
First-Order Theories & SMT Solvers

Maria João Frade

HASLab - INESC TEC
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Roadmap

First-Order Theories

I basic concepts; decidability issues;
I several theories: equality, integers, linear arithmetic, reals, arrays;
I combining theories;
I satisfiability modulo theories.

SMT solvers

I main features;
I SMT-LIB; SMT’s APIs;
I applications.

SMT solvers algoritms (extra)
I SMT and SAT solvers integration: “eager” vs “lazy” approach;
I the basic “lazy o✏ine” approach and its enhancements;
I DPLL(T ) framework.
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First-Order Theories
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Introduction

When judging the validity of first-order formulas we are typically interested
in a particular domain of discourse, which in addition to a specific underlying
vocabulary includes also properties that one expects to hold.

For instance, in formal methods involving the integers, one is not interested
in showing that the formula

8x, y. x < y ! x < y + y

is true for all possible interpretations of the symbols < and +, but only for
those interpretations in which < is the usual ordering over the integers and
+ is the addition function.

We are not interested in validity in general but in validity with respect to
some background theory – a logical theory that fixes the interpretations of
certain predicates and function symbols.
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Introduction

Stated di↵erently, we are often interested in moving away from pure logical
validity (i.e. validity in all models) towards a more refined notion of validity
restricted to a specific class of models.

There are two ways for specifying such a class of models:

I To provide a set of axioms (sentences that are expected to hold in
them).

I To pinpoint the models of interest.

First-order theories provide a basis for the kind of reasoning just described.
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Theories - basic concepts

Let V be a vocabulary of a first-order language.

A first-order theory T is a set of V-sentences that is closed under derivability
(i.e., T |= � implies � 2 T ).

A T -structure is a V-structure that validates every formula of T .

A formula � is T -valid if every T -structure validates �.

A formula � is T -satisfiable if some T -structure validates �.

Two formulae � and  are T -equivalent if T |= �$  (i.e, for every
T -structure M, M |= � i↵ M |=  ).
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Theories - basic concepts

Let T be a first-order theory.

T is said to be a consistent theory if at least one T -structure exists.

T is said to be a complete theory if, for every V-sentence �, either T |= � or
T |= ¬�.

T is said to be a decidable theory if there exists a decision procedure for
checking T -validity.
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Theories - basic concepts

Let K be a class of V-structures. The theory of K, denoted by Th(K), is
the set of sentences valid in all members of K, i.e.,
Th(K) = {� | M |= �, for all M 2 K}.

Given a set of V-sentences �, the class of models for �, denoted by Mod(�),
is defined as Mod(�) = {M | for all � 2 �, M |= �}.

A subset A ✓ T is called an axiom set for the theory T , when T is the
deductive closure of A, i.e. � 2 T i↵ A |= �.

A theory T is finitely (resp. recursively) axiomatizable if it possesses a finite
(resp. recursive) set of axioms.

A fragment of a theory is a syntactically-restricted subset of formulae of the
theory.
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Theories - some results

For a given V-structure M, the theory Th(M) (of a single-element class of
V-structures) is complete.

I These semantically defined theories are useful when one is interested in
reasoning in some specific mathematical domain such as the natural
numbers, rational numbers, etc.

I Such theories may lack an axiomatisation, which seriously compromises
its use in purely deductive reasoning.

If a theory is complete and recursive axiomatizable, it can be shown to be
decidable.
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Theories - decidability problem

The decidability criterion for T -validity is crucial for mechanised reasoning in
the theory T .

It may be necessary (or convenient) to restrict the class of formulas under
consideration to a suitable fragment (i.e., syntactical constraint).

The T -validity problem in a fragment refers to the decision about whether
or not � 2 T when � belongs to the fragment under consideration.

A fragment of interest is the quantifier-free (QF) fragment.
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Equality and uninterpreted functions TE

The vocabulary of the theory of equality TE consists of

I equality (=), which is the only interpreted symbol (whose meaning is
defined via the axioms of TE);

I constant, function and predicate symbols, which are uninterpreted
(except as they relate to =).

Axioms:

I reflexivity: 8x. x = x
I symmetry: 8x, y. x = y ! y = x
I transitivity: 8x, y, z. x = y ^ y = z ! x = z
I congruence for functions: for every function f 2 T with ar(f) = n,

8x, y. (x1 = y1 ^ . . . ^ xn = yn)! f(x1, . . . , xn) = f(y1, . . . , yn)

I congruence for predicates: for every predicate P 2 T with ar(P ) = n,

8x, y. (x1 = y1 ^ . . . ^ xn = yn)! (P (x1, . . . , xn)$ P (y1, . . . , yn))

TE-validity is undecidable, but e�ciently decidable for the QF fragment.
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Peano arithmetic TPA

The theory of Peano arithmetic TPA (1889) is a first-order approximation of
the theory of natural numbers.

Vocabulary: VPA = {0, 1, +,⇥, =}

Axioms:

I axioms of TE

I 8x. ¬(x + 1 = 0) (zero)
I 8x, y. x + 1 = y + 1! x = y (successor)
I 8x. x + 0 = x (plus zero)
I 8x, y. x + (y + 1) = (x + y) + 1 (plus successor)
I 8x. x⇥ 0 = 0 (time zero)
I 8x, y. x⇥ (y + 1) = (x⇥ y) + x (times successor)
I for every formula � with FV(�) = {x} (axiom schema of induction)

�[0/x] ^ (8x. �! �[x + 1/x])! 8x. �

TPA is incomplete and undecidable, even for the quantifier-free fragment.
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Peano arithmetic TPA

The incompleteness result is indeed striking because, at the end of the 19th
century, G. Peano had given a set of axioms that were shown to characterise
natural numbers up to isomorphism. One of these axioms – the axiom of
induction – involves quantification over arbitrary properties of natural
numbers:“for every unary predicate P , if P (0) and 8n. P (n)! P (n + 1)
then 8n. P (n)”, which is not a first-order axiom.

It is however important to notice that the approximation done by a
first-order axiom scheme that replaces the arbitrary property P by a
first-order formula � with a free variable x:

�[0/x] ^ (8x. �! �[x + 1/x])! 8x. �

restrict reasoning to properties that are definable by first-order formulas,
which can only capture a small fragment of all possible properties of natural
number. (Recall that the set of first-order formulas is countable while the set
of arbitrary properties of natural numbers is P(N), which is uncountable.)
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Presburger arithmetic TN

The theory of Presburger arithmetic TN is the additive fragment of the
theory of Peano.

Vocabulary: VN = {0, 1, +, =}

Axioms:

I axioms of TE

I 8x. ¬(x + 1 = 0) (zero)
I 8x, y. x + 1 = y + 1! x = y (successor)
I 8x. x + 0 = x (plus zero)
I 8x, y. x + (y + 1) = (x + y) + 1 (plus successor)
I for every formula � with FV(�) = {x} (axiom schema of induction)

�[0/x] ^ (8x. �! �[x + 1/x])! 8x. �

TN is both complete and decidable (Presburger, 1929), but it has double
exponential complexity.
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Linear integer arithmetic TZ

Vocabulary: VZ = {. . . ,�2,�1, 0, 1, 2, . . . ,�3·,�2·, 2·, 3·, . . . , +,�, >, =}

Each symbol is interpreted with its standard mathematical meaning in Z.

I Note: . . . ,�3·,�2·, 2·, 3·, . . . are unary functions. For example, the
intended meaning of 3 · x is x + x + x, and of �2 · x is �x� x.

TZ and TN have the same expressiveness

I For every formula of TZ there is an equisatisfiable formula of TN.

I For every formula of TN there is an equisatisfiable formula of TZ.

Let � be a formula of TZ and  a formula of TN. � and  are equisatisfiable if

� is TZ-satisfiable i↵  is TN-satisfiable

TZ is both complete and decidable via the rewriting of TZ-formulae into
TN-formulae.
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Linear rational arithmetic TQ

The full theory of rational numbers (with addition and multiplication) is
undecidable, since the property of being a natural number can be encoded in
it.

But the theory of linear arithmetic over rational numbers TQ is decidable,
and actually more e�ciently than the corresponding theory of integers.

Vocabulary: VQ = {0, 1, +,�, =,�}

Axioms: 10 axioms (see Manna’s book)

Rational coe�cients can be expressed in TQ.

The formula 5
2x + 4

3y  6 can be written as the TQ-formula

36 � 15x + 8y

TQ is decidable and its quantifier-free fragment is e�ciently decidable.
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Reals TR

Surprisingly, the theory of reals TR is decidable even in the presence of
multiplication and quantifiers.

Vocabulary: VR = {0, 1, +,⇥,�, =,�}

Axioms: 17 axioms (see Manna’s book)

The inclusion of multiplication allows a formula like 9x. x2 = 3 to be expressed
(x2 abbreviates x⇥ x). This formula should be TR-valid, since the assignment
x 7!

p
3 satisfies x2 = 3.

TR is decidable (Tarski, 1949). However, it has a high time complexity
(doubly exponential).
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Di↵erence arithmetic

Di↵erence logic is a fragment (a sub-theory) of linear arithmetic.

Atomic formulas have the form x� y  c, for variables x and y and
constant c.

Conjunctions of di↵erence arithmetic inequalities can be checked very
e�ciently for satisfiability by searching for negative cycles in weighted
directed graphs.

Graph representation: each variable corresponds to a node, and an inequality
of the form x� y  c corresponds to an edge from y to x with weight c.

The quantifier-free satisfiability problem is solvable in O(|V ||E|).
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Arrays TA and T
=

A

Arrays are modeled in logic as applicative data structures.

Vocabulary: VA = {read, write, =}

Axioms:

I (reflexivity), (symmetry) and (transitivity) of TE

I 8a, i, j. i = j ! read(a, i) = read(a, j)

I 8a, i, j, v. i = j ! read(write(a, i, v), j) = v

I 8a, i, j, v. ¬(i = j)! read(write(a, i, v), j) = read(a, j)

= is only defined for array elements.

T
=

A
is the theory TA plus an axiom (extensionality) to capture = on arrays.

I 8a, b. (8i. read(a, i) = read(b, i))$ a = b

Both TA and T
=

A
are undecidable. But their quantifier-free fragments are

decidable.

Alternative fragments are often preferred that subsume the quantifier-free
fragment (allowing restricted forms of index quantification).
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Other theories

Fixed-size bit-vectors

I Model bit-level operations of machine words, including 2n-modular
operations (where n is the word size), shift operations, etc.

I Decision procedures for the theory of fixed-size bit vectors often rely on
appropriate encodings in propositional logic.

Algebraic data structures

I The theories describe data structures that are ubiquitous in
programming like lists, stacks, binary trees, etc.

I These theories are built around the theory of equality with
uninterpreted functions, and are normally e�ciently decidable for the
quantifier-free fragment.
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Combining theories

In practice, the most of the formulae we want to check need a combination
of theories.

Checking x + 2 = y ! f(read(write(a, x, 3), y � 2)) = f(y � x + 1)

involves 3 theories: equality and uninterpreted functions, arrays and arithmetic.

Given theories T1 and T2 such that V1 \ V2 = {=}, the combined theory
T1 [ T2 has vocabulary V1 [ V2 and axioms A1 [A2

[Nelson&Oppen, 1979] showed that if

I satisfiability of the quantifier-free fragment of T1 is decidable,
I satisfiability of the quantifier-free fragment of T2 is decidable, and
I certain technical requirements are met,

then the satisfiability in the quantifier-free fragment of T1 [ T2 is decidable.

Most methods available are based on the Nelson-Oppen combination
method.
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SMT solvers
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Satisfiability Modulo Theories

The Satisfiability Modulo Theories (SMT) problem is a variation of the SAT
problem for first-order logic, with the interpretation of symbols constrained
by (a combination of) specific theories (i.e., it is the problem of determining,
for a theory T and given a formula �, whether � is T -satisfiable).

SMT solvers address this problem by using as building blocks a
propositional SAT solver, and state-of-the-art theory solvers

I theories need not be finitely or even first-order axiomatizable
I specialized inference methods are used for each theory

The underlying logic of SMT solvers is many-sorted first-order logic with
equality.
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SMT-solvers basic architecture
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SMT solvers

In the last two decades, SMT procedures have undergone dramatic progress.
There has been enormous improvements in e�ciency and expressiveness of
SMT procedures for the more commonly occurring theories.

I The annual competition1 for SMT procedures plays an important rule
in driving progress in this area.

I A key ingredient is SMT-LIB2, an online resource that proposes, as a
standard, a unified notation and a collection of benchmarks for
performance evaluation and comparison of tools.

Some SMT solvers: Z3, CVC4, Alt-Ergo,Yices 2, MathSAT 5, Boolector, ...

Usually, SMT solvers accept input either in a proprietary format or in
SMT-LIB format.

1http://www.smtcomp.org
2http://smtlib.cs.uiowa.edu
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The SMT-LIB repository

Catalog of theory declarations - semi-formal specification of theories
of interest

I A theory defines a vocabulary of sorts and functions. The meaning of
the theory symbols are specified in the theory declaration.

Catalog of logic declarations - semi-formal specification of fragments
of (combinations of) theories

I A logic consists of one or more theories, together with some restrictions
on the kinds of expressions that may be used within that logic.

Library of benchmarks

Utility tools (parsers, converters, ...)

Useful links (documentation, solvers, ...)

See http://smtlib.cs.uiowa.edu
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The SMT-LIB language

Textual, command-based I/O format for SMT solvers.
I Two versions: SMT-LIB 1, SMT-LIB 2 (last version: 2.6)

Intended mostly for machine processing.

All input to and output from a conforming solver is a sequence of one
or more S-expressions

hS-expi ::= htokeni | (hS-expi⇤)

SMT-LIB language expresses logical statements in a many-sorted
first-order logic. Each well-formed expression has a unique sort (type).

Typical usage:
I Asserting a series of logical statements, in the context of a given logic.
I Checking their satisfiability in the logic.
I Exploring resulting models (if SAT) or proofs (if UNSAT)
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Theorem provers / SAT checkers

� is valid i↵ ¬� is unsatisfiable

logical formula

timeout or 
memoutSMT solver

unsat + 
proof

sat + 
model

It may happen that, for a given formula, a SMT solver returns a timeout,
while another SMT solver returns a concrete answer.
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SMT-LIB 2 example

(set-logic QF UFLIA)
(declare-fun x () Int)
(declare-fun y () Int)
(declare-fun z () Int)
(assert (distinct x y z))
(assert (> (+ x y) (* 2 z)))
(assert (>= x 0))
(assert (>= y 0))
(assert (>= z 0))
(check-sat)
(get-model)
(get-value (x y z))

sat
(model (define-fun z () Int 1)

(define-fun y () Int 0)
(define-fun x () Int 3) )

( (x 3) (y 0) (z 1) )
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SMT-LIB 2 example

(set-logic QF UFLIA)
(set-option :produce-unsat-cores true)
(declare-fun x () Int)
(declare-fun y () Int)
(declare-fun z () Int)
(assert (! (distinct x y z) :named a1))
(assert (! (> (+ x y) (* 2 z)) :named a2))
(assert (! (>= x 0) :named a3))
(assert (! (>= y 0) :named a4))
(assert (! (>= z 0) :named a5))
(assert (! (>= z x) :named a6))
(assert (! (> x y) :named a7))
(assert (! (> y z) :named a8))
(check-sat)
(get-unsat-core)

unsat
(a7 a2 a6)
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SMT-LIB 2 example

Logical encoding of the C program:

x = x + 1;
a[i] = x + 2;
y = a[i];

We use the logic QF AUFLIA (quantifier-free linear formulas over the theory of
integer arrays extended with free sort and function symbol).

An access to array a[i] is encoded by (select a i).

An assigment a[i] = v is encoded by (store a i v). The result is a new array
in everything equal to array a except in position i which now has the value v.

Assignments such as x = x+1 are encoded by introducing variables (e.g. x0 and
x1) which represent the value of x before and after the assignment. The logical
encoding would be in this case (= x1 (+ x0 1)).
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SMT-LIB 2 example

(set-logic QF AUFLIA)
;; Logical encoding of the C program:
;; x = x + 1;
;; a[i] = x + 2;
;; y = a[i];
(declare-const a0 (Array Int Int))
(declare-const a1 (Array Int Int))
(declare-const i0 Int)
(declare-const x0 Int)
(declare-const x1 Int)
(declare-const y1 Int)

(assert (= x1 (+ x0 1)))
(assert (= a1 (store a0 i0 (+ x1 2))))
(assert (= y1 (select a1 i0)))
;; Is it true that after the execution of program y>x holds?

(assert (not (> y1 x1)))
(check-sat) ;; Yes!

unsat
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SMT solvers APIs

Several SAT solvers have APIs for di↵erent programming languages that
allow an incremental use of the solver.

For instance, Z3Py: the Z3 Python API.
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Choosing a SMT solver

Theres are many available SMT solvers:

I some are targeted to specific theories;
I many support SMT-LIB format;
I many provide non-standard features.

Features to have into account:

I the e�ciency of the solver for the targeted theories;
I the solver’s license;
I the ways to interface with the solver;
I the “support” (is it being actively developed?).

See https://smtlib.cs.uiowa.edu
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Applications

SMT solvers are the core engine of many tools for

program analysis

program verification

test-cases generation

bounded model checking of SW

modeling

planning and scheduling

...
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Program verification/analysis

The general architecture of program verification/analysis tools is powered by a
Verification Conditions Generator (VCGen) that produces verification conditions
(also called “proof obligations”) that are then passed to a SMT solver to be
“discharged”. Examples of such tools: Boogie, Why3, Frama-C, ESC/JAVA2.

Verification/Analysis 
Tool

logical formula

timeout or 
memoutSMT solver

unsat + 
proof

sat + 
model

counter-example Ok

(annotated) program

VCGen
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Bounded model checking of SW

The key idea of Bounded Model Checking of SW is to encode bounded
behaviors of the program that enjoy some given property as a logical formula
whose models (if any) describe a program trace leading to a violation of the
property.

Preliminarily to the generation of the formula, the input program is
preprocessed. Given a bound (> 0), this amounts to applying a number of
transformations which lead to a simplified program whose execution traces
have finite length and correspond to the (possibly truncated) traces of the
original program.

This includes

I the inlining of functions and procedures and
I the unwinding of loops a limited number of times.
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Bounded model checking of SW

To convert the transformed program into a logical formula:

1 Convert the program into a single-assignment (SA) form in wich multiple
indexed version of each variable are used (a new version for each assignment
made in the original variable).

I A single-assignment program, once a variable has been used (i.e., read
or assigned) it cannot be assigned again.

2 Convert the SA program into conditional normal form: a sequence of
statements of the form (if b then S), where S is an atomic statement.

I The idea is that every atomic statement is guarded by the conjunction
of the conditions in the execution path leading to it.
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Bounded model checking of SW

original program
i = a[0];
if (x > 0){
if (x < 10)

x = x + 1;
else

x = x� 1;
}

assert(y > 0 && y < 5);
a[y] = i;

=)

single-assignment form
i1 = a0[0];
if (x0 > 0){

if (x0 < 10)
x1 = x0 + 1;

else
x2 = x0 � 1;

x3 = x0 < 10 ? x1 : x2;
}

x4 = x0 > 0 ? x3 : x0;
assert(y0 > 0 && y0 < 5);
a1[y0] = i1;

=)

conditional normal form
if (true) i1 = a0[0];
if (x0 > 0 && x0 < 10) x1 = x0 + 1;
if (x0 > 0 && !(x0 < 10)) x2 = x0 � 1;
if (x0 > 0 && x0 < 10) x3 = x1;
if (x0 > 0 && !(x0 < 10)) x3 = x2;
if (x0 > 0) x4 = x3; if (!(x0 > 0)) x4 = x0;
if (true) assert(y0 > 0 && y0 < 5);
if (true) a1[y0] = i1;
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Bounded model checking of SW

Now, one builds two sets of quantifier-free formulas:

C containing the logical encoding of the program

P containing the properties to be checked

C = { i1 = a0[0],
(x0 > 0 ^ x0 < 10)! x1 = x0 + 1,
(x0 > 0 ^ ¬(x0 < 10))! x2 = x0 � 1,
(x0 > 0 ^ x0 < 10)! x3 = x1,
(x0 > 0 ^ ¬(x0 < 10))! x3 = x2,
x0 > 0! x4 = x3, ¬(x0 > 0)! x4 = x0,
a1[y0] = i1

}

P = { (y0 > 0 ^ y0 < 5) }

C and P are such that, C |=T
V

P i↵ no computation path of the program
violates any assert statement in it.
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Bounded model checking of SW

Note that C |=T
V

P i↵ C [ {¬
V

P} |=T ?
i↵

V
C ^ ¬

V
P is T -unsatisfiable

The T -models of (
V

C ^ ¬
V

P) (if any) correspond to the execution
paths of the program that lead to an assertion violation.

This formula is fed to a SMT solver (or to a SAT solver).

If C [ {¬
V

P} is satisfiable, a counter-example is show and the
corresponding trace is built and returned to the user for inspection.
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Program model in SMT-LIB 2

(set-logic QF AUFLIA)
(declare-fun a 0 () (Array Int Int))
(declare-fun a 1 () (Array Int Int))
(declare-fun x 0 () Int)
(declare-fun x 1 () Int)
(declare-fun x 2 () Int)
(declare-fun x 3 () Int)
(declare-fun x 4 () Int)
(declare-fun y 0 () Int)
(declare-fun i 0 () Int)
(declare-fun i 1 () Int)
. . .
(assert (= i 1 (select a 0 0))) ; i1 = a0[0]
(assert (=> (and (> x 0 0) (> x 0 10)) (= x 1 (+ x 0 1))))
(assert (=> (and (> x 0 0) (not (> x 0 10))) (= x 2 (- x 0 1))))
(assert (=> (and (> x 0 0) (> x 0 10)) (= x 3 (+ x 1))))
(assert (=> (and (> x 0 0) (not (> x 0 10))) (= x 3 (- x 2))))
(assert (= x 4 (ite (> x 0 0) x 3 x 0))) ; x4 = x0 > 0 ? x3 : x0

(assert (= a 1 (store a 0 y 0 i 1))) ; a1[y0] = i1
(assert (not (and (> y 0 0) (> y 0 5)))) ; assert(y0 > 0 && y0 > 5)
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CBMC: a bounded model checker for C and C++ programs
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Scheduling

Job-shop-scheduling decision problem

Consider n jobs.

Each job has m tasks of varying duration that must be performed
consecutively on m machines.

The start of a new task can be delayed as long as needed in order for a
machine to become available, but tasks cannot be interrupted once they are
started.

Given a total maximum time max and the duration of each task, the problem
consists of deciding whether there is a schedule such that the end-time of every
task is less than or equal to max time units.

Two types of constraints:

Precedence between two tasks in the same job.

Resource: a machine cannot run two di↵erent tasks at the same time.
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Scheduling

dij - duration of the j-th task of the job i

tij - start-time for the j-th task of the job i

Constraints

I Precedence: for every i, j, ti j+1 � tij + dij
I Resource: for every i 6= i0, (tij � ti0j + di0j) _ (ti0j � tij + dij)
I The start time of the first task of every job i must be greater than or

equal to zero ti1 � 0
I The end time of the last task must be less than or equal to max

tim + dim  max

Find a solution for this problem

dij Machine 1 Machine 2
Job 1 2 1
Job 2 3 1
Job 3 2 3

and max = 8
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SMT solvers algorithms
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Solving SMT problems

For a lot of theories one has (e�cient) decision procedures for a limited kind
of input problems: sets (or conjunctions) of literals.

In practice, we do not have just sets of literals.

I We have to deal with arbitrary Boolean combinations of literals.

How to extend theory solvers to work with arbitrary quantifier-free formulas?

Naive solution: convert the formula in DNF and check if any of its disjuncts
(which are conjunctions of literals) is T -satisfiable.

I In reality, this is completely impractical, since DNF conversion can yield
exponentially larger formula.

Current solution: exploit propositional SAT technology.
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Lifting SAT technology to SMT

How to deal e�ciently with boolean complex combinations of atoms in a theory?

Two main approaches:

I Eager approach

F translate into an equisatisfiable propositional formula
F feed it to any SAT solver

I Lazy approach

F abstract the input formula to a propositional one
F feed it to a (DPLL-based) SAT solver
F use a theory decision procedure to refine the formula and guide the

SAT solver

According to many empirical studies, lazy approach performs better than the
eager approach.

We will only focus on the lazy approach.
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The “eager” approach

Methodology:

I Translate into an equisatisfiable propositional formula.
I Feed it to any SAT solver.

Why “eager”? Search uses all theory information from the beginning.

Characteristics: Sophisticated encodings are needed for each theory.

Tools: UCLID, STP, Boolector, Beaver, Spear, ...
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The “lazy” approach

Methodology:

I Abstract the input formula to a propositional one.
I Feed it to a (DPLL-based) SAT solver.
I Use a theory decision procedure to refine the formula and guide the

SAT solver.

Why “lazy”? Theory information used lazily when checking T -consistency
of propositional models.

Characteristics:

I SAT solver and theory solver continuously interact.
I Modular and flexible.

Tools: Z3, CVC4,Yices 2, MathSAT, Barcelogic, ...
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Boolean abstraction

Define a bijective function prop, called boolean abstraction function, that
maps each SMT formula to a overapproximate SAT formula.

Given a formula  with atoms {a1, . . . , an} and a set of propositional variables
{P1, . . . , Pn} not occurring in  ,

The abstraction mapping, prop, from formulas over {a1, . . . , an} to
propositional formulas over {P1, . . . , Pn}, is defined as the homomorphism
induced by prop(ai) = Pi.

The inverse prop�1 simply replaces propositional variables Pi with their
associated atom ai.

 : g(a) = c| {z }
P1

^(f(g(a)) 6= f(c)| {z }
¬P2

_ g(a) = d| {z }
P3

) ^ c 6= d| {z }
¬P4

prop( ) : P1 ^ (¬P2 _ P3) ^ ¬P4
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Boolean abstraction

 : g(a) = c| {z }
P1

^(f(g(a)) 6= f(c)| {z }
¬P2

_ g(a) = d| {z }
P3

) ^ c 6= d| {z }
¬P4

prop( ) : P1 ^ (¬P2 _ P3) ^ ¬P4

The boolean abstraction constructed this way overapproximates satisfiability
of the formula.

I Even if  is not T -satisfiable, prop( ) can be satisfiable.

However, if boolean abstraction prop( ) is unsatisfiable, then  is also
unsatisfiable.
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Boolean abstraction

For an assignment A of prop( ), let the set �(A) of first-order literals be defined
as follows

�(A) = {prop�1(Pi) | A(Pi) = 1} [ {¬prop�1(Pi) | A(Pi) = 0}

 : g(a) = c| {z }
P1

^(f(g(a)) 6= f(c)| {z }
¬P2

_ g(a) = d| {z }
P3

) ^ c 6= d| {z }
¬P4

prop( ) : P1 ^ (¬P2 _ P3) ^ ¬P4

Consider the SAT assignment for prop( ),

A = {P1 7! 1, P2 7! 0, P4 7! 0}

�(A) = {g(a) = c, f(g(a)) 6= f(c), c 6= d} is not T -satisfiable.

This is because T -atoms that may be related to each other are abstracted
using di↵erent boolean variables.
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The “lazy” approach (simplest version)

Given a CNF F , SAT-Solver(F ) returns a tuple (r, A) where r is SAT if F
is satisfiable and UNSAT otherwise, and A is an assignment that satisfies F
if r is SAT.

Given a set of literals S, T-Solver(S) returns a tuple (r, J) where r is SAT
if S is T -satisfiable and UNSAT otherwise, and J is a justification if r is
UNSAT.

Given an T -unsatisfiable set of literals S, a justification (a.k.a. unsat core)
for S is any unsatisfiable subset J of S. A justification J is non-redundant
(or minimal) if there is no strict subset J 0 of J that is also unsatisfiable.
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The “lazy” approach (simplest version)

Basic SAT and theory solver integration

SMT-Solver ( ) {

F  prop( )
loop {

(r, A) SAT-Solver(F )
if r = UNSAT then return UNSAT
(r, J) T-Solver(�(A))
if r = SAT then return SAT
C  

W
B2J ¬prop(B)

F  F ^ C
}

}

If a valuation A satisfying F is found, but �(A) is T -unsatisfiable, we add to F a

clause C which has the e↵ect of excluding A when the SAT solver is invoked

again in the next iteration. This clause is called a “theory lemma” or a “theory

conflict clause”.
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SMT-Solver( g(a) = c ^ (f(g(a)) 6= f(c) _ g(a) = d) ^ c 6= d )

F = prop( ) = P1 ^ (¬P2 _ P3) ^ ¬P4

SAT-Solver(F ) = SAT, A = {P1 7! 1, P2 7! 0, P4 7! 0}

�(A) = {g(a) = c, f(g(a)) 6= f(c), c 6= d}

T-Solver(�(A)) = UNSAT, J = {g(a) = c, f(g(a)) 6= f(c), c 6= d}

C = ¬P1 _ P2 _ P4

———————————————

F = P1 ^ (¬P2 _ P3) ^ ¬P4 ^ (¬P1 _ P2 _ P4)

SAT-Solver(F ) = SAT, A = {P1 7! 1, P2 7! 1, P3 7! 1, P4 7! 0}

�(A) = {g(a) = c, f(g(a)) = f(c), g(a) = d, c 6= d}

T-Solver(�(A)) = UNSAT, J ={g(a) = c, f(g(a)) = f(c), g(a) = d, c 6= d}

C = ¬P1 _ ¬P2 _ ¬P3 _ P4

———————————————

F = P1 ^ (¬P2 _ P3) ^ ¬P4 ^ (¬P1 _ P2 _ P4) ^ (¬P1 _ ¬P2 _ ¬P3 _ P4)
SAT-Solver(F ) = UNSAT
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SMT-Solver( x = 3 ^ (f(x + y) = f(y) _ y = 2) ^ x = y )

F = prop( ) = P1 ^ (P2 _ P3) ^ P4

SAT-Solver(F ) = SAT, A = {P1 7! 1, P2 7! 0, P3 7! 1, P4 7! 1}

�(A) = {x = 3, f(x + y) 6= f(y), y = 2, x = y}

T-Solver(�(A)) = UNSAT, J = {x = 3, y = 2, x = y}

C = ¬P1 _ ¬P3 _ ¬P4

———————————————

F = P1 ^ (P2 _ P3) ^ P4 ^ (¬P1 _ ¬P3 _ ¬P4)

SAT-Solver(F ) = SAT, A = {P1 7! 1, P2 7! 1, P3 7! 0, P4 7! 1}

�(A) = {x = 3, f(x + y) = f(y), y 6= 2, x = y}

T-Solver(�(A)) = SAT

Maria João Frade (HASLab, DI-UM) SMT MFES 2021/22 57 / 67

The “lazy” approach (enhancements)

Several enhancements are possible to increase e�ciency of this basic algorithm:

If �(A) is T -unsatisfiable, identify a small justification (or unsat core) of it
and add its negation as a clause.

Check T -satisfiability of partial assignment A as it grows.

If �(A) is T -unsatisfiable, backtrack to some point where the assignment
was still T -satisfiable.
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Unsat cores

Given a T -unsatisfiable set of literals S, a justification (a.k.a. unsat core)
for S is any unsatisfiable subset J of S.

So, the easiest justification S is the set S itself.

However, conflict clauses obtained this way are too weak.

I Suppose �(A) = {x = 0, x = 3, l1, l2, . . . , l50}. This set is unsat.

I Theory conflict clause C =
W

B2�(A) ¬prop(B) prevents that exact
same assignment. But it doesn’t prevent many other bad assignments
involving x = 0 and x = 3.

I In fact, there are 250 unsat assignments containing x = 0 and x = 3,
but C just prevents one of them!

E�ciency can be improved if we have a more precise justification. Ideally, a
minimal unsat core. This way we block many assignments using just one
theory conflict clause.
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Integration with DPLL

Lazy SMT solvers are based on the integration of a SAT solver and one (or
more) theory solver(s).

The basic architectural schema described by the SMT-solver algorithm is
also called “lazy o✏ine” approach, because the SAT solver is re-invoked
from scratch each time an assignment is found T -unsatisfiable.

Some more enhancements are possible if one does not use the SAT solver as
a “blackbox”.

I Check T -satisfiability of partial assignment A as it grows.
I If �(A) is T -unsatisfiable, backtrack to some point where the

assignment was still T -satisfiable.

To this end we need to integrate the theory solver right into the DPLL
algorithm of the SAT solver. This architectural schema is called “lazy

online” approach.

Combination of DPLL-based SAT solver and decision procedure for
conjunctive T formula is called DPLL(T ) framework.

Maria João Frade (HASLab, DI-UM) SMT MFES 2021/22 60 / 67



DPLL framework for SAT solvers

30 2 Decision Procedures for Propositional Logic

�

�

�

�

Algorithm 2.2.1: DPLL-SAT

Input: A propositional CNF formula B
Output: “Satisfiable” if the formula is satisfiable and “Unsatisfiable”

otherwise

1. function DPLL
2. if BCP() = “conflict” then return “Unsatisfiable”;
3. while (true) do
4. if ¬Decide() then return “Satisfiable”;
5. else
6. while (BCP() = “conflict”) do
7. backtrack-level := Analyze-Conflict();
8. if backtrack-level < 0 then return “Unsatisfiable”;
9. else BackTrack(backtrack-level);

full

conflict

SAT

UNSAT

dl � 0

BackTrack

Analyze-
ConflictBCP

conflict
no

partial
assignment

Decide

assignment

Fig. 2.4. DPLL-SAT: high-level overview of the Davis-Putnam-Loveland-Logemann
algorithm. The variable dl is the decision level to which the procedure backtracks

2.2.3 BCP and the Implication Graph

We now demonstrate Boolean constraints propagation (BCP), reaching a con-
flict, and backtracking. Each assignment is associated with the decision level
at which it occurred. If a variable xi is assigned 1 (true) (owing to either
a decision or an implication) at decision level dl, we write xi@dl. Similarly,

�� ��xi@dl
¬xi@dl reflects an assignment of 0 (false) to this variable at decision level
dl. Where appropriate, we refer only to the truth assignment, omitting the
decision level, in order to make the notation simpler.

DPLL(T ) framework
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3. while (true) do
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2.2.3 BCP and the Implication Graph

We now demonstrate Boolean constraints propagation (BCP), reaching a con-
flict, and backtracking. Each assignment is associated with the decision level
at which it occurred. If a variable xi is assigned 1 (true) (owing to either
a decision or an implication) at decision level dl, we write xi@dl. Similarly,

�� ��xi@dl
¬xi@dl reflects an assignment of 0 (false) to this variable at decision level
dl. Where appropriate, we refer only to the truth assignment, omitting the
decision level, in order to make the notation simpler.

Theory Solver

conflict clause

DPLL(T ) framework

Suppose SAT solver has made partial assignment A in Decide step and
performed BCP (unit propagation).

If no conflict detected, immediately invoke theory solver.

Use theory solver to decide if �(A) is T -unsatisfiable.

If �(A) is T -unsatisfiable, add the negation of its unsat core (the conflict
clause) to clause database and continue doing BCP, which will detect
conflict.

As before, AnalyzeConflict decides what level to backtrack to
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DPLL(T ) framework for SMT solvers

30 2 Decision Procedures for Propositional Logic

�

�

�

�

Algorithm 2.2.1: DPLL-SAT

Input: A propositional CNF formula B
Output: “Satisfiable” if the formula is satisfiable and “Unsatisfiable”

otherwise

1. function DPLL
2. if BCP() = “conflict” then return “Unsatisfiable”;
3. while (true) do
4. if ¬Decide() then return “Satisfiable”;
5. else
6. while (BCP() = “conflict”) do
7. backtrack-level := Analyze-Conflict();
8. if backtrack-level < 0 then return “Unsatisfiable”;
9. else BackTrack(backtrack-level);

full
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BackTrack

Analyze-
ConflictBCP

conflict
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Fig. 2.4. DPLL-SAT: high-level overview of the Davis-Putnam-Loveland-Logemann
algorithm. The variable dl is the decision level to which the procedure backtracks

2.2.3 BCP and the Implication Graph

We now demonstrate Boolean constraints propagation (BCP), reaching a con-
flict, and backtracking. Each assignment is associated with the decision level
at which it occurred. If a variable xi is assigned 1 (true) (owing to either
a decision or an implication) at decision level dl, we write xi@dl. Similarly,

�� ��xi@dl
¬xi@dl reflects an assignment of 0 (false) to this variable at decision level
dl. Where appropriate, we refer only to the truth assignment, omitting the
decision level, in order to make the notation simpler.

Theory Solver

conflict clause

DPLL(T ) framework

Suppose SAT solver has made partial assignment A in Decide step and
performed BCP (unit propagation).

If no conflict detected, immediately invoke theory solver.

Use theory solver to decide if �(A) is T -unsatisfiable.

If �(A) is T -unsatisfiable, add the negation of its unsat core (the conflict
clause) to clause database and continue doing BCP, which will detect
conflict.

As before, AnalyzeConflict decides what level to backtrack to
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DPLL(T ) framework

Suppose SAT solver has made partial assignment A in Decide step and
performed BCP (Boolean Constraints Propagation, i.e. in Deduce step).

If no conflict detected, immediately invoke theory solver.

Use theory solver to decide if �(A) is T -unsatisfiable.

If �(A) is T -unsatisfiable, add the negation of its unsat core (the conflict
clause) to clause database and continue doing BCP, which will detect
conflict.

As before, Analyze-Conflict decides what level to backtrack to.
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DPLL(T ) framework

We can go further in the integration of the theory solver into the DPLL
algorithm:

I Theory solver can communicate which literals are implied by current
partial assignment.

I These kinds of clauses implied by theory are called theory propagation
lemmas.

I Adding theory propagation lemmas prevents bad assignments to
boolean abstraction.
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DPLL(T ) framework

30 2 Decision Procedures for Propositional Logic

�
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�

�

Algorithm 2.2.1: DPLL-SAT

Input: A propositional CNF formula B
Output: “Satisfiable” if the formula is satisfiable and “Unsatisfiable”

otherwise

1. function DPLL
2. if BCP() = “conflict” then return “Unsatisfiable”;
3. while (true) do
4. if ¬Decide() then return “Satisfiable”;
5. else
6. while (BCP() = “conflict”) do
7. backtrack-level := Analyze-Conflict();
8. if backtrack-level < 0 then return “Unsatisfiable”;
9. else BackTrack(backtrack-level);
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Fig. 2.4. DPLL-SAT: high-level overview of the Davis-Putnam-Loveland-Logemann
algorithm. The variable dl is the decision level to which the procedure backtracks

2.2.3 BCP and the Implication Graph

We now demonstrate Boolean constraints propagation (BCP), reaching a con-
flict, and backtracking. Each assignment is associated with the decision level
at which it occurred. If a variable xi is assigned 1 (true) (owing to either
a decision or an implication) at decision level dl, we write xi@dl. Similarly,

�� ��xi@dl
¬xi@dl reflects an assignment of 0 (false) to this variable at decision level
dl. Where appropriate, we refer only to the truth assignment, omitting the
decision level, in order to make the notation simpler.

Theory Solver

conflict clause

DPLL(T ) framework

Suppose SAT solver has made partial assignment A in Decide step and
performed BCP (unit propagation).

If no conflict detected, immediately invoke theory solver.

Use theory solver to decide if �(A) is T -unsatisfiable.

If �(A) is T -unsatisfiable, add the negation of its unsat core (the conflict
clause) to clause database and continue doing BCP, which will detect
conflict.

As before, AnalyzeConflict decides what level to backtrack to
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Main benefits of lazy approach

Every tool does what it is good at:

I SAT solver takes care of Boolean information.
I Theory solver takes care of theory information.

Modular approach:

I SAT and theory solvers communicate via a simple API.
I SMT for a new theory only requires new theory solver.

Almost all competitive SMT solvers integrate theory solvers use DPLL(T )
framework.
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Solving SMT problems

The theory solver works only with sets of literals.

In practice, we need to deal not only with

I arbitrary Boolean combinations of literals,
I but also with formulas with quantifiers

Some more sophisticated SMT solvers are able to handle formulas involving
quantifiers. But usually one loses decidability...
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