Calculo
de
Programas

Class TO1 — 19-Sep

Introduction to the course.
Website:

Other administrative details.

https://haslab.github.io/CP

J.N. Oliveira

Programming
by
Calculation

Program versus Calculus

Calculus — abacus pebble
Program — pro (‘before’)
+ graphein (‘write')

Programs...

Calculus

\m To= 29T _i

(ko) kez,

-vsz) —max, f (J‘

o 43"11“: 1/:2:-(s Sin
sk o

‘/-“1‘

L ycastd=d sinfles
= sind |
Casd) 8- 4

=L [sinx-a (=
&'mb(’ x:(./;fusma ‘
b= L P T x|
a7
s & '
2> f3 1
2L

:-'aULk —¢1£L) EcZ;

& _ f-cosd
v

cosidk _ 1 cos
a4 2 2
B)=cos o cos B+ cinel <in A

#define 0(b,f,u,s,c,a)b(){int o=f();switch(xp++){X u:_ o s bl
#define t(e,d,_,C)X e:f=fopen(B+d,_);C;fclose(f) i
#define U(y,z)while(p=Q(s,y))*p++=z,*p=" "
#define N for(i=0;i<11*R;i++)m[i]&& ==
#define I "%d %s\n",i,m[il] =
#define X ;break;case

#define _ return

#define R 999

typedef charxA;intxC,E[R],L[R],M[R],P[R],,1,j;char B[R],FI
(),p,q9,%x,Y,2,s,d,f,fopen();A Q(s,0)A s,0;{for(x=s;*x;x++){for
*Z;y++) z++; 1T (z>08&!*2z) _ x;}_ 03 main(){m[11xR]="E";while(p
)switch(*B){X'R':C=E;1=1; for(i=0;i<R;P[i++]=0);while(1){while
(!Q(S,II\"")){U("<>"' I#I);U(II<=II' I$I);U(II>=II' 1 !I);}d=B;Whi'Le(*

++; 1T(F&L]] 1Q(" \t",F))*d++=xs; s++; bxd——=3j=0; i F (B[1] I="=") 5w
X'R'":B[2] '="M'&&(1=%—C)X'I"':B[1]=="N"'?gets(p=B),P[xd]=S(): (*
=B+2,S()&&(p=q+4,1=S()-1))X'P':B[5]=="""7?%d=0,puts (B+6) : (p=B+

()))X'G'":p=B+4.B[2]=="S"'&&(*kC++=1,p++) ,1=S()-1 X'F':x(a=0(B."

NNRPRPRRRRPRRRRE
POOVWONOURNRWNROOOONO!

#define 0(b,f,u,s,c,a)b(){int o=f();switch(kp++){X u:_ o s b(
#define t(e,d,_,C)X e:f=fopen(B+d,_);C;f f) '
#define U(y,z)while(p=Q(s,y))*p++=z
#define N for(i=0;i<11xR;i++)m[i] =
#define I "%d %s\n",1i,m[i]
#define X ;break;case

#define _ return

#define R 999

typedef charxA;intxC,E[R],L[R
0),p,a,x,y,2,s,d,f, fopen() ;A
*Z;y++) z++; 17 (z>08&!%2) _ X;}_
)switch(xB){X'R":C=E;1=1; for(i=
(!Q(S,"\"")){U("<>", I#I);U(||<=||'
++; 1T (F&L] 1 1Q(" \t",F))*xd++=%s; s++;
X'R'":B[2] '="M'&&(1=¢—C)X'I':B[1]=="N""
=B+2,S()&&(p=q+4,1=S()-1))X'P':B[5]=="""7?%d=0,puts(B+6) : (p=B+
()))X'G':p=B+4,B[2]=="S"'&&(*C++=1,p++),1=S()-1 X'F':%(g=0(B,"

Software as a problem

4
Process — .

D\
Product — \./

Software (<

(...) The best services revolve
around a small number of
concepts that are well
designed and easy (...) to
understand and use, and
their innovations often involve
simple but compelling new
concepts.”

In

by
Prof. Daniel Jackson, MIT
(2021)

. small number

. small number
. well defined

. small number
. well defined
. easy to understand

Urgently needed in software design

John Backus — Turing Award (1978)

Can Programming Be Liberated from the von
Neumann Style? A Functional Style and Its

Algebra of Programs

John Backus
IBM Research Laboratory, San Jose

Conventional programming languages are growing
ever more enormous, but not stronger. Inherent defects
at the most basic level cause them to be both fat and
weak: their primitive word-at-a-time style of program-
ming inherited from their common ancestor—the von
Neumann computer, their close coupling of semantics to
state transitions, their division of programming into a
world of expressions and a world of statements, their
inability to effectively use powerful combining forms for
building new programs from existing ones, and their lack
of useful mathematical properties for reasoning about
programs.

http://wwwusers.di.uniroma1.it/~lpara/LETTURE/backus.pdf

Functional
Programming

FP = $%5...

« > O B https:/Jifipwe B 1% % Yy © 9

C €§3 2/ [Jino £+ Most Visited () Pessoas {7 jno > [other Bookmarks

Jose Pedro Magalhaes, Functional Programming in Financial Markets
(Wednesday, April 3 2024, 11:38 -- Thursday, April 4 2024, 9:44)

We present a case-study of using functional programming
in the real world at a very large scale. At a large global
financial institution, Haskell is used in a core software
library supporting a business line with 5 billion USD
operating income in 2023. Typed functional programming
is used across the entire tech stack, including foundational
APIs and CLlIs for deal valuation and risk analysis, server-
side components for long-running batches or sub-second

http://dreixel.net/research/pdf/fpfm_pres_ifl23.pdf

Part |

Motivation — back to the late 1990s

From a mobile phone manufacturer

(...) For each stored in the mobile
phone (e.g. numbers dialled, SMS messages, lost
calls), the store operation should work in a way
such that (a) the more recently a is made the
more accessible it is; (b) no number appears twice
in a list; (c) only the last 10 entries in each list are
stored.

From a mobile phone manufacturer

store :: Call => [Calll => [Calll
store ¢ | = take 10 (nub (c:1))

From a mobile phone manufacturer

store :: Call => [Calll => [Call]
store ¢ | = take 10 (nub (c:1))

—_—— —~— ——
©) (b) ©)

Compare with ...

public void storelO(string phoneNumber)
{
System.Collections.ArraylList auxList =
new System.Collections.ArrayList(Q);
auxList.Add (phoneNumber) ;
auxList.AddRange (
this.filteratmost9(phoneNumber));
this.callList = auxList;

+ filteratmost9 (next slide)

Compare with ...

public System.Collections.ArrayList filteratmost9(string n)
{
System.Collections.ArraylList retlList =
new System.Collections.ArraylList();
int i=0, m=0;
while((i < this.callList.Count) && (m < 9))
{

if ((string)this.callList[i] != n)
{
retList.Add(this.calllList[i]);
m++;
}
i++;

’

}
return retlList;

}

From a mobile phone manufacturer

store ¢ ::[Calll -> [Call]

A

take 10

A

(c:)

A

nub

From a mobile phone manufacturer

store c

::[Call] -> [Call]

A

take 10

A

nub

A

(c:)

[Call]

[Call]

[Call]

[Call]

Uups!

Bool (1)

Bool (!)

A

take 10

A

not

A

(c:)

[Call]

[Call]

[Call]

[Call]

In general
y = f(gth x))

In general

y = f(g x)

A
(OS]

Simplification

Check the pictures...

@ THIS WAY ‘

THAT WAY s

04 =(23)

Arrows

(" rs philips

(_Edward Gardiner }—married to—_Mrs M. Gardiner

Mrs Bennet

£
o —parents of*
E
o
£
Mr Bennet

cousin of

siblings of

Mary Bennet

Relationships
Between Characters
in Jane Austen's
Pride and Prejudice

George Wickham

early eloped with-

-attracted tor

alls in love with

Bennet
tracted t

Georgiana Darcy

prother and guardian of-

cousin and

Fitzwilliam Darcy guardian of

sisters
heth Bennet
riend of-

Charles Bingley

confidante of

proposes to

Jane Bennet

William Collins

benefactor of

L rT Colonel Fitzwilliam
/ cousin of
intended for

attracted to

aunt of

Lady Catherine de Bourgh

More arrows...

i Qutput
Information Input Transmitter [—s| Channel |—| Receiver f— ?
Source Transducer Transducer
Sound picture speech Information in T Infermation in
data etc. electrical form Noise original form
Person Address
Name Street
Phone Number 0.1 lives at 1 City
Email Address State
Postal Code
Purchase Parking Pass Country
Validate
Output As Label
Student Professor
Student Number Salary

Average Mark

Get Seminars Taken

Composition

A

A

B

C

B

A

Cf. Unix/Linux pipes

A

Composition

Composition

Composition

Composition

store ¢ = take 10 - nub - (c:)
———

store’

Composition

store ¢ = take 10 - nub - (c:)
———

store’

take 10 - (nub - (c:)

Composition

store ¢ = take 10 - nub - (c:)
———

store’!
take 10 - (nub - (c:)
the same as

take 10 - nub) - (c:)

Composition

Composition

(f-g)-h=1f(g-h)
(24+b)+c = a+(b+)

a+0=0+a=a2a

Composition

id

id

Identity

m

Identity

m

m

Identity

m

Identity

m

<

S

" —

N\

m

Identity

Composition and identity

Associativity:

(f-g)-h=1-(g-h)

Composition and identity

Associativity:

(f-g)-h=~F-(gh)
“ Natural-id":

fxg?

fxg?
f+g7?

and

— I and

Composition:

What about

D
A

B
C

Try D=A ...

R

Try D=A ...

Cartesian product

Bx C={(bc)|beBAcEC)

Cartesian product

Bx C={(bc)|beBAcEC)

faekb

Cartesian product

Bx C={(bc)|beBAcEC)

faeb
gael

Cartesian product

Bx C={(bc)|beBAcEC)

faeb
gael
(f a,ga)e B xC

“Split"

Product

Ax B={(sb)]|a€ANbeB)

Product

Ax B={(sb)]|a€ANbeB)

T AX B —=A
71 (2,b) = 2

Product

Ax B={(sb)]|a€ANbeB)

mAXB—A T AX B —B
T (2, 0) =2 mp (a,0) = b

Product

B

m

B x -2

(f.8) &

C

Product

Product

Product

(f.g)

Product

f and g in
f “split” g

(f.g)

Product

(f.g)

f and g in
f “split” g
<f7g> — (f 8)

Calculo
de
Programas

Class T02 — 26-Sep

Product

Product

Product

U

B x C

72

m

Product

\. .

B x C

U

72

M

Product

f

A

U

.ng.7/

B x C

72

M

©

Ny

72

)

N

72

D x E
f
1,8
|
B x C

1

\.

m

Product

Product

_
Dt pDxE—"2.F
t
f <f'7Tl)g'7T2> g
|
B B x C C

1 72

Product

T T
D—2> DxE—2+F
t
f \fXg g
|
B Bx C—e C

fxg=(f m,g m)

Summing up

Summing up

f-g Sequential composition

Summing up

Sequential composition

7~ TN

Summing up

Sequential composition

7~ TN

g
f,g) Parallel composition

Summing up

Sequential composition

7~ TN

14
f,g) Parallel composition (synchronous)

Summing up

Sequential composition
Parallel composition (synchronous)

Summing up

Sequential composition

Parallel composition (synchronous)
Parallel composition

Summing up

Sequential composition
Parallel composition (synchronous)
Parallel composition (asynchronous)

Summing up

Sequential composition
Parallel composition (synchronous)
Parallel composition (asynchronous)

In pictures

(f-g)a="f(g2) (2.6)

Function composition

In pictures

(f.g) a=(f 2,8 2) (2.20)

Y
~~
-

Y
0
0

Functional “splits”

In pictures

fXg:<f'7T1,g-7TQ> (224)

Functional products

Sequential composition
Parallel composition (synchronous)
Parallel composition (asynchronous)

Problem

Retrieve the address of a civil servant, knowing that

she/he can be identified either by a citizen card
number (CC) or a fiscal number (NIF).

Problem

Retrieve the address of a civil servant, knowing that
she/he can be identified either by a citizen card
number (CC) or a fiscal number (NIF).

address : |den — Address
lden = CC U NIF

Problem!

CC =1
NIF =N

Problem!

CC =
NIF =

= CCUNIF=1NUN=

Problem!

CC =
NIF =

= CCUNIF=1NUN=

address : [\l — (M

In general

We need to fix:

m:AUDL —

In general

We need to fix:
m: AU D —
Let us start from

UB={alaeA}U{

Disjoint union

In need of something like...

{(La)[aeAyui(2h)][beb;

Disjoint union

In need of something like...

{(La)[aeAyui(2h)][beb;

.. we define:

+E=19) [ae U2 0) [be Y}

Disjoint union

Clearly,
+ b = {il ‘ € } U {ig ’ € }

once we define;

ha=(1,2)
I :(27)

Disjoint union
Types:

h:A— A+ B
h:B— A+ B

Disjoint union

Types:
il : — A+
h: B — A+
Now think of:

m: A+ b —

Disjoint union

Types:
il : — A+
h: B — A+
Now think of:

m: A+ b —

Disjoint union

Types:
il : — A+
h: B — A+
Now think of:

m: A+ b —

I

Disjoint union

Types:
il : — A+
h: B — A+
Now think of:

m: A+ b —

I

2

Disjoint union

Types:
n:A— A+
h: B — A+
Now think of:
m:A-+ Db —

I

2

Disjoint union

Types:
n:A— A+
h: B — A+
Now think of:
m:A-+ Db —

Compare...

I 2
+

|
\[flg]/

Compare...

Calculus?

-

72

X -Fusion

(f,g) h=(f hg-h (2.26)
By T
ol o/
Foh g-h

X -Absorption

(2.27)

Natural-7;, natural-m

7T1-(h><k) = h-7T1

7T2'(h><k):k'772

h‘ hxk

(2.28)

(2.29)

So far...

(f.g)
fxg

f, g

Sequential composition
Parallel composition
Product composition

Alternative composition

@

Functor-id- x

id % id = id (2.31)

Product of two identities is an identity.

X -Functor

(F < h)- (g x k)= (f-g) x (h-k) (2.30)

of products is a product of compositions.

X -Functor

(F x h)- (g x k)

X -Functor

(f-g) x(h-k)

Two basic laws still missing

x-Reflexion (11, M) = id (2.32)

Two basic laws still missing

x-Reflexion (m1,m2) = id (2.32)

x-Eq (i,j)=(fg) < { ; (2.64)

Before them, the most important...

Recall x-cancellation:

7TQ'<f7g>:g

g

m - k=Ff
7T2.k:

(f,g)

k:

g

m-k=f
o - k =

(f, g)

k:

g

m-k=f
o - k =

(f, g)

k:

x-Universal

m - k="*F
T k=g

kzﬁgy@{

x-Universal

7T1'k:f
7r2-k=g

k= (f,g) = {

“There exists a — k = (f, g) — for the equations
on the right”

x-Universal

“Such a solution, k = (f, g), is

Equations!

x=2V

_y
<=3

x+y+z=10

Equations!

+ I

W]

=10

Equations!

Solve the equation

<f,g> = id

for f and g.

Equations!

Calculation

In =<f,g><=>{

T k=g

Equations!

Calculation

In :<f,g><:>{ let k = id

Equations!

Calculation

o 7T1-k:f .
In k_<f7g><:>{7r2-k:g let k = id

e 7T]_‘I.d:f
Id—<f,g> g {7_(_2.1.ng

Equations!

7T1-k:f

let k = id
T k=g e I

In kz(f,g)@{
7T1=f
T =8

= (f,g) < {

Equations!

™ =

d = (f, &
id = (f,g) {ng

Equations!

™ =

id=(f,g) & {
™ =8

Substituting:

id = <7T1,7TQ>

Equations!

™ =

d = (f, &
id = (f,g) {ng

Substituting:
id = <7T1, 7T2>

x-Reflexion @

Problem

Solve the equation

(h k) = (f,g)

Problem

Solve the equation

(h k) = (f,g)

(1 equation, 4 unknowns)

Calculation

(h k) = (f,g)

Calculation

(h,k) = (f,g)
= { x-universal }

{7Tl'<h,k>:f
7T2'<h,k>:g

Calculation

(h k) = (f,g)

~ { x—universal}
{ 1 <h, k> =f
U <h7 k> — 8
~ { x—cancellation}

h=f
k=g

Calculation

(h,k) = (f,g)
= { x-universal }

{ 1 <h, k> =f
2 <h7 k> = &
~ { x—cancellation}

h=f
k=g

x-Eq |

@

<7T1,7T2> — id

<7T1,7T2> — id
<7T2,7T1>?

<7T1,7T2> — id <7T2,7T1>?

(2, m1)

<7T1,7T2> — id
<7T2,7T1>?

<7T1,7T2> — id <7T2,7T1>?

f
Nﬂz, 771%

<7T1,7T2> — id
<7T2,7T1>?

<7T1,7T2> — id <7T2,7Tl>?

1 2
-~ X - >
f
<7T27 7Tl>
/%) | 1

Problem

Solve

for k

<7T2,7T1> -k = id

Problem

Solve

for k

Calculation

<7T2,7Tl> -k =id

Calculation

<7T2,7Tl> -k =1id
~ { x-fusion }
<7T2'k,71'1-k>=id

Calculation

(o, m1) - k = id
~ { x-fusion }

(1o - k,m1 - k) = id
~ { X-universal }

7T2-k:7T1
7'('1'/(:7'('2

Calculation

(o, m1) - k = id
~ { x-fusion }

(1o - k,m1 - k) = id
~ { X-universal }

7T2-k:7T1
7T]_'k:7T2

{ trivial }

7Tl'k=7T2
7Tg'k=7'('1

Calculation

<7T2,7Tl> -k =id

~ { x-fusion }
<7T2 : k,7T1 : k> = id
S { X-universal }

7T2-k:7T1
7T]_'k:7T2

=

{ trivial }
VI k = T
o - = 1

{ x—universal}

k = <7T2,7T1>

Swap

(mo,m1)
Ax B Bx A

(m2,m1)

swap = (T2, 1)

Swap

swap = (T2, 1)

swap - swap = id

So far

f-g Sequential composition

So far

f-g Sequential composition
(f,g) Parallel composition

So far

f-g
(f.g)

Associativity

Sequential composition
Parallel composition

(fg) h=F (g h)

So far

f-g Sequential composition
(f,g) Parallel composition

Associativity

(Fg)-h=r-(g-h

Associativity?

((f,g),h) — (f, (g h))

So far

f-g Sequential composition
(f,g) Parallel composition

Associativity

(Fg)-h=r-(g-h

Associativity?

((f,g),h) — (f, (g h))
but...

((f,&),h)

((f. &) h)

((f. &) h)

1

7]

- _>_><

N

72

((f. &) h)

((f. &) h)

((f. &) h)

X <fl(XT)X 2,
((f.&),h)
<% f /

(f, (g, h))

(f, (g, h))

1

|

72

BN

(f, (g, h))

(f, (g, h))

(f, (g, h))

S X(TX)712» X
(f, (g, h)
\ f Af(ﬂ

((f. &) h)

X <fl(XT)X 2,
((f,&),h)
<% f /

k - <<f,g>,h>

(f, (g,)

Solve ((f,g), h) = id

((f.g), h) =id

d
<<f’g>’fu>n;; |
) {= (f,g)

o
i 7'('1{- m=f

2°T1 =8
T
Ty =

Substitute solutions

7T1'7T1:f
Tp-T1 — 8
7T2:h

Substitute solutions

7Tl'7T1:f
Tp-T1 — 8
7'('2:/7

k-((f.g) h) =(f (g h)
id @

Substitute solutions

7T1'7T1:f
Tp-T1 = 8
7T2:h

k = (m -7y, (Mo - 1, T2))

Slight improvement...

k = <7T1 © T, <772 ’ 77177T2>>

Slight improvement...

k = <7T1 © T, <772 ’ 77137T2>>
e {7T2:id'7T2 }
k = (my - m, (mo -7y, id - 2))

Slight improvement...

k = (my - my, (mp - W1, 7))
& {m-idm }

k = (my - my, (mp -y, id - o))
& {frg=tfmegm }

k = (- m,m X id)

Analogy

In an context, find k such that
kt(x—y)=x+2

holds for any x and

Further assume that you don’t know property:
+b=c&a=c—

How can you find k?

Analogy

Try to cancel x — vy, ie. solve x — v =0 for
You get © =
Substitute

kt+(v—v)=v+2

You get k = v + 2.

(mq-m1,mxid)

Back to

(mq-m1,mxid)

(my-my,mox id)

(idxmy,mpm2)

assocr

(A x B) x

assocl

assocr = (my - w1, ™ X id)
assocl = (id x 1,7 -)

assocr

e ANexq
_/

assocl

assocr - assocl = id

assocr

assocl

assocr - assocl

assocl - assocr

= id
= id

Isomorphism

assocr

assocl

assocr - assocl

assocl - assocr

= id
= id

Isomorphism

swap

T
Ax B BxA

_/

swap

12

swap - swap = id

Isomorphism

/;\
\g_/

f-g=id
g-f=id

Isomorphism

Jso, (to0)

the same

Isomorphism

Lo, (o) + - (noporopio()

the same shape

Practical problem!

Practical problem!

pdf2jpg

Jpg2pdf - pdfZjpg # id
pdf2jpg - jpg2pdf # id

Calculo
de
Programas

Class T03

Format conversion

Need
A

Format conversion

Need Reusable

Format conversion

Need Reusable

export

>
=

Format conversion

Need Reusable

export

\

A

import

Format conversion

Need Reusable

export

\

A

import

f = import - r - export

Format conversion

Need

export

Reusable

>
=

\.\
112

(=)

A

import

f = import - r - export

By the way — swap

swap

:

swap

Isomorphisms are computations

By the way — swap

swap

By the way — swap

swap

swap is a basic gate in quantum programming,

By the way — swap

fffffffffff

,,,,,,,,,,,

What about alternation [f, g]?...

[f,gl:A+B—C

B x=ha="fa
el = s gt

Recall...

I 2

|
\[flg]/

Compare...

+-Universal

k-h=f

e=lrg = {27!

+-Universal

) koi=f
e=lrg = {27!

Compare with

k=<f,g><:>{7”'kf

M- k=g

From [f g]to f + g

f, gl:
f, gl

l

%

{

=

= f
= 8

Sum of two functions

Sum of two functions

Sum of two functions

Sum of two functions

S
m

Sum of two functions

Sum of two functions

pD—Y +pyrEFE—2
|
f \erg g
}
B—+B+C~———2C
I I

Coproduct laws

“Just reverse the arrows”, cf.

+- [h, k] - (f +g)=1[h-f, k- g] (2.43)

Coproduct laws

“Just reverse the arrows”, cf.
+- hkl - (f+g)=1[h-f, k- g] (2.43)

1 fo[h k| =1[f h f K (2.42)

Coproduct laws

“Just reverse the arrows”, cf.
+- hkl - (f+g)=1[h-f, k- g] (2.43)
+- f-lh kl=1[f hf-K| (2.42)

+- [iv, o] = id (2.41)

Coproduct laws

+ K] = [g] & { I/:; (2.66)

Coproduct laws

h=f

- hi=lrge)~ @

- (h+k) - (F+g)=h-f+k-g (2.44)

Coproduct laws

+ K] = [g] & { //:; (2.66)
+- (h+k) - (F+g)=h-f+k-g (2.44)
+- id id 1+ id = id (2.45)

and so on

All these laws can be found in the reference sheet

(WWW — Material)

https://haslab.github.io/CP/Material/cpCalFun.pdf

Summary

f-g Sequential composition
(f,g) Parallel composition
fxg

Product composition

Summary

f-g
(f.g)
fxg

I, g

Sequential composition
Parallel composition
Product composition

Alternative composition

Summary

f g Sequential composition
(f,g) Parallel composition
fxg Product composition

If, gl Alternative composition
f+g Structural alternation (coproduct)

Summary

f g Sequential composition
(f,g) Parallel composition
fxg Product composition
If, g] Alternative composition
f+g Structural alternation (coproduct)

@

TBC...

