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example: social network
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social network model

sig User {}
sig Post {}

A signature defines a set of objects.
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everything is a relation!

User = {(U0),(U1)}

User

U0
U1

Post = {(P0),(P1),(P2)}

Post

P0
P1
P2
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relations as tables

posts = {(U0,P0),(U0,P0),(U1,P1)}

User Post

U0 P0
U0 P2
U1 P0
U1 P1
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relational join

p.q = {(p1, . . . pn−1,q2, . . . qm) | (p1, . . . pn−1, pn) ∈ p ∧ (q1, q2, . . . qm) ∈ q ∧ pn = q1}

posts = {(U0,P0),(U0,P0),(U1,P1)}

User Post

U0 P0
U0 P2
U1 P0
U1 P1

U0.posts = ??

posts.P0 = ??

User.posts = ??
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transitive closure

^R = R ∪ R.R ∪ R.R.R ∪ R.R.R.R ∪ . . .

friends = {(U0,U1),(U1,U0),(U1,U2),(U2,U1)}

User User

U0 U1
U1 U0
U1 U2
U2 U1

^friends = ??

U0.^friends = ??
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signature fields

sig SocialNetwork {
friends : User -> User,
posts : User -> Post

}

posts is a ternary relation from SocialNetwork to User to Post

SocialNetwork User Post

N0 U0 P0
N0 U0 P2
N0 U1 P0
N0 U1 P1
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subtyping

abstract sig Post {}
sig Photo, Video, Text extends Post {}
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semantics

Meaning of an Alloy model: The set of all satisfying instances

Each instance contains a universe of objects from signatures.
Each relation is interpreted with a number of tuples (possibly empty).
Each instance satisfies all given constraints.
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constraints

fact friendshipIsSymmetric {
all n : SocialNetwork, u1, u2 : User |

u1 -> u2 in s.friends implies
u2 -> u1 in s.friends

}

or

fact friendshipIsSymmetric {
friends = ~friends

}

A fact imposes a constraint that must be satisfied by every instance.
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predicates

pred invariant[n : SocialNetwork] {
// Each post is owned by at most one user
all p : Post | lone n.posts.p
// A user cannot be his or her own friend
all u : User | u -> u not in n.friends
// Friendship is a symmetric relation
n.friends = ~(n.friends)

}

A predicate is a construct for packaging and reusing constraints.
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generating an instance

run generateValidSocialNetwork {
some n : SocialNetwork | invariant[n]

}

or

run invariant
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social network as a distributed system

User data is distributed across multiple servers
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distributed social network

sig User {}
sig Post {}
sig DistributedSN {

servers : set Server,
friends : User -> User

}
sig Server {

posts : User -> Post,
capacity : Int

}
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distributed social network

What are the invariants for the distributed version?
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exercises

https://github.com/haslab/Electrum2/wiki/Social-Network

(exercises 1-2)

https://github.com/haslab/Electrum2/wiki/Social-Network
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