Português (Portugal) → Inglês ∨

Informatics for Musicology (IPM) 2024/25

Jupyter Notebooks

Teacher: JN Oliveira

Department of IT at U. Minho, in collaboration with

Class of 29-Oct:

1st part - The measure as an infinite sequence and the flexibility of this approach. Introduction to musical sampling analysis. 'Sampling' and its role in 'computer-aided musicology'. The 'sample' operator from the Ipm.hs library. Illustration with several examples. Case study: analysis of the theme of the Abegg Variations (op. 1) by R. Schumann (1810–1856).

2nd part - **Presentation of the 1st practical work**: allocation of work in the collaborative edition on Wiki::score of the opera Demetrio a Rodi by Gaetano Pugnani (1731-1798).

Important: run without moving the next cells.

```
In [ ]:
    : opt no - lint
    : m Data . Char
    : m Date . List
    : m Date . List . Split
    : m Data . Ratio
```

Modules developed for the discipline:

1 of 10 05/12/2024, 09:28

```
In []:
    : l ../ src / Cp . hs
    : l ../ src / Reducer . hs
    : l ../ src / Ipm . hs
    : l ../ src / Abc . hs

Data ("case studies"):

In []:
    : l ../ src / CS . hs
```

Back to bars

Let's return to this topic, starting by doing the following exercise:

7.1 - Evaluate the following cells - what was the difference?

```
In []: abcPlayM "C" "4/4" carnaval_serrano

In []: abcPlay "C" "4/4" quatern carnaval_serrano
```

7.2 - Anticipate the result of the next cell - what's the difference?

```
In []: abcPlay "C" "4/4" (1 % 2 : quatern ) carnaval_serrano
```

About abcplease , abcPlayM and abcPlay :

Designation Mear	ning	Detailed description
abcplease show sh music	eet abcplease m shows the score of m	¹ without key signature or time signature, nor barlines

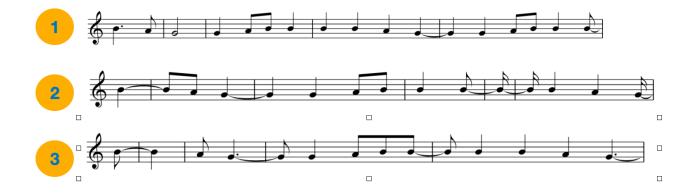
2 of 10 05/12/2024, 09:28

Designation	Meaning	Detailed description
abcPlayM	show sheet music	abcPlay K C $^{\rm m}$ - shows the score $^{\rm m}$ with key signature $^{\rm K}$, $^{\rm C}$ time signature and barlines ($^{\rm regular}$) deducted from $^{\rm C}$
abcPlay	show sheet music	abcPlay K C c $^{\rm m}$ - shows the score $^{\rm m}$ with key signature K $_{\rm c}$ C time signature and barlines (possibly irregular $_{\rm l}$ according to $^{\rm C}$

Measures - The following measures are predefined:

Designation	Meaning	Detailed description
una	unary	barlines every 1 quarter note ($\{14\}$)
bin	binary	barlines every 2 quarter notes ($\{\frac{2}{4}\}$)
tern	ternary	barlines every 3 quarter notes ($\{\frac{3}{4}\}$)
quatern	quaternary	barlines for each semibreve ($\$1\$$) 1)

7.3 - Indicate which expression of the following


(the) abcPlay "C" "none" [1%8,1%4,1%2,3%4,5%4] carnaval_serrano

(b) abcPlay "C" "none" [1%4,2%4,3%4,3%8,1%16,5%8] carnaval_serrano


(w) abcPlay "C" "none" [1%2,2%4,3%4,4%4,9%8] carnaval_serrano

produces that pentagram of the figure:

3 of 10 05/12/2024, 09:28

Check your answers in the cells below.

7.4 - The following cell records an occurrence of the recurring *Promenade theme in Pictures at an Exhibition*, by Modeste Mussorgsky (1839-1881):

```
promenade = [("F", 1 % 4),("E", 1 % 4),("A", 1 % 4),("B", 1 % 8),("e", 1 % 8),(" ("B", 1 % 8),("e", 1 % 8),("c", 1 % 4),("A", 1 % 4),("B", 1 % 4),("F", 1 % ("E", 1 % 4)]
```

Show it in sheet music knowing that the first measure is \$\frac 5 4\$ and the second is \$\frac 6 4\$: $\frac{5}{4}$ and the second is $\frac{6}{4}$:

```
In [ ]:
```

7.5 - What are bin , , tern , after all quatern ? Evaluate the expressions in the following cells and draw conclusions:`

4 of 10 05/12/2024, 09:28

```
In [ ]:
         get 10 bin
In [ ]:
         take 10 tern
In [ ]:
         get 1000 quatern
        7.6 - Evaluate the expressions contained in the following cell:`
In [ ]:
         tern = 3 \% 4 : tern
         take 20 tern
        That is: tern it is the sequence that starts with 3%4 and then is equal to itself:
         • tern = 3%4 : tern
          • tern = 3%4 : (3%4 : tern)
          • tern = 3\%4 : (3\%4 : tern)
       It's an infinite sequence...
        7.7 - Define bin and quatern in an identical way to tern :
In [ ]:
         bin = undefined
         quatern = undefined
         take 20 bin
         take 50 quatern
```

5 of 10 05/12/2024, 09:28

7.8 - What if we had mistaken ourselves and defined ourselves...

```
In []: bin = 1 % 2 : bin take 20 bin
```

Interpret the result.

Repetitive Patterns (Conclusion)

We already see that knowing how to generate (infinite) sequences that follow a given pattern is very useful. Let's practice a little more on how to define them.

7.9 - We want a repetitive sequence s that starts with 1, then 3, then 0 and so on. Complete your definition and observe its first 10 elements:

```
In []: s = undefined take 1000 s
```

7.10 - Now more complicated: s must start with 1, 3, \emptyset and then continue as r; and r it should start with $1\emptyset$, 24 and continue with s, etc, etc:

```
In []:
    s = undefined
    r = undefined
    --
    take 1000 s
```

7.11 - Finally, anticipate the result of the next cell, before executing it: what sequence is it s?

```
In []: s = 1 : map (2 + ) s
--
take 10 s
```

6 of 10 05/12/2024, 09:28