

Logic and computer science

- Logic and computer science share a symbiotic relationship
 - Logic provides language and methods for the study of theoretical computer science.
 - Computers provide a concrete setting for the implementation of logic.
- Logic is a fundamental part of computer science:
 - Program analysis: static analysis, software verification, test case generation, program understanding, ...
 - Artificial intelligence: constraint satisfaction, automated game playing, planning, ...
 - Hardware verification: correctness of circuits, ATPG, ...
 - Programming Languages: logic programming, type systems, programming language theory, ...

PL & SAT

```
Maria João Frade (HASLab, DI-UM)
```

MFES 2021/22 5 / 78

What is SAT?

- Usually SAT solvers deal with formulas in conjunctive normal form (CNF)
 - ▶ *literal*: propositional variable or its negation. A, $\neg A$, B, $\neg B$, C, $\neg C$
 - *clause*: disjuntion of literals. $(A \lor \neg B \lor C)$
 - conjunctive normal form: conjuction of clauses. $(A \lor \neg B \lor C) \land (B \lor \neg A) \land \neg C$
- SAT is a success story of computer science
 - Modern SAT solvers can check formulas with hundreds of thousands variables and millions of clauses in a reasonable amount of time.

PL & SAT

• A huge number of practical applications.

What is SAT?

- The Boolean satisfiability (SAT) problem:
 - Find an assignment to the propositional variables of the formula such that the formula evaluates to TRUE, or prove that no such assignment exists.
- SAT is an NP-complete decision problem .
 - SAT was the first problem to be shown NP-complete.
 - There are no known polynomial time algorithms for SAT.

Maria João Frade (HASLab, DI-UM)

MFES 2021/22 6 / 78

Why should we care?

• No matter what your research area or interest is, SAT solving is likely to be relevant.

PL & SAT

• Very good toolkit because many difficult problems can be reduced deciding satisfiability of formulas in logic.

Network Security Management Fault Localization Network Security Management Fault Localization Maximum Satisfiability Configuration Termination Analysis Software Testing Filter Design Switching Network Verification Guantified Boolean Formulas Software Model Checking Haplotyping Test Pattern Generation Model Finding Hardware Model Checking Planning Power Estimation Circuit Delay Computation Test State Minimization Model Finding Hardware Model Checking Planning Planning Fight Design Debugging Power Estimation Circuit Delay Computation Sector Planning Fight Design Debugging Fight Design Debugging Fight Design Debugging Fight Debugging Fight Design Debugging Fight Debugging F

(Classic	al) Propositional I	_ogic	
Maria João Frade (HASLab, DI-UM)	PL & SAT	MFES 2021/22	9 / 78
Syntax			
The alphabet of the propositic categories.	onal language is organised	into the following	

- Logical connectives: ⊥ (false) ,⊤ (true), ¬ (not), ∧ (and), ∨ (or), → (implies), ↔ (equivalent)
- Auxiliary symbols: "(" and ")".

The set **Form** of *formulas* of propositional logic is given by the abstract syntax

Form $\ni A, B ::= P \mid \perp \mid \top \mid (\neg A) \mid (A \land B) \mid (A \lor B) \mid (A \to B) \mid (A \leftrightarrow B)$

We let A, B, C, F, G, H, \ldots range over **Form**.

Outermost parenthesis are usually dropped. In absence of parentheses, we adopt the following convention about precedence. Ranging from the highest precedence to the lowest, we have respectively: \neg , \land , \lor , \rightarrow and \leftrightarrow . All binary connectives are right-associative.

PL & SAT

Maria João Frade (HASLab, DI-UM)

11/78

Propositional logic

- The language of propositional logic is based on propositions, or declarative sentences which one can, in principle, argue as being "true" or "false".
- Propositional symbols are the atomic formulas of the language. More complex sentences are constructed using logical connectives.
- In classical propositional logic (PL) each sentence is either true or false.
- In fact, the content of the propositions is not relevant to PL. PL is not the study of truth, but of the relationship between the truth of one statement and that of another.

Maria João Frade (HASLab, DI-UM)

PL & SAT

MFES 2021/22 10 / 78

Semantics

The meaning of PL is given by the truth values true and false, where true \neq false. We will represent true by 1 and false by 0.

An *assignment* is a function $\mathcal{A} : \mathcal{V}_{\mathsf{Prop}} \rightarrow \{0, 1\}$, that assigns to every propositional variable a truth value.

An assignment A naturally extends to all formulas, $A : Form \rightarrow \{0, 1\}$. The truth value of a formula is computed using *truth tables*:

ſ	F	A	B	$\neg A$	$A \wedge B$	$A \lor B$	$A \to B$	$A \leftrightarrow B$	\perp	Т
	$\mathcal{A}_1(F)$	0	1	1	0	1	1	0	0	1
	$\mathcal{A}_2(F)$	0	0	1	0	0	1	1	0	1
	$\mathcal{A}_3(F)$	1	1	0	1	1	1	1	0	1
	$\mathcal{A}_4(F)$	1	0	0	0	1	0	0	0	1

Maria João Frade (HASLab, DI-UM)

Semantics

Let \mathcal{A} be an assignment and let F be a formula. If $\mathcal{A}(F) = 1$, then we say F holds under assignment \mathcal{A} , or \mathcal{A} models F.

We write $\mathcal{A} \models F$ iff $\mathcal{A}(F) = 1$, and $\mathcal{A} \not\models F$ iff $\mathcal{A}(F) = 0$.

An alternative (inductive) definition of $\mathcal{A} \models F$ is

PL & SAT

Maria João Frade (HASLab, DI-UM)

MFES 2021/22 13 / 78

Consequence and equivalence

- $F \models G$ iff for every assignment A, if $A \models F$ then $A \models G$. We say G is a *consequence* of F.
- $F \equiv G$ iff $F \models G$ and $G \models F$. We say F and G are *equivalent*.
- Let $\Gamma = \{F_1, F_2, F_3, ...\}$ be a set of formulas. $\mathcal{A} \models \Gamma$ iff $\mathcal{A} \models F_i$ for each formula F_i in Γ . We say \mathcal{A} models Γ . $\Gamma \models G$ iff $\mathcal{A} \models \Gamma$ implies $\mathcal{A} \models G$ for every assignment \mathcal{A} . We say G is a *consequence* of Γ .

PL & SAT

Proposition

- $F \models G$ iff $\models F \rightarrow G$
- $\Gamma \models G$ and Γ finite iff $\models \bigwedge \Gamma \to G$

Maria João Frade (HASLab, DI-UM)

MFES 2021/22

15 / 78

Validity and satisfiability

A formula F is

valid	iff it holds under every assignment. We write $\models F$. A valid formula is called a <i>tautology</i> .				
satisfiable	iff	it holds under some assignment.			
unsatisfiable	iff	it holds under no assignment. An unsatisfiable formula is called a <i>contradiction</i> .			
refutable	iff	it is not valid.			
Proposition		F is valid iff $\neg F$ is unsatisfiable	ļ		
$(A \land (A \to B)) \to B$ is valid. $A \to B$ is satisfiable and refutable. $A \land \neg A$ is a contradiction.					
Maria João Frade (HASLab, DI-UM) PL & SAT MFES 2021/22 14 / 78					
Some basic equivalences					

$\begin{array}{c} A \lor A \\ A \land A \end{array}$	$ \begin{array}{l} \equiv & A \\ \equiv & A \end{array} $	$\begin{array}{rcl} A \wedge \neg A & \equiv & \bot \\ A \vee \neg A & \equiv & \top \end{array}$
$\begin{array}{c} A \lor B \\ A \land B \end{array}$	$ = B \lor A = B \land A $	$\begin{array}{ccc} A \wedge \top & \equiv & A \\ A \vee \top & \equiv & \top \end{array}$
$A \wedge (A \vee B)$	$\equiv A$	$\begin{array}{ccc} A \land \bot & \equiv & \bot \\ A \lor \bot & \equiv & A \end{array}$
	$ = (A \land B) \lor (A \land C) = (A \lor B) \land (A \lor C) $	$\neg \neg A \equiv A$
· /	$ \equiv \neg A \land \neg B \equiv \neg A \lor \neg B $	$A \to B \equiv \neg A \lor B$

Maria João Frade (HASLab, DI-UM)

Consistency

Let $\Gamma = \{F_1, F_2, F_3, \dots\}$ be a set of formulas.

- Γ is *consistent* or *satisfiable* iff there is an assignment that models Γ .
- We say that Γ is *inconsistent* or *unsatisfiable* iff it is not consistent and denote this by Γ ⊨ ⊥.

PL & SAT

Proposition

- $\{F, \neg F\} \models \bot$
- If $\Gamma \models \bot$ and $\Gamma \subseteq \Gamma'$, then $\Gamma' \models \bot$.
- $\Gamma \models F$ iff $\Gamma, \neg F \models \bot$

Maria João Frade (HASLab, DI-UM)

MFES 2021/22 17 / 78

Decidability

Given formulas F and G as input, we may ask:

Decision problems

- Validity problem: "Is F valid ?"
- Satisfiability problem: "Is F satisfiable ?"
- Consequence problem: "Is G a consequence of F?"

Equivalence problem: "Are F and G equivalent ?"

All these problems are decidable!

Maria João Frade (HASLab, DI-UM)

PL & SAT

MFES 2021/22 19 / 78

Substitution

- Formula G is a *subformula* of formula F if it occurs syntactically within F.
- Formula G is a strict subformula of F if G is a subformula of F and $G \neq F$

Substitution theorem

Suppose $F \equiv G$. Let H be a formula that contains F as a subformula. Let H' be the formula obtained by replacing some occurrence of F in H with G. Then $H \equiv H'$.

PL & SAT

Maria João Frade (HASLab, DI-UM)

MFES 2021/22 18 / 78

Decidability

Any algorithm that works for one of these problems also works for all of these problems!

F is satisfiable	iff	eg F is not valid
$F \models G$	iff	$\neg(F \rightarrow G)$ is not satisfiable
$F \equiv G$	iff	$F \models G$ and $G \models F$
F is valid	iff	$F \equiv \top$

Truth-table method

For the satisfiability problem, we first compute a truth table for F and then check to see if its truth value is ever one.

This algorithm certainly works, but is very inefficient. It's exponential-time! $O(2^n)$

If F has n atomic formulas, then the truth table for F has 2^n rows.

Complexity

- Computing a truth table for a formula is exponential-time in order to the number of propositional variables.
- There are several techniques and algorithms for SAT solving that perform better in average.
- There are no known polynomial time algorithms for SAT.
 - If it exists, then $\mathbf{P} = \mathbf{NP}$, because the SAT problem for PL is **NP**-complete (it was the first one to be shown NP-complete).

Cook's theorem (1971)

SAT is **NP**-complete.

• Conjecture: Any algorithm that solves SAT is exponential in the number of variables. in the worst-case.

PL & SAT

Maria João Frade (HASLab, DI-UM)

MFES 2021/22 21 / 78

An example

- Consider the following propositional variables
 - ▶ *M*: The unicor is mythical.
 - ▶ *I*: The unicor is immortal.
 - A: The unicor is mammal.
 - ▶ *H*: The unicor is horned.
 - G: The unicor is magical.
- If the unicorn is mythical, then it is immortal.

$M \to I$

- If the unicorn is not mythical, then it is a mortal mammal. $\neg M \rightarrow (\neg I \land A)$
- If the unicorn is either immortal or a mammal, then it is horned.

 $(I \lor A) \to H$

• The unicorn is magical if it is horned.

 $H \to G$

Maria João Frade (HASLab, DI-UM)

PL & SAT

MFES 2021/22 23 / 78

An example

The unicorn puzzle

- If the unicorn is mythical, then it is immortal.
- If the unicorn is not mythical, then it is a mortal mammal.
- If the unicorn is either immortal or a mammal, then it is horned.
- The unicorn is magical if it is horned.
- Questions:
 - Is the unicorn magical?
 - Is it horned?
 - ▶ Is it mythical?

Maria João Frade (HASLab, DI-UM)

MFES 2021/22 22 / 78

An example

- Let Γ be $\{M \to I, \neg M \to (\neg I \land A), (I \lor A) \to H, H \to G\}$
- Questions:
 - ▶ Is the unicorn magical? $\Gamma \models G$? i.e., $\Lambda \Gamma \rightarrow G$ valid?

PL & SAT

- $\Gamma \models H$? Is it horned?
- $\Gamma \models M$? Is it mythical?
- Recall that

 $\Gamma \models F$ iff $\Gamma, \neg F \models \bot$

PL & SAT

 $\wedge \Gamma \to F$ valid iff $\wedge \Gamma \wedge \neg F$ unsatisfiable

- Questions:
 - ▶ Is the unicorn magical? $\Gamma, \neg G$ UNSAT ?
 - Is it horned? $\Gamma, \neg H$ UNSAT ?

 $\Gamma, \neg M$ UNSAT ? Is it mythical?

Maria João Frade (HASLab, DI-UM)

MFES 2021/22 24 / 78

	SAT solving algorithms
SAT solving algorithms	 There are several techniques and algorithms for SAT solving. Usually SAT solvers receive as input a formula in a specific syntatica format. So, one has first to transform the input formula to this specific forma preserving satisfiability.
Maria João Frade (HASLab, DI-UM) PL & SAT MFES 2021/22 25/78 Normal forms	María João Frade (HASLab, DI-UM) PL & SAT MFES 2021/22 26 Normalization

Normalization

To transform a formula already in NNF into an equivalent CNF, apply recursively the following equivalences (left-to-right):

 $\begin{array}{ll} A \lor (B \land C) \equiv (A \lor B) \land (A \lor C) & (A \land B) \lor C \equiv (A \lor C) \land (B \lor C) \\ A \land \bot \equiv \bot & \bot \land A \equiv \bot & A \land \top \equiv A & \top \land A \equiv A \\ A \lor \bot \equiv A & \bot \lor A \equiv A & A \lor \top \equiv \top & \top \lor A \equiv \top \end{array}$

This althoritm converts a NNF formula into an equivalent CNF, but its worst case is exponential on the size of the formula.

PL & SAT

Maria João Frade (HASLab, DI-UM)

MFES 2021/22 29 / 78

Worst-case example

Compute the CNF of $(P_1 \land Q_1) \lor (P_2 \land Q_2) \lor \ldots \lor (P_n \land Q_n)$

 $\begin{array}{l} (P_1 \wedge Q_1) \vee (P_2 \wedge Q_2) \vee \ldots \vee (P_n \wedge Q_n) \\ \equiv & (P_1 \vee (P_2 \wedge Q_2) \vee \ldots \vee (P_n \wedge Q_n)) \wedge (Q_1 \vee (P_2 \wedge Q_2) \vee \ldots \vee (P_n \wedge Q_n)) \\ \equiv & \ldots \\ \equiv & (P_1 \vee \ldots \vee P_n) \wedge \\ & (P_1 \vee \ldots \vee P_{n-1} \vee Q_n) \wedge \\ & (P_1 \vee \ldots \vee P_{n-2} \vee Q_{n-1} \vee P_n) \wedge \\ & (P_1 \vee \ldots \vee P_{n-2} \vee Q_{n-1} \vee Q_n) \wedge \\ & \ldots \wedge \\ & (Q_1 \vee \ldots \vee Q_n) \end{array}$

The original formula has 2n literals, while the equivalent CNF has 2^n clauses, each with n literals.

PL & SAT

The size of the formula increases exponentially.

Maria João Frade (HASLab, DI-UM)

MFES 2021/22

31 / 78

Example

Compute the CNF of $((P \rightarrow Q) \rightarrow P) \rightarrow P$

((P

The first step is to compute its NNF by transforming implications into disjunctions and pushing negations to proposition symbols:

$$\begin{array}{l} \rightarrow Q) \rightarrow P) \rightarrow P \equiv \neg ((P \rightarrow Q) \rightarrow P) \lor P \\ \equiv \neg (\neg (P \rightarrow Q) \lor P) \lor P \\ \equiv \neg (\neg (\neg P \lor Q) \lor P) \lor P \\ \equiv \neg ((P \land \neg Q) \lor P) \lor P \\ \equiv (\neg (P \land \neg Q) \land \neg P) \lor P \\ \equiv ((\neg P \lor Q) \land \neg P) \lor P \end{array}$$

To reach a CNF, distributivity is then applied to pull the conjunction outside:

 $((\neg P \lor Q) \land \neg P) \lor P \equiv (\neg P \lor Q \lor P) \land (\neg P \lor P)$

PL & SAT

```
Maria João Frade (HASLab, DI-UM)
```

MFES 2021/22 30 / 78

Definitional CNF

Equisatisfiability

Two formulas F and F^\prime are equisatisfiable when F is satisfiable iff F^\prime is satisfiable.

Any propositional formula can be transformed into a equisatisfiable CNF formula with only linear increase in the size of the formula.

- The price to be paid is *n* new Boolean variables, where *n* is the number of logical conectives in the formula.
- This can be done via *Tseitin's encoding* [Tseitin, 1968].

Tseitin's encoding

This tranformation compute what is called the *definitional CNF* of a formula, because they rely on the introduction of new proposition symbols that act as names for subformulas of the original formula.

Maria João Frade (HASLab, DI-UM)

Tseitin's encoding

Tseitin's transformation

- Introduce a new fresh variable for each compound subformula.
- 2 Assign new variable to each subformula.
- Incode local constraints as CNF.
- Make conjunction of local constraints and the root variable.
- This transformation produces a formula that is equisatisfiable: the result is satisfiable iff and only the original formula is satisfiable.
- One can get a satisfying assignment for original formula by projecting the satisfying assignment onto the original variables.

There are various optimizations that can be performed in order to reduce the size of the resulting formula and the number of additional variables.

PL & SAT

```
Maria João Frade (HASLab, DI-UM)
```

MFES 2021/22 33 / 78

CNFs validity

- The strict shape of CNFs make them particularly suited for checking validity problems.
 - A CNF is a tautology iff all of its clauses are closed (there exists a proposition symbol P, such that both P and ¬P are in the clause).
- However, the applicability of this criterion for validity is compromised by the potential exponential growth in the CNF transformation.
- This limitation is overcomed considering instead SAT, with satisfiability preserving CNFs (definitional CNF).
- Recall that

F is valid iff $\neg F$ is unsatisfiable

PL & SAT

Tseitin's encoding: an example

Encode $P \to Q \land R$

 $P \to Q \land$

2 We need to satisfy A_1 together with the following equivalences

 $A_1 \leftrightarrow (P \to A_2) \qquad \qquad A_2 \leftrightarrow (Q \land R)$

- These equivalences can be rewritten in CNF as $(A_1 \lor P) \land (A_1 \lor \neg A_2) \land (\neg A_1 \lor \neg P \lor A_2)$ and $(\neg A_2 \lor Q) \land (\neg A_2 \lor R) \land (A_2 \lor \neg Q \lor \neg R)$, respectively.
- **③** The CNF which is equisatisfiable with $P \rightarrow (Q \land R)$ is
 - $\begin{array}{rcl} A_1 & \wedge & (A_1 \lor P) \land (A_1 \lor \neg A_2) \land (\neg A_1 \lor \neg P \lor A_2) \\ & \wedge & (\neg A_2 \lor Q) \land (\neg A_2 \lor R) \land (A_2 \lor \neg Q \lor \neg R) \end{array}$

PL & SAT

Maria João Frade (HASLab, DI-UM)

MFES 2021/22 34 / 78

SAT solving algorithms

The majority of modern SAT solvers can be classified into two main categories:

- SAT solvers based on a stochastic local search
 - the solver guesses a full assignment, and then, if the formula is evaluated to false under this assignment, starts to flip values of variables according to some heuristic.
- SAT solvers based on the DPLL framework
 - optimizations to the Davis-Putnam-Logemann-Loveland algorithm (DPLL) which corresponds to backtrack search through the space of possible variable assignments.

DPLL-based SAT solvers, however, are considered better in most cases.

MFES 2021/22

35 / 78

Stochastic local search

- Local search is incomplete; usually it cannot prove unsatisfiability.
- However, it can be very effective in specific contexts.
- The algorithm:
 - Start with a (random) assignment,
 - And repeat a number of times:
 - \star If not all clauses satisfied, change the value of a variable.
 - ★ If all clauses satisfied, it is done.
 - Repeat (random) selection of assignment a number of times.
- The algorithm terminates when a satisfying assignment is found or when a time bound is elapsed (inconclusive answer).

PL & SAT

Maria João Frade (HASLab, DI-UM)

MFES 2021/22 37 / 78

State of a clause under an assignment

State of a clause under an assignment

Given a partial assigment, a clause is

- satisfied if one or more of its literals are satisfied,
- confliting if all of its literals are assigned but not satisfied.
- unit if it is not satisfied and all but one of its literals are assigned,

PL & SAT

• unresolved otherwise.

Let $\mathcal{A}(P) = 1, \mathcal{A}(R) = 0, \mathcal{A}(Q) = 1$

- $(P \lor X \lor \neg Q)$ is satisfied
- $(\neg P \lor R)$ is conflicting
- $(\neg P \lor \neg Q \lor X)$ is unit
- $(\neg P \lor X \lor A)$ is unresolved

Maria João Frade (HASLab, DI-UM)

MFES 2021/22

39 / 78

DPLL framework

- A CNF is satisfied by an assignment if all its clauses are satisfied. And a clause is satisfied if at least one of its literals is satisfied.
- The ideia behind the DPLL framework is to incrementally construct an assignment compatible with a CNF.
 - \blacktriangleright An assignment of a formula F is a function mapping F 's variables to 1 or 0. We say it is
 - ★ *full* if all of *F*'s variables are assigned,
 - ★ and *partial* otherwise.
- Most current state-of-the-art SAT solvers are based on the *Davis-Putnam-Logemann-Loveland (DPLL)* framework: in this framework the tool can be thought of as traversing and backtracking on a binary tree, in which
 - nodes represent variables
 - and each branch an assignment to a variable

```
Maria João Frade (HASLab, DI-UM)
```

Unit propagation (a.k.a. Boolean Constraint Propagation)

PL & SAT

Unit propagation (a.k.a. Boolean Constraint Propagation (BCP))

- A clause is a *unit* if all literals but one are assigned value 0, and the remaining literal is unassigned.
- Unit clause rule

Given a unit clause, its only unassigned literal must be assigned value 1 for the clause to be satisfied.

- Unit propagation is the iterated application of the unit clause rule.
- This technique is extensively used.

Maria João Frade (HASLab, DI-UM)

PL & SAT

MFES 2021/22 38 / 78

Unit propagation (a.k.a. Boolean Constraint Propagation)

Consider the partial assignment $\mathcal{A}(P) = 0, \mathcal{A}(Q) = 1$.

- Under this assignment
 - $(P \lor \neg R \lor \neg Q)$ is a unit clause
 - $\succ~(\neg Q \lor X \lor \neg R)$ is not a unit clause
- Performing unit propagation
 - From $(P \lor \neg R \lor \neg Q)$ we have that R must be assigned the value 0, i.e., $\mathcal{A}(R) = 0$.
 - now $(\neg Q \lor X \lor \neg R)$ becames a unit clause, and X must be assigned the value 1, i.e., $\mathcal{A}(X) = 1$.

Consider the partial assignment $\mathcal{A}(R) = 1, \mathcal{A}(Q) = 1$

By unit propagation what can we conclude about

•
$$(P \lor \neg R \lor \neg Q) \land (\neg P \lor \neg Q \lor X) \land (\neg P \lor \neg R \lor X)$$
?

• $(P \lor \neg R \lor \neg Q) \land (\neg P \lor \neg Q \lor X) \land (\neg P \lor \neg R \lor \neg X)$?

```
Maria João Frade (HASLab, DI-UM)
```

MFES 2021/22 41 / 78

CNFs (as sets of sets of literals)

• Recall that CNFs are formulas with the following shape (each l_{ij} denotes a literal):

PL & SAT

 $(l_{11} \vee l_{12} \vee \ldots \vee l_{1k}) \wedge \ldots \wedge (l_{n1} \vee l_{n2} \vee \ldots \vee l_{nj})$

• Associativity, commutativity and idempotence of both disjunction and conjunction allow us to treat each CNF as a set of sets of literals S

 $S = \{\{l_{11}, l_{12}, \dots, l_{1k}\}, \dots, \{l_{n1}, l_{n2}, \dots, l_{nj}\}\}$

• An empty inner set will be identified with $\bot,$ and an empty outer set with $\top.$ Therefore,

PL & SAT

- if $\{\} \in S$, then S is equivalent to \bot ;
- if $S = \{\}$, then S is \top .

DPLL algorithm

- Traditionally the DPLL algorithm is presented as a recursive procedure.
- The procedure DPLL is called with the CNF and a partial assignment.
- We will represent a CNF by a set of sets of literals.
- We will represent the partial assignment by a set of literals (P denote that P is set to 1, and $\neg P$ that P is set to 0).
- The algorithm:
 - Progresses by making a decision about a variable and its value.
 - Propagates implications of this decision that are easy to detect, simplifying the clauses.
 - Backtracks in case a conflict is detected in the form of a falsified clause.

```
Maria João Frade (HASLab, DI-UM)
```

PL & SAT

MFES 2021/22 42 / 78

Simplification of a clause under an assignment

If we fix the assignment of a particular proposition symbol, we are able to simplify the corresponding CNF accordingly.

The *opposite* of a literal l, written -l, is defined by

$$-l = \begin{cases} \neg P & \text{, if } l = P \\ P & \text{, if } l = \neg P \end{cases}$$

MFES 2021/22

43 / 78

Simplification of a clause under an assignment

When we set a literal l to be true,

- any clause that has the literal *l* is now guaranteed to be satisfied, so we throw it away for the next part of the search.
- any clause that had the literal -l, on the other hand, must rely on one of the other literals in the clause, hence we throw out the literal -l before going forward.

Simplification of S assuming l holds

 $\mathbf{S}|_{\mathbf{l}} = \left\{ c \setminus \{-l\} \mid c \in S \text{ and } l \notin c \right\}$

PL & SAT

Maria João Frade (HASLab, DI-UM)

MFES 2021/22 45 / 78

DPLL algorithm

DPLL is called with a CNF S and a partial assignment \mathcal{A} (initially \emptyset).

DPLL(S, \mathcal{A}) {

```
UNIT_PROPAGATE(S, A);

if S = \{\} then return SAT;

else if \{\} \in S then return UNSAT;

else \{ l \leftarrow a \text{ literal of } S ;

if DPLL (S|_l, A \cup \{l\}) = SAT then return SAT;

else return DPLL (S|_{-l}, A \cup \{-l\})

}
```

- DPLL complete algorithm for SAT.
- Unsatisfiability of the complete formula can only be detected after exhaustive search.

Maria João Frade (HASLab, DI-UM)

MFES 2021/22 47 / 78

Simplification of a clause under an assignment

If a CNF S contains a clause that consists of a single literal (a unit clause), we know for certain that the literal must be set to true and S can be simplified.

One should apply this rule while it is possible and worthwhile.

UNIT_PROPAGATE (S, \mathcal{A}) { while {} $\notin S$ and S has a unit clause l do {

```
S \leftarrow S|_l;
\mathcal{A} \leftarrow \mathcal{A} \cup \{l\}
```

Maria João Frade (HASLab, DI-UM)

PL & SAT

MFES 2021/22 46 / 78

DPLL algorithm

Is $(\neg P \lor Q) \land (\neg P \lor R) \land (Q \lor R) \land (\neg Q \lor \neg R) \land (P \lor \neg R \lor Q)$ satisfiable?

	S	\mathcal{A}	
DPLL	$\{\{\neg P, Q\}, \{\neg P, R\}, \{Q, R\}, \{\neg Q, \neg R\}, \{P, \neg R, Q\}\}$	Ø	
UNIT_PROPAGATE			
	$\{\{\neg P, Q\}, \{\neg P, R\}, \{Q, R\}, \{\neg Q, \neg R\}, \{P, \neg R, Q\}\}$	Ø	
choose $l = P$			
DPLL $S _l$	$\{\{Q\}, \{R\}, \{Q, R\}, \{\neg Q, \neg R\}\}$	$\{P\}$	
UNIT_PROPAGATE		() (
	{{}}	$\{P, Q,$	$,R\}$
$-l = \neg P$			
DPLL $S _{-l}$	$\{\{Q, R\}, \{\neg Q, \neg R\}, \{\neg R, Q\}\}$	$\{\neg P\}$	
UNIT_PROPAGATE			
	$\{\{Q, R\}, \{\neg Q, \neg R\}, \{\neg R, Q\}\}$	$\{\neg P\}$	
choose $l = Q$		(D)	~ 1
DPLL $S _l$	$\{\{\neg R\}\}$	$\{\neg P, Q\}$	2 }
UNIT_PROPAGATE	0		
	{}	$\{\neg P, Q\}$	$\mathcal{J}, \neg R$
	SAT		
Maria João Frade (HASLab, I	D-UM) PL & SAT MEES	2021/22	48 / 7

DPLL algorithm

ls

$(\neg A \lor C \lor D) \land A \land (\neg A \lor B) \land (A \lor C) \land (A \lor D) \land (\neg B \lor \neg C \lor \neg D) \land (\neg D \lor C) \land (D \lor \neg C)$ satisfiable?

UNIT_PROPAGATE	$\{\{C, D\}, \{\neg C, \neg D\}, \{\neg D, C\}, \{D, \neg C\}\}$	$\{A, B\}$
$\begin{array}{l} \text{choose } l = D \\ \text{DPLL} S _l \end{array}$	$\{\{\neg C\}, \{C\}\}$	$\{A,B,D\}$
UNIT_PROPAGATE	{{}}	$\{A,B,D,\neg$
$-l = \neg D$		
DPLL $S _{l}$ UNIT_PROPAGATE	$\{\{C\}, \{\neg C\}\}$	$\{A,B,\neg D\}$
CATE ROLAGATE	{{}}	$\{A, B, \neg D,$
	UNSAT	

PL & SAT

Maria João Frade (HASLab, DI-UM)

MFES 2021/22 49 / 78

DPLL-based iterative algorithm [Marques-Silva&Sakallah,1996]

At each step:

- **Decide** on the assignment of a variable (which is called the *decision variable*, and it will have a *decision level* associated with it).
- **Deduce** the consequences of the decision made. (Variables assigned will have the same decision level as the decision variable.) Usually BCP.
 - If all the clauses are satisfied, then the instance is satisfiable.
 - If there exists a conflicting clause, then analyze the conflit and determine the decision level to backtrack. (The solver may perform some analysis and record some information from the current conflict in order to prune the search space for the future.)
 - * Decision level < 0 indicates that the formula is unsatisfiable.
 - Otherwise, proceed with another decision.

Different DPLL-based modern solvers differ mainly in the detailed implementation of each of these functions.

PL & SAT

Maria João Frade (HASLab, DI-UM)

MFES 2021/22

51/78

DPLL framework: heuristics & optimizations

Many different techniques are applied to achieve efficiency in DPLL-based SAT solvers.

- Decision heuristic: a very important feature in SAT solving is the strategy by which the literals are chosen.
- Look-ahead: exploit information about the remaining search space.
 - unit propagation
 - ► pure literal rule
- Look-back: exploit information about search which has already taken place.
 - non-chronological backtracking (a.k.a. backjumping)
 - clause learning
- Other techniques:
 - preprocessing (detection of subsumed clauses, simplification, ...)
 - (random) restart (restarting the solver when it seams to be is a hopeless branch of the search tree)

PL & SAT

Maria João Frade (HASLab, DI-UM)

MFES 2021/22 50 / 78

DPLL-based iterative algorithm

Conflict analysis and learning

- *Non-chronological backtracking*: does not necessarily flip the last assignment and can backtrack to an earlier decision level.
- The process of adding conflict clauses is generally referred to as *learning*.
- The conflict clauses record the reasons deduced from the conflict to avoid making the same mistake in the future search. For that *implication graphs* are used.
- *Conflict-driven backtracking* uses the conflict clauses learned to determine the actual reasons for the conflict and the decision level to backtrack in order to prevent the repetition of the same conflict.

PL & SAT

Maria João Frade (HASLab, DI-UM)

MFES 2021/22 53 / 78

Conflict analysis and learning

At level 3, decide $x_5 = 0$, denoted $\neg x_5@3$.

Conflict analysis and learning

Consider, for example, a formula ψ that contains the following set of clauses, among others:

PL & SAT

and assume that at decidsion level 3 the decision was $\mathcal{A}(x_5) = 0$.

Maria João Frade (HASLab, DI-UM)

MFES 2021/22 54 / 78

Conflict analysis and learning

At level 6, decide $x_1 = 1$, denoted $x_1@6$.

Clauses of ψ $c_1 = (\neg x_1 \lor x_2)$ $c_2 = (\neg x_1 \lor x_3 \lor x_5)$ $c_3 = (\neg x_2 \lor x_4)$ $c_4 = (\neg x_3 \lor \neg x_4)$ $c_5 = (x_1 \lor x_5 \lor \neg x_2)$ $c_6 = (x_2 \lor x_3)$ $c_7 = (x_2 \lor \neg x_3)$... Implication graph

Maria João Frade (HASLab, DI-UM)

MFES 2021/22 64 / 78

MFES 2021/22 62 / 78

DIMACS CNF format

- DIMACS CNF format is a standard format for CNF used by most SAT solvers.
- Plain text file with following structure:
 - c < comments >

```
p cnf <num.of variables> <num.of clauses>
<clause> 0
<clause> 0
```

•••

. . .

- Every number 1, 2, . . . corresponds to a variable (variable names have to be mapped to numbers).
- A negative number denote the negation of the corresponding variable.
- Every clause is a list of numbers, separated by spaces. (One or more lines per clause).

PL & SAT

Maria João Frade (HASLab, DI-UM)

MFES 2021/22 65 / 78

67 / 78

Minisat demo

Maria João Frade (HAS

<pre>\$ cat example.cnf c A1 = 1 c A2 = 2 c P = 3 p cnf 3 4 10 1 3 0 1 - 3 2 0 1 - 2 0 \$ minisat example.cnf OUT</pre>			
c A1 = 1 c A2 = 2 c P = 3 p cnf 3 4 10 1 30 1 -1 -3 2 0 1 -2 0 S minisat example.cnf OUT Number of variables: 3 Number of clauses: 1 Number of clauses: 1 Number of clauses: 1 Number of clauses: 1 Simplification time: 0.00 s Eliminated clauses: 0.00 Mb Simplification time: 0.00 s Conflicts ORIGINAL LEARNT Progress Conflicts ORIGINAL LEARNT Progress Conflicts : 0 restarts : 1 conflicts : 0 (0 /sec) decisions : 1 (0.00 % random) (490 /sec) propagations : 1 (0.00 % random) (490 /sec) sATISFIABLE Sator COUT SAT 1 -2 -3 0	<pre>\$ cat example.cnf</pre>		
c A2 = 2 c P = 3 p cnf 3 4 1 0 1 3 0 -1 -3 2 0 1 -2 0 Mumber of variables: 3 Number of clauses: 1 Number of clauses: 0.00 % E tilminated clauses: 0.00 % E tilminated clauses: 0.00 % Conflicts 0RIGINAL LEARNT Progress Conflicts 0RIGINAL LEARNT Progress Conflicts : 0 (0 /sec) detisions : 1 (0/00 /sec) propagations : 1 (0/00 /sec) profile i 0.66 MB CPU time : 0.062041 s SATISFIABLE S[cot OUT SAT 1 -2 -3 0			
p cnf 3 4 1 0 1 3 0 -1 -3 2 0 1 -2 0 \$ minisat example.cnf OUT Number of variables: 3 Number of clauses: 1 Number of clauses: 0.00 % Eliminated clauses: 0.00 % Elimin	c A2 = 2		
1 0 1 3 0 1 3 0 1 -2 0 \$ minisat example.cnf OUT Number of variables: 3 Number of clauses: 1 Number of clauses: 0.00 Mb Eliminated clauses:	c P = 3		
1 0 1 3 0 1 3 0 1 -2 0 \$ minisat example.cnf OUT Number of variables: 3 Number of clauses: 1 Number of clauses: 0.00 Mb Eliminated clauses:			
1 3 0 1 - 3 2 0 1 - 2 0 S minisat example.cnf OUT [Problem Statistics] [Number of variables: 3 Number of clauses: 1 Parse time: 0.00 % Eliminated clauses: 0.00 Mb Simplification time: 0.00 s [Sarch Statistics] [Conflicts OEIGINAL LEARNT Progress Conflicts OEIGINAL LEARNT Progress Vars Clauses Literals Limit Clauses Lit/Cl restarts : 1 (0.00 % random) (490 /sec) propagations : 1 (490 /sec) conflict literals : 0 (nan % deleted) Memory used : 0.16 MB CPU time : 0.002041 s SATISFIABLE Sjoct OUT SAT 1 - 2 - 3 0	p cnf 3 4		
-1 -3 2 0 1 -2 0 \$ minisat example.cnf OUT Number of variables: 3 Number of clauses: 1 Parse time: 0.00 % Eliminated clauses: 0.00 Mb Simplification time: 0.00 % Conflicts ORIGINAL LEARNT Progress Conflicts : 0 (0 /sec) decisions : 1 (0.00 % rac) conflicts : 0 (0 /sec) decisions : 1 (0.00 % rac) conflict literals : 0 (0 /sec) conflict literals : 0 (0 /sec) decisions : 1 (0.00 % rac) conflict literals : 0 (0 /sec) conflict literals : 0 (0 /sec) SATISFIABLE \$ Saturd COUT SAT 1 -2 -3 0	10		
1 -2 0 \$ minisat example.cnf OUT Therefore iteration is a second secon	130		
<pre>\$ minisat example.cnf OUT</pre>	-1 -3 2 0		
Imper of variables: 3 Imper of clauses: 1 Impersenting: 0.00 s Impersent: 0.00 second Import: 0.00 second Import: 0.000 second Improgradiatio	1 -2 0		
Imper of variables: 3 Imper of clauses: 1 Impersenting: 0.00 s Impersent: 0.00 second Import: 0.00 second Import: 0.000 second Improgradiatio			
Number of variables: 3 Number of clauses: 1 Parse time: 0.00 % Eliminated clauses: 0.00 Mo Simplification time: 0.00 Mo Simplification time: 0.00 Mo Image: Conflicts 0CIGINAL <	<pre>\$ minisat example</pre>	.cnf OUT	
Number of clauses: 1 1 Parse time: 0.00 % 1 Simplification time: 0.00 Mb 1 Simplification time: 0.00 % 1 Conflicts 1 ORIGINAL 1 LEARNT 1 Progress 1 Vars Clauses Literals 1 LEARNT 1 restarts :1 (0.00 % random) (490 /sec) conflicts 1:0 (0 /sec) decisions additions :1 (0.00 % random) (490 /sec) conflicts 1:0 (nan % deleted) Memory used Red OUT SAT SAT SAT SAT SAT 1 -2 -3 0		[Problem Statistics]	
Number of clauses: 1 1 Parse time: 0.00 % 1 Simplification time: 0.00 Mb 1 Simplification time: 0.00 % 1 Conflicts 1 ORIGINAL 1 LEARNT 1 Progress 1 Vars Clauses Literals 1 LEARNT 1 restarts :1 (0.00 % random) (490 /sec) conflicts 1:0 (0 /sec) decisions additions :1 (0.00 % random) (490 /sec) conflicts 1:0 (nan % deleted) Memory used Red OUT SAT SAT SAT SAT SAT 1 -2 -3 0			
Parse time: 0.00 s 1 Eliminated clauses: 0.00 Mb 1 Simplification time: 0.00 s 1 Conflicts ORIGINAL LEARNT Progress I conflicts ORIGINAL Limit Clauses Lit/Cl restarts : 1 (Clouses Litrols Limit Clauses Lit/Cl restarts : 1 (0 /sec) conflicts 0 decisions : 1 (0.00 % random) (490 /sec) prograditors romory used : 0.16 MB (Pour Vine : 0.002041 s SATISFIABLE SGat OUT SAT SAT 1 -2 -3 0	Number of vari	ables: 3	1
Eliminated clauses: 0.00 Mb 1 Simplification time: 0.00 s 1 Conflicts 0EIGINAL LEARNT Progress I I conflicts Vars Clauses Litrals Limit Clauses Lit/Cl 1 restarts :1 conflicts 0 (0 /sec) decisions :1 (0.09 /sec) conflict literals 0 restarts :0 (0 /sec) conflict literals 0 Conflict literals wenory used :0.16 MB CPU time :0.002041 s SATISFIABLE SATISFIABLE Signot OUT SAT T	I Number of clau	ses: 1	1
Simplification time: 0.00 s I Conflicts Scarch Statistics I I OBLIGNAL LEARNT Progress I Vars Clauses Literals Limit Clauses Lit/Cl I I Vars Clauses Literals Limit Clauses Lit/Cl I Image: Conflicts :0 (0 /sec) I decisions :1 (0.08 % random) (490 /sec) I propagations :1 (409 /sec) I wearbory used :0.16 MB I I I CPU time :0.002041 s S SATISFIABLE S SQL ot UUT SAT 1	Parse time:	0.00 s	1
Simplification time: 0.00 s I Conflicts Scarch Statistics I I OBLIGNAL LEARNT Progress I Vars Clauses Literals Limit Clauses Lit/Cl I I Vars Clauses Literals Limit Clauses Lit/Cl I Image: Conflicts :0 (0 /sec) I decisions :1 (0.08 % random) (490 /sec) I propagations :1 (409 /sec) I wearbory used :0.16 MB I I I CPU time :0.002041 s S SATISFIABLE S SQL ot UUT SAT 1	I Eliminated cla	uses: 0.00 Mb	
Conflicts ORIGINAL LEARNT Progress Vars Clauses Literals Limit Clauses Lit/Cl restarts : 1 (auses Lit/Cl conflicts : 0 (0 /sec) decisions : 1 (0.00 % random) (490 /sec) propagations : 1 (040 /sec) conflict Literals : 0 (nan % deleted) Memory used : 0.16 MB CPU time : 0.002041 s SATISFIABLE SIgnot OUT SAT 1 -2 -3 0	Simplification	time: 0.00 s	1
Conflicts ORIGINAL LEARNT Progress Vars Clauses Literals Limit Clauses Lit/Cl restarts : 1 (auses Lit/Cl conflicts : 0 (0 /sec) decisions : 1 (0.00 % random) (490 /sec) propagations : 1 (040 /sec) conflict Literals : 0 (nan % deleted) Memory used : 0.16 MB CPU time : 0.002041 s SATISFIABLE SIgnot OUT SAT 1 -2 -3 0			
conflicts :0 (0 /sec) decisions :1 (0 00 % random) (490 /sec) propagations :1 (490 /sec) conflict literals :0 (nan % deleted) Memory used :0.16 MB (PU time CPU time :0.002041 s S SATISFIABLE S SAT SAT 1 -2 -3 0 S		UKIGINAL LEAKNI Vars Clauses Literals Limit Clause	es Lit/Cl
decisions : 1 (0.00 % random) (490 /sec) propagations : 1 (90 /sec) conflict literals : 0 (nan % deleted) Memory used : 0.16 MB CPU time : 0.002041 s SATISFIABLE SMT 1 -Z -3 0	restarts	: 1	
propagations : 1 (490 /sec) conflict literls : 0 (nan % deleted) Memory used : 0.16 MB CPU time : 0.002041 s SATISFIABLE S[cot OUT SAT 1 -2 -3 0			
CPU time : 0.002041 s SATISFIABLE S cot OUT SAT 1 -2 -3 0	decisions	: 1 (0.00 % random) (49	90 /sec)
CPU time : 0.002041 s SATISFIABLE S cot OUT SAT 1 -2 -3 0	propagations	: 1 (490 /sec)	
CPU time : 0.002041 s SATISFIABLE S[cot OUT SAT 1 -2 -3 0	conflict literals	: 0 (nan % deleted)	
CPU time : 0.002041 s SATISFIABLE S cot OUT SAT 1 -2 -3 0	Memory used	: 0.16 MB	
S∎Cot OUT SAT 1 -2 -3 0	CPU time	: 0.002041 s	
SĀT 1 -2 -3 θ	SATISFIABLE		
SĀT 1 -2 -3 0	_		
1 -2 -3 0	\$ cat OUT		
. DI-UM) PL & SAT MFES 2021/22	1 -2 -3 0		
, DI-UM) PL & SAT MFES 2021/22			
, DI-UM) PL & SAT MFES 2021/22			
	, DI-UM)	PL & SAT	MFES 2021/22

DIMACS CNF format

Example

 $A_1 \wedge (A_1 \vee P) \wedge (\neg A_1 \vee \neg P \vee A_2) \wedge (A_1 \vee \neg A_2)$

- We have 3 variables and 4 clauses.
- CNF file:

p cnf 3 4 1 0 1 3 0 -1 -3 2 0 1 -2 0

Maria João Frade (HASLab, DI-UM)

MFES 2021/22 66 / 78

SAT solvers API

• Several SAT solvers have API's for different programming languages that allow an incremental use of the solver.

PL & SAT

• For instance, PySAT³ is a Python toolkit which provides a simple and unified interface to a number of state-of-art SAT solvers, enabling to prototype with SAT oracles in Python while exploiting incrementally the power of the original low-level implementations of modern SAT solvers.

SAT example: Equivalence checking of if-then-else chains

Equivalence checking of if-then-else chains

Original C code

if(!a && !b) h(); else if(!a) g(); else f(); if(a) f(); else if(b) g(); else h();

Optimized C code

Are these two programs equivalent?

- **(** Model the variables a and b and the procedures that are called using the Boolean variables a, b, f, g, and h.
- ② Compile if-then-else chains into boolean formulae

compile(if x then y else z) $\equiv (x \land y) \lor (\neg x \land z)$

One Check the validity of the following formula

 $compile(original) \leftrightarrow compile(optimized)$

PL & SAT

by reformulating it as a SAT problem.

Maria João Frade (HASLab, DI-UM)

MFES 2021/22 75 / 78

SAT example: Schedule a meeting

Using the PySAT toolkit.

```
from pysat.solvers import Minisat22
s = Minisat22()
workdays = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri']
x = \{\}
c = 1
for d in workdays:
    x[d] = c
    c += 1
s.add_clause([-x['Fri']])
s.add_clause([x['Mon'], x['Wed'], x['Thu']])
s.add clause([-x['Tue']])
s.add_clause([-x['Thu']])
if s.solve():
    m = s.get_model()
    print(m)
    for w in workdays:
        if m[x[w]-1]>0:
            print("The meeting can take place on %s." % w)
else:
    print("The meeting cannot take place.")
s.delete()
```

PL & SAT

Change the code to print all possible solutions to the problem.

Maria João Frade (HASLab, DI-UM)

MFES 2021/22 74 / 78

SAT example: Graph coloring

Graph coloring

Can one assign one of K colors to each of the vertices of graph G=(V,E) such that adjacent vertices are assigned different colors?

- Create $|V| \times K$ variables:
 - $x_{ij} = 1$ iff vertex *i* is assigned color *j*;
 - $x_{ij} = 0$ otherwise.
- For each edge (u, v), require different assigned colors to u and v:

for each $1 \le j \le K$, $(x_{uj} \to \neg x_{vj})$

```
• ...
```

Maria João Frade (HASLab, DI-UM)

