Julien Brunel, David Chemouil, Alcino Cunha, Eunsuk Kang, Nuno Macedo

FORMAL SOFTWARE DESIGN WITH ALLOY AND ELECTRUM

RELATIONAL LOGIC

Universidade do Minho & INESC TEC
ONERA DTIS & Université fédérale de Toulouse
Carnegie Mellon University

3rd World Congress on Formal Methods, Porto, Portugal, October 2019



RELATIONS



FORMAL SOFTWARE DESIGN WITH ALLOY AND ELECTRUM / RELATIONS 3/18

EXAMPLE: SOCIAL NETWORK




FORMAL SOFTWARE DESIGN WITH ALLOY AND ELECTRUM / RELATIONS

4l

SOCIAL NETWORK MODEL

sig User {}
sig Post {}

‘AsgnMUmdemmsasaofOMea&




FORMAL SOFTWARE DESIGN WITH ALLOY AND ELECTRUM / RELATIONS 5/18

EVERYTHING IS A RELATION!

User = {(Uo),(U1)}

User

Uo
U1

Post = {(Pe),(P1),(P2)}

Post

Po
P1
P2




FORMAL SOFTWARE DESIGN WITH ALLOY AND ELECTRUM / RELATIONS. 6/18

RELATIONS AS TABLES

posts = {(Ue,Po),(Ue,Po),(U1,P1)}

User Post

ue Po
(]c] P2
U1 Po

U1 P1



FORMAL SOFTWARE DESIGN WITH ALLOY AND ELECTRUM / RELATIONS 7118

RELATIONAL JOIN

p.q={(p1 ... Pr=1,92,--- Gm) | (P2, ... Pn—1, Pn) €P A (G4, G2, ... Gm) € G A Pn = G4}

posts = {(Ue,Pe),(Ue,Po),(U1,P1)}

User Post

ue Po
uo P2
U1 Po
U1 P1

Ue.posts =77
posts.Po =77

User.posts =77



FORMAL SOFTWARE DESIGN WITH ALLOY AND ELECTRUM / RELATIONS. 8/18

TRANSITIVE CLOSURE

"R=RURRURRRUR.RRRU...

friends = {(Ue,U1),(U1,U0),(U1,U2),(U2,U1)}

User User

ue Ui
U1 (/o]
U1 U2
u2 U1

“friends = ??

Uo.”friends = ??



FORMAL SOFTWARE DESIGN WITH ALLOY AND ELECTRUM / RELATIONS 9/18

SIGNATURE FIELDS

sig SocialNetwork {
friends : User -> User,
posts : User -> Post

}

posts is a ternary relation from SocialNetwork to User to Post

SocialNetwork User Post

No Uo Po
No V[o} P2
No U1 Po

No Ui P1




FORMAL SOFTWARE DESIGN WITH ALLOY AND ELECTRUM / RELATIONS 10/18

SUBTYPING

abstract sig Post {}
sig Photo, Video, Text extends Post {}



FORMAL SOFTWARE DESIGN WITH ALLOY AND ELECTRUM / RELATIONS /8

SEMANTICS

| Meaning of an Alloy model: The set of all satisfying instances

s Each instance contains a universe of objects from signatures.
e Each relation is interpreted with a number of tuples (possibly empty).
s Each instance satisfies all given constraints.




FORMAL SOFTWARE DESIGN WITH ALLOY AND ELECTRUM / RELATIONS 12/18

CONSTRAINTS

fact friendshipIsSymmetric {
all n : SocialNetwork, u1, u2 : User |
uil -> u2 in s.friends implies
u2 -> u1 in s.friends

}
or

fact friendshipIsSymmetric {
friends = ~friends

}

Afact imposes a constraint that must be satisfied by every instance.




FORMAL SOFTWARE DESIGN WITH ALLOY AND ELECTRUM / RELATIONS 13/18

PREDICATES

pred invariant[n : SocialNetwork] {
// Each post is owned by at most one user
all p : Post | lone n.posts.p
// A user cannot be his or her own friend
all u : User | u -> u not in n.friends
// Friendship is a symmetric relation
n.friends = ~(n.friends)

}

A predicate is a construct for packaging and reusing constraints.




FORMAL SOFTWARE DESIGN WITH ALLOY AND ELECTRUM / RELATIONS

/18

GENERATING AN INSTANCE

run generateValidSocialNetwork {
some n : SocialNetwork | invariant[n]

or

run invariant



FORMAL SOFTWARE DESIGN WITH ALLOY AND ELECTRUM / RELATIONS

SOCIAL NETWORK AS A DISTRIBUTED SYSTEM

-

User data is distributed across multiple servers



FORMAL SOFTWARE DESIGN WITH ALLOY AND ELECTRUM / RELATIONS

16/18

DISTRIBUTED SOCIAL NETWORK

sig
sig
sig

sig

User {}

Post {}

DistributedSN {
servers : set Server,
friends : User -> User

Server {
posts : User -> Post,
capacity : Int



FORMAL SOFTWARE DESIGN WITH ALLOY AND ELECTRUM / RELATIONS 17/18

DISTRIBUTED SOCIAL NETWORK

What are the invariants for the distributed version?



FORMAL SOFTWARE DESIGN WITH ALLOY AND ELECTRUM / RELATIONS. 18/18

EXERCISES

https://github.com/haslab/Electrum2/wiki/Social-Network

(exercises 1-2)


https://github.com/haslab/Electrum2/wiki/Social-Network

	Relations

