initiate[n]

  // frame conditions
  outbox'  = outbox
  inbox'   = inbox
  Elected' = Elected
}



A possible fix 

fact events {
 always (
    nop or
    some n : Node | initiate[n] or
    some n : Node, i : Id | send[n,i] or
    some n : Node, i : Id | process[n,i]
  )
}



Stuttering



A clock specification

pred clock_spec {
  h = 0 and m = 0
  always {
    m’=(m+1)%60 and
    m=59  implies h’=(h+1)%12 and
    m!=59 implies h’=h
 }
}



Ceci n'est pas une montre?!

check clock_spec



A clock specification
pred clock_spec {
  h = 0 and m = 0
  always {
    m’=(m+1)%60 and
    m=59  implies h’=(h+1)%12 and
    m!=59 implies h’=h
    or
    m’=m and h’=h
 }
}



A clock

check clock_spec



Stuttering

• It is good practice to allow the system to stutter in every state


• Stuttering can represent events by the environment or not (yet) modelled


• Stuttering allow us to check refinements



Stuttering

pred stutter {
  // frame conditions
  outbox'  = outbox
  inbox'   = inbox
  Elected' = Elected
}



The ideal fix 

fact events {
 always (
    stutter or
    some n : Node | initiate[n] or
    some n : Node, i : Id | send[n,i] or
    some n : Node, i : Id | process[n,i]
  )
}



Back to validation



Simulation



Model checking



Model checking
• Model checking is the process of automatically verifying if a temporal logic specification holds in a 

finite transition system model of a system


- If the specification is false a counter-example is returned


- A finite transition system may have infinite non-looping traces


- But every invalid specification can be falsified with a looping trace


• Bounded model checking explores only a finite number of steps before looping back


- The default verification method in Alloy 6 is bounded model checking via SAT


- The default number of steps is 10 but can be changed with keyword steps in scopes


- Alloy 6 also supports unbounded model checking if model checkers NuSMV or nuXmv are installed



Expected properties
assert AtMostOneLeader { 
  always (lone Elected)
}

assert AtLeastOneLeader {
  eventually (some Elected)
}

assert LeaderStaysLeader {
  always (all n : Elected | always n in Elected)
}



Safety vs Liveness
• AtMostOneLeader and LeaderStaysLeader are safety properties


- They prevent some undesired behaviours from happening


- Easier to model-check, since it suffices to search for a finite sequence of steps that leads 
to a bad state


- It is irrelevant what happens afterwards, and any continuation leads to a counter-example


• AtLeastOneLeader is a liveness property


- If forces some desired behaviours to happen


- Harder to model-check, since it is necessary to search for a complete infinite trace where 
the desired behaviour never happened



At most one leader
assert AtMostOneLeader { 
  always (lone Elected)
}
check AtMostOneLeader



At most one leader
assert AtMostOneLeader { 
  always (lone Elected)
}
check AtMostOneLeader for 3 but 20 steps



At most one leader
assert AtMostOneLeader { 
  always (lone Elected)
}
check AtMostOneLeader for 3 but 1.. steps



Leader stays leader
assert LeaderStaysLeader {
  always (all n : Elected | always n in Elected)
}
check LeaderStaysLeader for 3 but 1.. steps



At least one leader
assert AtLeastOneLeader { 
  eventually (some Elected)
}
check AtLeastOneLeader



At least one leader



Fairness

• Fairness assumptions are necessary for verifying most liveness properties


• The goal is to exclude counter-examples where an event becomes 
“continuously” enabled but never occurs


- In weak fairness “continuously” means permanently


- In strong fairness “continuously” means infinitely often



Fairness

// Weak fairness
always ((always enabled) implies (eventually happens))
(eventually always enabled) implies (always eventually happens)

// Strong fairness
(always eventually enabled) implies (always eventually happens)



Fair leader election
pred fairness {
  all n : Node, i : Id {
    eventually always (historically n.id not in n.outbox)
    implies 
    always eventually initiate[n]

    eventually always (i in n.inbox) 
    implies
    always eventually process[n,i]

 eventually always (i in n.outbox) 
    implies
    always eventually send[n,i]
  }
}



At least one leader
assert AtLeastOneLeader { 
  fairness implies eventually (some Elected)
}
check AtLeastOneLeader for 3 but 1.. steps



🥳



Abstraction



At least one leader
assert AtLeastOneLeader { 
  fairness implies eventually (some Elected)
}
check AtLeastOneLeader for 4 but 1.. steps



Abstraction
• Why?


- Improve efficiency


- Improve generality


- Improve understandability


• How?


- Merge events (if interleaving is not likely a problem)


- Remove structures


- Make the specification more declarative


- Make the specification more liberal



Merging send
open util/ordering[Id]
sig Id {}

sig Node {
  succ : one Node,
  id : one Id,
  var inbox : set Id,
  var outbox : set Id
}

var sig Elected in Node {}



Merging send
fact init {
  no inbox
  no outbox
  no Elected
}

fact events {
 always (
    some n : Node | initiate[n] or
    some n : Node, i : Id | send[n,i] or
    some n : Node, i : Id | process[n,i]
  )
}



Merging send
pred initiate [n : Node] {
  // guard
  historically n.id not in n.succ.inbox

  // effect
  inbox’ = inbox + n.succ->n.id

  // frame conditions
  Elected’ = Elected
}



Merging send

pred process [n : Node, i : Id] {
  // guard
  i in n.inbox

  // effects
  inbox’   = inbox - n->i + n.succ->(i & n.id.nexts)
  Elected’ = Elected + (n & id.i)
}



Merging send

pred stutter {
  // frame conditions
  inbox'   = inbox
  Elected' = Elected
}



Scenario exploration



Scenario exploration



Removing Id
open util/ordering[Node]
sig Id {}

sig Node {
  succ : one Node,
  id : one Id,
  var inbox : set Node
}

var sig Elected in Node {}



Removing Id
pred initiate [n : Node] {
  // guard
  historically n not in n.succ.inbox

  // effect
  inbox’ = inbox + n.succ->n

  // frame conditions
  Elected’ = Elected
}



Removing Id

pred process [n : Node, i : Node] {
  // guard
  i in n.inbox

  // effects
  inbox’   = inbox - n->i + n.succ->(i & n.nexts)
  Elected’ = Elected + (n & i)
}



Removing Elected
open util/ordering[Node]

sig Node {
  succ : one Node,
  var inbox : set Node,
}
var sig Elected in Node {}

fun Elected : set Node {
  { n : Node | n not in n.inbox and once (n in n.inbox) }
}



Removing Elected
fact init {
  no inbox
  no Elected
}

fact events {
 always (
    some n : Node | initiate[n] or
    some n : Node, i : Node | process[n,i]
  )
}



Removing Elected
pred initiate [n : Node] {
  // guard
  historically n not in n.succ.inbox
  // effect
  inbox' = inbox + n.succ->n
}
pred process [n : Node, i : Node] {
  // guard
  i in n.inbox
  // effects
  inbox' = inbox - n->i + n.succ->(i & n.nexts)
}
pred stutter {
  // frame conditions
  inbox' = inbox
}



At least one leader
assert AtLeastOneLeader { 
  fairness implies eventually (some Elected)
}
check AtLeastOneLeader for 4 but 1.. steps



At least one leader
assert AtLeastOneLeader { 
  fairness implies eventually (some Elected)
}
check AtLeastOneLeader for 4 but 1.. steps



Liberating initiate
pred initiate [n : Node] {
  // guard
  historically n not in n.succ.inbox

  // effect
  inbox’ = inbox + n.succ->n
}

fun Elected : set Node {
  { n : Node | once (n not in n.inbox and once (n in n.inbox)) }
}



–Daniel Jackson

“The core of software development, therefore, is the design of 
abstractions. An abstraction is [...] an idea reduced to its essential form.”



–Alan Perlis

“31. Simplicity does not precede complexity, but follows it.” 


