
Protocol design with Alloy
Alcino Cunha

Protocol design
• Distributed algorithms (protocols) are hard to design

• Many critical systems nowadays are distributed

• Testing is ineffective

- Too many interleavings

- Bugs are subtle, due to specific race conditions

• Formal verification is mandatory

–Leslie Lamport

“If you’re not writing a program, don’t use a programming language.”

Protocol design
1. Model the (static) network configuration

2. Model the behaviour of the protocol with a transition system

- Declare the mutable data structures of the state

- Specify the initial conditions and all events that originate transitions

3. Validate the model

4. Specify and verify expected properties

Leader election in a ring

49

35

4

24

17

52

Leader election in a ring

One and at most one leader will be elected!

Leader election in a ring

49

35

4

24

17

52

Network configuration

Network configuration

• Nodes are organised in a ring

• Nodes have unique comparable ids

Ring network

sig Node {
 succ : one Node
}

Ring network

Ring network
sig Node {
 succ : one Node
}

fact {
 // all nodes reachable from each node
 all n : Node | Node in n.^succ
 // at least one node
 some Node
}

Ring network

Node identifiers

• Node ids must be comparable

• No need to use numbers

• Any totally ordered set suffices

• util/ordering can be used to impose a total order on a signature

Unique identifiers
open util/ordering[Id]
sig Id {}

sig Node {
 succ : one Node,
 id : one Id
}

fact {
 // ids are unique
 all i : Id | lone id.i
}

Network configuration

Network configuration

Network configuration

Mutable structures

Mutability

• In Alloy 6 mutable signatures and fields can be declared with keyword var

- Previously only possible with the Electrum extension

- It was possible to model behaviour in Alloy 5 by explicitly modelling the
concept of state (confusing and error prone)

• Static field inside mutable signature yields a warning

• Same for static signature extending or inside mutable one

Mutable structures
open util/ordering[Id]
sig Id {}

sig Node {
 succ : one Node,
 id : one Id,
 var inbox : set Id,
 var outbox : set Id
}
var sig Elected in Node {}

Instances
• Instances are now infinite sequences (traces) of snapshots

• A snapshot (state) is a valuation for all signatures and fields

• Analysis commands only return traces that can be represented finitely, traces
that loop back at some point

• Static signatures and fields have the same value in all states

• The scope of a signature sets the maximum number of different atoms in the
full trace, not a maximum per state

• If there are mutable top-level signatures univ (and iden) are also mutable

Trace visualisation
• When mutable structures are declared the visualisation changes

• It now depicts two consecutive states of the trace side-by-side

- By default mutable structures are depicted with dashed lines

• A representation of the infinite trace is shown above

- Different states have different numbers and the loop back is explicitly depicted

- Clicking on a state focus on that (and the succeeding) state

- It also possible to move forwards and backwards in the trace with the buttons → and ←

• We now have four different New instance buttons (more on that later…)

Trace visualisation

Trace visualisation

Property specification

Temporal logic

• To specify properties about traces we need a temporal logic

• Temporal logic adds temporal operators

- They allow us to “quantify” the validity of a formula over time

• A formula without temporal operators holds only in the initial state

• Alloy 6 has both future and past temporal operators

Temporal operators

always // will always be true
eventually // will eventually be true
after // will be true in the next state

historically // was always true
once // was once true
before // was true in previous state

ϕ ϕ
ϕ ϕ

ϕ ϕ

ϕ ϕ
ϕ ϕ

ϕ ϕ

Future operators

ϕ ϕ ϕ ϕ ϕ ϕ ϕϕ

always ϕ

ϕ

eventually ϕ

ϕ

ϕ

after ϕ

Mixing operators

ϕ
ψ ψ ψ ψ ψ

always (implies always)ϕ ψ

ϕ ψ ϕ
ϕ
ψ

always (implies eventually)ϕ ψ

ϕ ψ ϕ ψ

always (implies after)ϕ ψ

Mixing operators

ϕ ϕ ϕ ϕ

always (eventually)ϕ

ϕ ϕ ϕ ϕ ϕ

eventually (always)ϕ

Past operators

ϕ ϕ ϕ
ϕ
ψϕ

always (implies historically)ψ ϕ

ϕ ψ

always (implies once)ψ ϕ

ϕ
ψ

ϕ ψ ϕ ψ

always (implies before)ψ ϕ

Expected properties

• One and at most one leader will be elected

- There will never be more than one leader

- Eventually there will be at least one leader

- Once a leader is elected it stays elected

Expected properties
assert AtMostOneLeader {
 always (lone Elected)
}

assert AtLeastOneLeader {
 eventually (some Elected)
}

assert LeaderStaysLeader {
 always (all n : Elected | always n in Elected)
}

Counter-example

Transition systems

Transition systems
• The admissible behaviour can be modelled with a transition system

- Initial states capture the starting conditions

- Transitions originate from events performed by entities of the system or
the environment

• Since traces are infinite every state must have at least one outgoing
transition

- If the system has nothing to do a stutter transition must occur

Leader election
• In the initial states

- There are no messages in inboxes and outboxes

- There are no elected nodes

• Besides stuttering, transitions originate from one of the following events

- A node initiates the protocol, by putting its own identifier in the outbox

- The network sends a message from an outbox to the inbox of the successor

- A node reads and processes a message in its inbox

Leader election

5

2

5

2

5

2

5

2

5

2

5

2

5

2 5

5

2

52

5

25

5

252

5

2

2

5

22 5

5

2

5 5

2

5

2 5

2

5

22

5

5

2

2

5

5

27

7

25

Node 2 initiates

5

2

5

2

5

2

5

2

5

2

5

2

5

2 5

5

2

52

5

25

5

252

5

2

2

5

22 5

5

2

5 5

2

5

2 5

2

5

22

5

5

2

2

5

5

27

7

25

Node 5 initiates

5

2

5

2

5

2

5

2

5

2

5

2

5

2 5

5

2

52

5

25

5

252

5

2

2

5

22 5

5

2

5 5

2

5

2 5

2

5

22

5

5

2

2

5

5

27

7

25

Message is sent

5

2

5

2

5

2

5

2

5

2

5

2

5

2 5

5

2

52

5

25

5

252

5

2

2

5

22 5

5

2

5 5

2

5

2 5

2

5

22

5

5

2

2

5

5

27

7

25

Node 2 processes

5

2

5

2

5

2

5

2

5

2

5

2

5

2 5

5

2

52

5

25

5

252

5

2

2

5

22 5

5

2

5 5

2

5

2 5

2

5

22

5

5

2

2

5

5

27

7

25

Node 5 processes

5

2

5

2

5

2

5

2

5

2

5

2

5

2 5

5

2

52

5

25

5

252

5

2

2

5

22 5

5

2

5 5

2

5

2 5

2

5

22

5

5

2

2

5

5

27

7

25

Declarative modelling
• A transition system can be modelled by a temporal logic formula that specifies what are the valid traces

- Initial states are specified by formulas without temporal operators

- Events are specified by formulas that relate consecutive states

‣ Typically inside (parametrised) predicates

‣ Besides after, operator ’ can be used to evaluate expressions in the next state

- In every state of a valid trace one of the events must occur

fact init { … }
pred event1 { … and after … }
pred event2 { … and after … }
…
fact events { always (event1 or event2 or …) }

Leader election
fact init {
 no inbox
 no outbox
 no Elected
}

fact events {
 always (
 some n : Node | initiate[n] or
 some n : Node, i : Id | send[n,i] or
 some n : Node, i : Id | process[n,i]
)
}

Anatomy of an event
• The specification of an event is a conjunction of three kinds of formulas

- Guards, that specify when can an event occur

- Effects, that specify what changes when an event occurs

- Frame conditions, special effects that specify what does not change

• Guards usually have no temporal operators

- But can use past temporal operators to recall something about the past

• Effects and frame conditions use only after and ‘

Initiate
pred initiate [n : Node] {
 // guard
 historically n.id not in n.outbox

 // effect
 n.outbox’ = n.outbox + n.id

 // frame conditions
 all m : Node - n | m.outbox’ = m.outbox
 all m : Node | m.inbox’ = m.inbox
 Elected’ = Elected
}

http://n.id

Initiate
pred initiate [n : Node] {
 // guard
 historically n.id not in n.outbox

 // effect
 outbox’ = outbox + n->n.id

 // frame conditions
 inbox’ = inbox
 Elected’ = Elected
}

Send
pred send [n : Node, i : Id] {
 // guard
 i in n.outbox

 // effects
 outbox’ = outbox - n->i
 inbox’ = inbox + n.succ->i

 // frame conditions
 Elected’ = Elected
}

Process
pred process [n : Node, i : Id] {
 // guard
 i in n.inbox

 // effects
 inbox’ = inbox - n->i
 gt[i,n.id] implies outbox’ = outbox + n->i
 else outbox’ = outbox
 i = n.id implies Elected’ = Elected + n
 else Elected’ = Elected
}

Process
pred process [n : Node, i : Id] {
 // guard
 i in n.inbox

 // effects
 inbox’ = inbox - n->i
 outbox’ = outbox + n->(i & n.id.nexts)
 Elected’ = Elected + (n & id.i)
}

Validation

Validation
• run commands should be used to validate the model

- Optionally a formula can be given to look for specific scenarios

• It is also possible to perform “simulation” with the New instance buttons

- New config, returns a trace with a different configuration (a different value to the
immutable structures)

- New trace, returns any different trace with the same configuration

- New init, returns a trace with the same config, but a different initial state

- New fork, returns a trace with the same prefix, but a different next state

Consistency check

run example {}

😯

Inconsistency

• The model does not allow any (infinite) trace

• Once the protocol completes no event is possible

• At least a stuttering event should be possible at that point

A possible fix
pred nop {
 // guards
 no inbox and no outbox
 all n : Node | once initiate[n]

 // frame conditions
 outbox' = outbox
 inbox' = inbox
 Elected' = Elected
}

A possible fix

fact events {
 always (
 nop or
 some n : Node | initiate[n] or
 some n : Node, i : Id | send[n,i] or
 some n : Node, i : Id | process[n,i]
)
}

Stuttering

A clock specification

pred clock_spec {
 h = 0 and m = 0
 always {
 m’=(m+1)%60 and
 m=59 implies h’=(h+1)%12 and
 m!=59 implies h’=h
 }
}

Ceci n'est pas une montre?!

check clock_spec

A clock specification
pred clock_spec {
 h = 0 and m = 0
 always {
 m’=(m+1)%60 and
 m=59 implies h’=(h+1)%12 and
 m!=59 implies h’=h
 or
 m’=m and h’=h
 }
}

A clock

check clock_spec

Stuttering

• It is good practice to allow the system to stutter in every state

• Stuttering can represent events by the environment or not (yet) modelled

• Stuttering allow us to check refinements

Stuttering

pred stutter {
 // frame conditions
 outbox' = outbox
 inbox' = inbox
 Elected' = Elected
}

The ideal fix

fact events {
 always (
 stutter or
 some n : Node | initiate[n] or
 some n : Node, i : Id | send[n,i] or
 some n : Node, i : Id | process[n,i]
)
}

Back to validation

Simulation

Model checking

Model checking
• Model checking is the process of automatically verifying if a temporal logic specification holds in a

finite transition system model of a system

- If the specification is false a counter-example is returned

- A finite transition system may have infinite non-looping traces

- But every invalid specification can be falsified with a looping trace

• Bounded model checking explores only a finite number of steps before looping back

- The default verification method in Alloy 6 is bounded model checking via SAT

- The default number of steps is 10 but can be changed with keyword steps in scopes

- Alloy 6 also supports unbounded model checking if model checkers NuSMV or nuXmv are installed

Expected properties
assert AtMostOneLeader {
 always (lone Elected)
}

assert AtLeastOneLeader {
 eventually (some Elected)
}

assert LeaderStaysLeader {
 always (all n : Elected | always n in Elected)
}

Safety vs Liveness
• AtMostOneLeader and LeaderStaysLeader are safety properties

- They prevent some undesired behaviours from happening

- Easier to model-check, since it suffices to search for a finite sequence of steps that leads
to a bad state

- It is irrelevant what happens afterwards, and any continuation leads to a counter-example

• AtLeastOneLeader is a liveness property

- If forces some desired behaviours to happen

- Harder to model-check, since it is necessary to search for a complete infinite trace where
the desired behaviour never happened

At most one leader
assert AtMostOneLeader {
 always (lone Elected)
}
check AtMostOneLeader

At most one leader
assert AtMostOneLeader {
 always (lone Elected)
}
check AtMostOneLeader for 3 but 20 steps

At most one leader
assert AtMostOneLeader {
 always (lone Elected)
}
check AtMostOneLeader for 3 but 1.. steps

Leader stays leader
assert LeaderStaysLeader {
 always (all n : Elected | always n in Elected)
}
check LeaderStaysLeader for 3 but 1.. steps

At least one leader
assert AtLeastOneLeader {
 eventually (some Elected)
}
check AtLeastOneLeader

At least one leader

Fairness

• Fairness assumptions are necessary for verifying most liveness properties

• The goal is to exclude counter-examples where an event becomes
“continuously” enabled but never occurs

- In weak fairness “continuously” means permanently

- In strong fairness “continuously” means infinitely often

Fairness

// Weak fairness
always ((always enabled) implies (eventually happens))
(eventually always enabled) implies (always eventually happens)

// Strong fairness
(always eventually enabled) implies (always eventually happens)

Fair leader election
pred fairness {
 all n : Node, i : Id {
 eventually always (historically n.id not in n.outbox)
 implies
 always eventually initiate[n]

 eventually always (i in n.inbox)
 implies
 always eventually process[n,i]

 eventually always (i in n.outbox)
 implies
 always eventually send[n,i]
 }
}

At least one leader
assert AtLeastOneLeader {
 fairness implies eventually (some Elected)
}
check AtLeastOneLeader for 3 but 1.. steps

🥳

Abstraction

At least one leader
assert AtLeastOneLeader {
 fairness implies eventually (some Elected)
}
check AtLeastOneLeader for 4 but 1.. steps

Abstraction
• Why?

- Improve efficiency

- Improve generality

- Improve understandability

• How?

- Merge events (if interleaving is not likely a problem)

- Remove structures

- Make the specification more declarative

- Make the specification more liberal

Merging send
open util/ordering[Id]
sig Id {}

sig Node {
 succ : one Node,
 id : one Id,
 var inbox : set Id,
 var outbox : set Id
}

var sig Elected in Node {}

Merging send
fact init {
 no inbox
 no outbox
 no Elected
}

fact events {
 always (
 some n : Node | initiate[n] or
 some n : Node, i : Id | send[n,i] or
 some n : Node, i : Id | process[n,i]
)
}

Merging send
pred initiate [n : Node] {
 // guard
 historically n.id not in n.succ.inbox

 // effect
 inbox’ = inbox + n.succ->n.id

 // frame conditions
 Elected’ = Elected
}

Merging send

pred process [n : Node, i : Id] {
 // guard
 i in n.inbox

 // effects
 inbox’ = inbox - n->i + n.succ->(i & n.id.nexts)
 Elected’ = Elected + (n & id.i)
}

Merging send

pred stutter {
 // frame conditions
 inbox' = inbox
 Elected' = Elected
}

Scenario exploration

Scenario exploration

Removing Id
open util/ordering[Node]
sig Id {}

sig Node {
 succ : one Node,
 id : one Id,
 var inbox : set Node
}

var sig Elected in Node {}

Removing Id
pred initiate [n : Node] {
 // guard
 historically n not in n.succ.inbox

 // effect
 inbox’ = inbox + n.succ->n

 // frame conditions
 Elected’ = Elected
}

Removing Id

pred process [n : Node, i : Node] {
 // guard
 i in n.inbox

 // effects
 inbox’ = inbox - n->i + n.succ->(i & n.nexts)
 Elected’ = Elected + (n & i)
}

Removing Elected
open util/ordering[Node]

sig Node {
 succ : one Node,
 var inbox : set Node,
}
var sig Elected in Node {}

fun Elected : set Node {
 { n : Node | n not in n.inbox and once (n in n.inbox) }
}

Removing Elected
fact init {
 no inbox
 no Elected
}

fact events {
 always (
 some n : Node | initiate[n] or
 some n : Node, i : Node | process[n,i]
)
}

Removing Elected
pred initiate [n : Node] {
 // guard
 historically n not in n.succ.inbox
 // effect
 inbox' = inbox + n.succ->n
}
pred process [n : Node, i : Node] {
 // guard
 i in n.inbox
 // effects
 inbox' = inbox - n->i + n.succ->(i & n.nexts)
}
pred stutter {
 // frame conditions
 inbox' = inbox
}

At least one leader
assert AtLeastOneLeader {
 fairness implies eventually (some Elected)
}
check AtLeastOneLeader for 4 but 1.. steps

At least one leader
assert AtLeastOneLeader {
 fairness implies eventually (some Elected)
}
check AtLeastOneLeader for 4 but 1.. steps

Liberating initiate
pred initiate [n : Node] {
 // guard
 historically n not in n.succ.inbox

 // effect
 inbox’ = inbox + n.succ->n
}

fun Elected : set Node {
 { n : Node | once (n not in n.inbox and once (n in n.inbox)) }
}

–Daniel Jackson

“The core of software development, therefore, is the design of
abstractions. An abstraction is [...] an idea reduced to its essential form.”

–Alan Perlis

“31. Simplicity does not precede complexity, but follows it.”

