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basic idea

aim: validate an railway tra�c management system concept
combines trackside and train reports for finer management
specification provided, backed by operational scenarios

Challenges

alternative track configurations
under-specified behavior
continuous aspects
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hybrid ertms/etcs level 3

occupancy of trackside sections determined by safe sensors (may have delays)
occupancy of virtual sub-sections determined by train reports (communication may
fail, integrity may be lost)

Hybrid ERTMS/ETCS Level 3 - Principles
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hl3 – environment

train state and reporting (PTD)
trackside sensor information (TTD)
management authority (MA) assignment sub-system
VSS management encoded as a state machine
MA assignment and train reaction to it outside scope



ertms hl3 in electrum
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methodology and tips

modeling
I how to develop large models?

• develop incrementally
I how to model an (underspecified) environment?

• combine explicit events with declarative temporal specifications
I how to handle continuous aspects?

• sweet spot abstractions

validation
I how to generate interesting scenarios?

• use the simulator to guide exploration
• encode specific operational scenarios a la unit tests

I how to understand scenarios?
• enrich the model with visualization-specific entities
• define suitable visualization themes

specification and verification
I how to detect and deal with spurious counter-examples?

• refine environment assumptions as needed
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modeling: develop incrementally
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modeling: develop incrementally

open util/ordering[TTD] as D
open util/ordering[VSS] as V

sig VSS {}
sig TTD {
start : one VSS,
end : one VSS

} { end.gte[start] }
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validation: visualization-specific entities

open util/ordering[TTD] as D
open util/ordering[VSS] as V

sig VSS {}
sig TTD {
start : one VSS,
end : one VSS

} { end.gte[start] }

fact trackSections {
all ttd:TTD-D/last | ttd.end.V/next = (ttd.D/next).start
D/first.start = V/first and D/last.end= V/last }

fun _VSSs : TTD -> VSS {
{ t:TTD, v: t.start.*V/next & t.end.*(~V/next) } }

run {} for 2 TTD, 4 VSS
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validation: theme customization
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modeling: combine event with declarative constraints

var sig Reports in TTD {}

fact TTDReports {
always all t:TTD |

t not in Reports implies t in Reports'
}

run {eventually some Reports} for 2 TTD, 4 VSS



formal software design with alloy and electrum/ ertms hl3 in electrum 21 / 53

methodology and tips

modeling
I how to develop large models?

• develop incrementally
I how to model an (underspecified) environment?

• combine explicit events with declarative temporal specifications
I how to handle continuous aspects?

• sweet spot abstractions

validation
I how to generate interesting scenarios?

• use the simulator to guide exploration
• encode specific operational scenarios a la unit tests

I how to understand scenarios?
• enrich the model with visualization-specific entities
• define suitable visualization themes

specification and verification
I how to detect and deal with spurious counter-examples?

• refine environment assumptions as needed



formal software design with alloy and electrum/ ertms hl3 in electrum 22 / 53

validation: guided exploration
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validation: guided exploration

alternative transition?
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validation: guided exploration

what if another initial state?
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validation: guided exploration

alternative transition?
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validation: guided exploration
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modeling: combine event with declarative constraints

fact TTDReports { always all t:TTD | ... }

pred move[t:Train] { ... }
pred som[t:Train] { ... }
pred eom[t:Train] { ... }
pred split[t1,t2:Train] { ... }

fact trainEvolution {
always all t:Train |
move[t] or som[t] or eom[t] or some t1:Train | split[t,t1] or split[t1,t]

}

run {
some t:Train | eventually (som[t] and eventually eom[t])

} for 4 VSS, 2 TTD, 2 Train
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validation: visualization-specific entities
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validation: visualization-specific entities

fun NoMission : set Train {
MissionEnded

}
fun MissionOnly : set Train {
MissionStarted - Reporting

}
fun ReportingOnly : set Train {

Reporting - (IntegrityConfirmed + IntegrityLost)
}
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validation: visualization-specific entities
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validation: visualization-specific entities

enum Event { Move, SoM, EoM, Split }

fun move : Event -> Train {
Move -> { t:Train | move[t] }

}
fun som : Event -> Train { ... }
fun eom : Event -> Train { ... }
fun split : Event -> Train -> Train {
Split -> { t1,t2:Train | split[t1,t2] }

}

fun events : set Event {
(move+som+eom+split.Train).Train

}
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validation: visualization-specific entities
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validation: visualization-specific entities
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modeling: sweet spot abstractions

var sig DiscPropRunning, DiscPropExpired in VSS {}

fun DiscPropStart : set VSS {
{ v:VSS | some t : Train |
(v in MAs[t] and t in MuteExpired'-MuteExpired and v.state' = Unknown) or ... }

}

fun DiscPropStop : set VSS {
{ v:VSS | (all t : Train | once ((v in located[t] and eom[t]) or ...)

implies t not in Disconnected') }
}

pred setDiscPropTimer {
DiscPropExpired in DiscPropRunning
no DiscPropExpired & DiscPropExpired'
DiscPropRunning' =
(DiscPropRunning-DiscPropExpired-DiscPropStop)+DiscPropStart

}
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validation: encoding scenarios

run {
some disj t1, t2 : Train, v : VSS {
eventually (v in located[t1] = v;v in located[t2])
always Train in MissionStarted }

} for 4..6 Time, 2 Train, 3 TTD, 8 VSS
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hl3 operational scenarios

environment evolution restricted
validate whether VSS system and timers act as expected

Hybrid ERTMS/ETCS Level 3 - Principles
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operational scenario #2

pred S2env { let v11 = V/first, v12 = v11.next, v21 = v12.next ... |
some disj t1,t2:Train {
v12 in parent[first].end and v31 in parent[last].start
always TTD = Reports
t1.pos = v12;t1.pos = v12;t1.pos = v21;...
always t2.pos = v12
split[t1,t2]
t1 in IntgrtyConfirmed;t1 not in IntgrtyConfirmed;...
... } }

pred S2ok { let v11 = V/first, v12 = v11.next, v21 = v12.next ... |
eventually always {
(v11+v12).state = Unknown
v31.state = Occupied
v21+v22+v23+v32+v33).state = Free }

after (v12 = IntgrtyLossPropRunning;v12 = IntgrtyLossPropRunning) }

run { S2 and S2ok } for exactly 2 Train, exactly 3 TTD, exactly 8 VSS, exactly 8 Time
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operational scenario #2
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hl3 found issues

inconsistencies between VSS system description and scenarios
I state machine transition conditions vs. behavior in scenarios (fixed in current version)
I timer behavior (indefinite expiration) vs. behavior in scenarios (fixed in current version)
I timer stop conditions vs. behavior in the scenarios
possible issues
I ambiguous nomenclature (fixed in current version)
I state machine does not stabilize
I missing timer starts in scenarios
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validation: encoding scenarios

fun DisconnectPropStop : set VSS {
...
v.state' != v.state and v.state' in Occupied+Ambiguous+Free
...

}

pred S6ok {
...
after after (v12 = DisconnectPropRunning;v12 = DisconnectPropRunning)
...

}

Issue

Reference behavior inconsistent with scenarios
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validation: encoding scenarios

Issue

Reference behavior inconsistent with scenarios
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validation: guided exploration

is there an alternative transition?

Issue

State machine does not stabilize
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hl3 safety properties

pred noCollisions {
no disj t1,t2:Train | some t1.pos&t2.pos

}

assert no_collisions {
init implies always noCollisions

}

check no_collisions
for 10 Time, 8 VSS, 3 TTD, 3 Train
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hl3 safety properties



formal software design with alloy and electrum/ ertms hl3 in electrum 49 / 53

specification and verification: refine environment

assert no_collisions {
(init and always (strictMove and instTimers)) implies
always noCollisions

}

Caveat

trial and error manual process, not validated
do not hold for all operational scenarios
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hl3 liveness properties

assert liveness {
eventually some t:Train | last in located[t]

}
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lessons learned

in general more readable and elegant than Alloy (although patterns that refer to
concrete time instants may become more complex)
structural freedom (and limited module system) undermines maintainability
concrete scenarios are burdensome to encode (new op ;, finer Time scopes)

STTT 2019, https://doi.org/10.1007/s10009-019-00540-4
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exercises

Try Exercise #6:

https://github.com/haslab/Electrum2/wiki/Leader-election
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