
Julien Brunel, David Chemouil, Alcino Cunha, Eunsuk Kang, Nuno Macedo

formal software design with alloy and electrum
methodology and tips

Universidade do Minho & INESC TEC

ONERA DTIS & Université fédérale de Toulouse

Carnegie Mellon University

3rd World Congress on Formal Methods, Porto, Portugal, October 2019

the european rail traffic management system hl3

formal software design with alloy and electrum/ the european rail traffic management system hl3 3 / 53

basic idea

aim: validate an railway tra�c management system concept
combines trackside and train reports for finer management
specification provided, backed by operational scenarios

Challenges

alternative track configurations
under-specified behavior
continuous aspects

formal software design with alloy and electrum/ the european rail traffic management system hl3 4 / 53

hybrid ertms/etcs level 3

occupancy of trackside sections determined by safe sensors (may have delays)
occupancy of virtual sub-sections determined by train reports (communication may
fail, integrity may be lost)

Hybrid ERTMS/ETCS Level 3 - Principles

formal software design with alloy and electrum/ the european rail traffic management system hl3 5 / 53

hl3 – environment

train state and reporting (PTD)
trackside sensor information (TTD)
management authority (MA) assignment sub-system
VSS management encoded as a state machine
MA assignment and train reaction to it outside scope

ertms hl3 in electrum

formal software design with alloy and electrum/ ertms hl3 in electrum 7 / 53

methodology and tips

modeling
I how to develop large models?

• develop incrementally
I how to model an (underspecified) environment?

• combine explicit events with declarative temporal specifications
I how to handle continuous aspects?

• sweet spot abstractions

validation
I how to generate interesting scenarios?

• use the simulator to guide exploration
• encode specific operational scenarios a la unit tests

I how to understand scenarios?
• enrich the model with visualization-specific entities
• define suitable visualization themes

specification and verification
I how to detect and deal with spurious counter-examples?

• refine environment assumptions as needed

formal software design with alloy and electrum/ ertms hl3 in electrum 8 / 53

methodology and tips

modeling
I how to develop large models?

• develop incrementally
I how to model an (underspecified) environment?

• combine explicit events with declarative temporal specifications
I how to handle continuous aspects?

• sweet spot abstractions

validation
I how to generate interesting scenarios?

• use the simulator to guide exploration
• encode specific operational scenarios a la unit tests

I how to understand scenarios?
• enrich the model with visualization-specific entities
• define suitable visualization themes

specification and verification
I how to detect and deal with spurious counter-examples?

• refine environment assumptions as needed

formal software design with alloy and electrum/ ertms hl3 in electrum 9 / 53

modeling: develop incrementally

formal software design with alloy and electrum/ ertms hl3 in electrum 10 / 53

modeling: develop incrementally

open util/ordering[TTD] as D
open util/ordering[VSS] as V

sig VSS {}
sig TTD {
start : one VSS,
end : one VSS

} { end.gte[start] }

formal software design with alloy and electrum/ ertms hl3 in electrum 11 / 53

modeling: develop incrementally

open util/ordering[TTD] as D
open util/ordering[VSS] as V

sig VSS {}
sig TTD {
start : one VSS,
end : one VSS

} { end.gte[start] }

run {} for 2 TTD, 4 VSS

formal software design with alloy and electrum/ ertms hl3 in electrum 12 / 53

modeling: develop incrementally

open util/ordering[TTD] as D
open util/ordering[VSS] as V

sig VSS {}
sig TTD {
start : one VSS,
end : one VSS

} { end.gte[start] }

fact trackSections {
all ttd:TTD-D/last | ttd.end.V/next = (ttd.D/next).start
D/first.start = V/first and D/last.end= V/last }

run {} for 2 TTD, 4 VSS

formal software design with alloy and electrum/ ertms hl3 in electrum 13 / 53

methodology and tips

modeling
I how to develop large models?

• develop incrementally
I how to model an (underspecified) environment?

• combine explicit events with declarative temporal specifications
I how to handle continuous aspects?

• sweet spot abstractions

validation
I how to generate interesting scenarios?

• use the simulator to guide exploration
• encode specific operational scenarios a la unit tests

I how to understand scenarios?
• enrich the model with visualization-specific entities
• define suitable visualization themes

specification and verification
I how to detect and deal with spurious counter-examples?

• refine environment assumptions as needed

formal software design with alloy and electrum/ ertms hl3 in electrum 14 / 53

validation: visualization-specific entities

open util/ordering[TTD] as D
open util/ordering[VSS] as V

sig VSS {}
sig TTD {
start : one VSS,
end : one VSS

} { end.gte[start] }

fact trackSections {
all ttd:TTD-D/last | ttd.end.V/next = (ttd.D/next).start
D/first.start = V/first and D/last.end= V/last }

fun _VSSs : TTD -> VSS {
{ t:TTD, v: t.start.*V/next & t.end.*(~V/next) } }

run {} for 2 TTD, 4 VSS

formal software design with alloy and electrum/ ertms hl3 in electrum 15 / 53

validation: theme customization

open util/ordering[TTD] as D
open util/ordering[VSS] as V

sig VSS {}
sig TTD {
start : one VSS,
end : one VSS

} { end.gte[start] }

fact trackSections {
all ttd:TTD-D/last | ttd.end.V/next = (ttd.D/next).start
D/first.start = V/first and D/last.end= V/last }

fun _VSSs : TTD -> VSS {
{ t:TTD, v: t.start.*V/next & t.end.*(~V/next) } }

run {} for 2 TTD, 4 VSS

alternative config?

formal software design with alloy and electrum/ ertms hl3 in electrum 16 / 53

validation: theme customization

open util/ordering[TTD] as D
open util/ordering[VSS] as V

sig VSS {}
sig TTD {
start : one VSS,
end : one VSS

} { end.gte[start] }

fact trackSections {
all ttd:TTD-D/last | ttd.end.V/next = (ttd.D/next).start
D/first.start = V/first and D/last.end= V/last }

fun _VSSs : TTD -> VSS {
{ t:TTD, v: t.start.*V/next & t.end.*(~V/next) } }

run {} for 2 TTD, 4 VSS

alternative config?

formal software design with alloy and electrum/ ertms hl3 in electrum 17 / 53

validation: theme customization

open util/ordering[TTD] as D
open util/ordering[VSS] as V

sig VSS {}
sig TTD {
start : one VSS,
end : one VSS

} { end.gte[start] }

fact trackSections {
all ttd:TTD-D/last | ttd.end.V/next = (ttd.D/next).start
D/first.start = V/first and D/last.end= V/last }

fun _VSSs : TTD -> VSS {
{ t:TTD, v: t.start.*V/next & t.end.*(~V/next) } }

run {} for 2 TTD, 4 VSS

alternative config?

formal software design with alloy and electrum/ ertms hl3 in electrum 18 / 53

validation: theme customization

open util/ordering[TTD] as D
open util/ordering[VSS] as V

sig VSS {}
sig TTD {
start : one VSS,
end : one VSS

} { end.gte[start] }

fact trackSections {
all ttd:TTD-D/last | ttd.end.V/next = (ttd.D/next).start
D/first.start = V/first and D/last.end= V/last }

fun _VSSs : TTD -> VSS {
{ t:TTD, v: t.start.*V/next & t.end.*(~V/next) } }

run {} for 2 TTD, 4 VSS

alternative config?

formal software design with alloy and electrum/ ertms hl3 in electrum 19 / 53

methodology and tips

modeling
I how to develop large models?

• develop incrementally
I how to model an (underspecified) environment?

• combine explicit events with declarative temporal specifications
I how to handle continuous aspects?

• sweet spot abstractions

validation
I how to generate interesting scenarios?

• use the simulator to guide exploration
• encode specific operational scenarios a la unit tests

I how to understand scenarios?
• enrich the model with visualization-specific entities
• define suitable visualization themes

specification and verification
I how to detect and deal with spurious counter-examples?

• refine environment assumptions as needed

formal software design with alloy and electrum/ ertms hl3 in electrum 20 / 53

modeling: combine event with declarative constraints

var sig Reports in TTD {}

fact TTDReports {
always all t:TTD |

t not in Reports implies t in Reports'
}

run {eventually some Reports} for 2 TTD, 4 VSS

formal software design with alloy and electrum/ ertms hl3 in electrum 21 / 53

methodology and tips

modeling
I how to develop large models?

• develop incrementally
I how to model an (underspecified) environment?

• combine explicit events with declarative temporal specifications
I how to handle continuous aspects?

• sweet spot abstractions

validation
I how to generate interesting scenarios?

• use the simulator to guide exploration
• encode specific operational scenarios a la unit tests

I how to understand scenarios?
• enrich the model with visualization-specific entities
• define suitable visualization themes

specification and verification
I how to detect and deal with spurious counter-examples?

• refine environment assumptions as needed

formal software design with alloy and electrum/ ertms hl3 in electrum 22 / 53

validation: guided exploration

formal software design with alloy and electrum/ ertms hl3 in electrum 23 / 53

validation: guided exploration

alternative transition?

formal software design with alloy and electrum/ ertms hl3 in electrum 24 / 53

validation: guided exploration

what if another initial state?

formal software design with alloy and electrum/ ertms hl3 in electrum 25 / 53

validation: guided exploration

alternative transition?

formal software design with alloy and electrum/ ertms hl3 in electrum 26 / 53

validation: guided exploration

formal software design with alloy and electrum/ ertms hl3 in electrum 27 / 53

modeling: combine event with declarative constraints

fact TTDReports { always all t:TTD | ... }

pred move[t:Train] { ... }
pred som[t:Train] { ... }
pred eom[t:Train] { ... }
pred split[t1,t2:Train] { ... }

fact trainEvolution {
always all t:Train |
move[t] or som[t] or eom[t] or some t1:Train | split[t,t1] or split[t1,t]

}

run {
some t:Train | eventually (som[t] and eventually eom[t])

} for 4 VSS, 2 TTD, 2 Train

formal software design with alloy and electrum/ ertms hl3 in electrum 28 / 53

validation: visualization-specific entities

formal software design with alloy and electrum/ ertms hl3 in electrum 29 / 53

validation: visualization-specific entities

fun NoMission : set Train {
MissionEnded

}
fun MissionOnly : set Train {
MissionStarted - Reporting

}
fun ReportingOnly : set Train {

Reporting - (IntegrityConfirmed + IntegrityLost)
}

formal software design with alloy and electrum/ ertms hl3 in electrum 30 / 53

validation: visualization-specific entities

formal software design with alloy and electrum/ ertms hl3 in electrum 31 / 53

validation: visualization-specific entities

enum Event { Move, SoM, EoM, Split }

fun move : Event -> Train {
Move -> { t:Train | move[t] }

}
fun som : Event -> Train { ... }
fun eom : Event -> Train { ... }
fun split : Event -> Train -> Train {
Split -> { t1,t2:Train | split[t1,t2] }

}

fun events : set Event {
(move+som+eom+split.Train).Train

}

formal software design with alloy and electrum/ ertms hl3 in electrum 32 / 53

validation: visualization-specific entities

formal software design with alloy and electrum/ ertms hl3 in electrum 33 / 53

validation: visualization-specific entities

formal software design with alloy and electrum/ ertms hl3 in electrum 34 / 53

methodology and tips

modeling
I how to develop large models?

• develop incrementally
I how to model an (underspecified) environment?

• combine explicit events with declarative temporal specifications
I how to handle continuous aspects?

• sweet spot abstractions

validation
I how to generate interesting scenarios?

• use the simulator to guide exploration
• encode specific operational scenarios a la unit tests

I how to understand scenarios?
• enrich the model with visualization-specific entities
• define suitable visualization themes

specification and verification
I how to detect and deal with spurious counter-examples?

• refine environment assumptions as needed

formal software design with alloy and electrum/ ertms hl3 in electrum 35 / 53

modeling: sweet spot abstractions

var sig DiscPropRunning, DiscPropExpired in VSS {}

fun DiscPropStart : set VSS {
{ v:VSS | some t : Train |
(v in MAs[t] and t in MuteExpired'-MuteExpired and v.state' = Unknown) or ... }

}

fun DiscPropStop : set VSS {
{ v:VSS | (all t : Train | once ((v in located[t] and eom[t]) or ...)

implies t not in Disconnected') }
}

pred setDiscPropTimer {
DiscPropExpired in DiscPropRunning
no DiscPropExpired & DiscPropExpired'
DiscPropRunning' =
(DiscPropRunning-DiscPropExpired-DiscPropStop)+DiscPropStart

}

formal software design with alloy and electrum/ ertms hl3 in electrum 36 / 53

methodology and tips

modeling
I how to develop large models?

• develop incrementally
I how to model an (underspecified) environment?

• combine explicit events with declarative temporal specifications
I how to handle continuous aspects?

• sweet spot abstractions

validation
I how to generate interesting scenarios?

• use the simulator to guide exploration
• encode specific operational scenarios a la unit tests

I how to understand scenarios?
• enrich the model with visualization-specific entities
• define suitable visualization themes

specification and verification
I how to detect and deal with spurious counter-examples?

• refine environment assumptions as needed

formal software design with alloy and electrum/ ertms hl3 in electrum 37 / 53

validation: encoding scenarios

run {
some disj t1, t2 : Train, v : VSS {
eventually (v in located[t1] = v;v in located[t2])
always Train in MissionStarted }

} for 4..6 Time, 2 Train, 3 TTD, 8 VSS

formal software design with alloy and electrum/ ertms hl3 in electrum 38 / 53

hl3 operational scenarios

environment evolution restricted
validate whether VSS system and timers act as expected

Hybrid ERTMS/ETCS Level 3 - Principles

formal software design with alloy and electrum/ ertms hl3 in electrum 39 / 53

operational scenario #2

pred S2env { let v11 = V/first, v12 = v11.next, v21 = v12.next ... |
some disj t1,t2:Train {
v12 in parent[first].end and v31 in parent[last].start
always TTD = Reports
t1.pos = v12;t1.pos = v12;t1.pos = v21;...
always t2.pos = v12
split[t1,t2]
t1 in IntgrtyConfirmed;t1 not in IntgrtyConfirmed;...
... } }

pred S2ok { let v11 = V/first, v12 = v11.next, v21 = v12.next ... |
eventually always {
(v11+v12).state = Unknown
v31.state = Occupied
v21+v22+v23+v32+v33).state = Free }

after (v12 = IntgrtyLossPropRunning;v12 = IntgrtyLossPropRunning) }

run { S2 and S2ok } for exactly 2 Train, exactly 3 TTD, exactly 8 VSS, exactly 8 Time

formal software design with alloy and electrum/ ertms hl3 in electrum 40 / 53

operational scenario #2

formal software design with alloy and electrum/ ertms hl3 in electrum 41 / 53

hl3 found issues

inconsistencies between VSS system description and scenarios
I state machine transition conditions vs. behavior in scenarios (fixed in current version)
I timer behavior (indefinite expiration) vs. behavior in scenarios (fixed in current version)
I timer stop conditions vs. behavior in the scenarios
possible issues
I ambiguous nomenclature (fixed in current version)
I state machine does not stabilize
I missing timer starts in scenarios

formal software design with alloy and electrum/ ertms hl3 in electrum 42 / 53

validation: encoding scenarios

fun DisconnectPropStop : set VSS {
...
v.state' != v.state and v.state' in Occupied+Ambiguous+Free
...

}

pred S6ok {
...
after after (v12 = DisconnectPropRunning;v12 = DisconnectPropRunning)
...

}

Issue

Reference behavior inconsistent with scenarios

formal software design with alloy and electrum/ ertms hl3 in electrum 43 / 53

validation: encoding scenarios

Issue

Reference behavior inconsistent with scenarios

formal software design with alloy and electrum/ ertms hl3 in electrum 44 / 53

validation: guided exploration

is there an alternative transition?

Issue

State machine does not stabilize

formal software design with alloy and electrum/ ertms hl3 in electrum 45 / 53

validation: guided exploration

Issue

State machine does not stabilize

formal software design with alloy and electrum/ ertms hl3 in electrum 46 / 53

methodology and tips

modeling
I how to develop large models?

• develop incrementally
I how to model an (underspecified) environment?

• combine explicit events with declarative temporal specifications
I how to handle continuous aspects?

• sweet spot abstractions

validation
I how to generate interesting scenarios?

• use the simulator to guide exploration
• encode specific operational scenarios a la unit tests

I how to understand scenarios?
• enrich the model with visualization-specific entities
• define suitable visualization themes

specification and verification
I how to detect and deal with spurious counter-examples?

• refine environment assumptions as needed

formal software design with alloy and electrum/ ertms hl3 in electrum 47 / 53

hl3 safety properties

pred noCollisions {
no disj t1,t2:Train | some t1.pos&t2.pos

}

assert no_collisions {
init implies always noCollisions

}

check no_collisions
for 10 Time, 8 VSS, 3 TTD, 3 Train

formal software design with alloy and electrum/ ertms hl3 in electrum 48 / 53

hl3 safety properties

formal software design with alloy and electrum/ ertms hl3 in electrum 49 / 53

specification and verification: refine environment

assert no_collisions {
(init and always (strictMove and instTimers)) implies
always noCollisions

}

Caveat

trial and error manual process, not validated
do not hold for all operational scenarios

formal software design with alloy and electrum/ ertms hl3 in electrum 50 / 53

hl3 liveness properties

assert liveness {
eventually some t:Train | last in located[t]

}

formal software design with alloy and electrum/ ertms hl3 in electrum 51 / 53

lessons learned

in general more readable and elegant than Alloy (although patterns that refer to
concrete time instants may become more complex)
structural freedom (and limited module system) undermines maintainability
concrete scenarios are burdensome to encode (new op ;, finer Time scopes)

STTT 2019, https://doi.org/10.1007/s10009-019-00540-4

exercises

formal software design with alloy and electrum/ exercises 53 / 53

exercises

Try Exercise #6:

https://github.com/haslab/Electrum2/wiki/Leader-election

	the European Rail Traffic Management System HL3
	ERTMS HL3 in Electrum
	Exercises

