
Julien Brunel, David Chemouil, Alcino Cunha, Eunsuk Kang, Nuno Macedo

formal software design with alloy and electrum
relational logic

Universidade do Minho & INESC TEC

ONERA DTIS & Université fédérale de Toulouse

Carnegie Mellon University

3rd World Congress on Formal Methods, Porto, Portugal, October 2019



relations



formal software design with alloy and electrum/relations 3 / 18

example: social network



formal software design with alloy and electrum/relations 4 / 18

social network model

sig User {}
sig Post {}

A signature defines a set of objects.



formal software design with alloy and electrum/relations 5 / 18

everything is a relation!

User = {(U0),(U1)}

User

U0
U1

Post = {(P0),(P1),(P2)}

Post

P0
P1
P2



formal software design with alloy and electrum/relations 6 / 18

relations as tables

posts = {(U0,P0),(U0,P0),(U1,P1)}

User Post

U0 P0
U0 P2
U1 P0
U1 P1



formal software design with alloy and electrum/relations 7 / 18

relational join

p.q = {(p1, . . . pn−1,q2, . . . qm) | (p1, . . . pn−1, pn) ∈ p ∧ (q1, q2, . . . qm) ∈ q ∧ pn = q1}

posts = {(U0,P0),(U0,P0),(U1,P1)}

User Post

U0 P0
U0 P2
U1 P0
U1 P1

U0.posts = ??

posts.P0 = ??

User.posts = ??



formal software design with alloy and electrum/relations 8 / 18

transitive closure

^R = R ∪ R.R ∪ R.R.R ∪ R.R.R.R ∪ . . .

friends = {(U0,U1),(U1,U0),(U1,U2),(U2,U1)}

User User

U0 U1
U1 U0
U1 U2
U2 U1

^friends = ??

U0.^friends = ??



formal software design with alloy and electrum/relations 9 / 18

signature fields

sig SocialNetwork {
friends : User -> User,
posts : User -> Post

}

posts is a ternary relation from SocialNetwork to User to Post

SocialNetwork User Post

N0 U0 P0
N0 U0 P2
N0 U1 P0
N0 U1 P1



formal software design with alloy and electrum/relations 10 / 18

subtyping

abstract sig Post {}
sig Photo, Video, Text extends Post {}



formal software design with alloy and electrum/relations 11 / 18

semantics

Meaning of an Alloy model: The set of all satisfying instances

Each instance contains a universe of objects from signatures.
Each relation is interpreted with a number of tuples (possibly empty).
Each instance satisfies all given constraints.



formal software design with alloy and electrum/relations 12 / 18

constraints

fact friendshipIsSymmetric {
all n : SocialNetwork, u1, u2 : User |

u1 -> u2 in s.friends implies
u2 -> u1 in s.friends

}

or

fact friendshipIsSymmetric {
friends = ~friends

}

A fact imposes a constraint that must be satisfied by every instance.



formal software design with alloy and electrum/relations 13 / 18

predicates

pred invariant[n : SocialNetwork] {
// Each post is owned by at most one user
all p : Post | lone n.posts.p
// A user cannot be his or her own friend
all u : User | u -> u not in n.friends
// Friendship is a symmetric relation
n.friends = ~(n.friends)

}

A predicate is a construct for packaging and reusing constraints.



formal software design with alloy and electrum/relations 14 / 18

generating an instance

run generateValidSocialNetwork {
some n : SocialNetwork | invariant[n]

}

or

run invariant



formal software design with alloy and electrum/relations 15 / 18

social network as a distributed system

User data is distributed across multiple servers



formal software design with alloy and electrum/relations 16 / 18

distributed social network

sig User {}
sig Post {}
sig DistributedSN {

servers : set Server,
friends : User -> User

}
sig Server {

posts : User -> Post,
capacity : Int

}



formal software design with alloy and electrum/relations 17 / 18

distributed social network

What are the invariants for the distributed version?



formal software design with alloy and electrum/relations 18 / 18

exercises

https://github.com/haslab/Electrum2/wiki/Social-Network

(exercises 1-2)

https://github.com/haslab/Electrum2/wiki/Social-Network

	Relations

