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LOGICAL BACKGROUND OF ELECTRUM: FO-LTL

The logic FO-LTL

ϕ ::= (x1 = x2) | Pi(x1, . . . , xn) | ¬ϕ | ϕ ∨ ϕ | ∃x .ϕ | Xϕ | ϕUϕ.
We also define Fϕ = trueUϕ and Gϕ = ¬F(¬ϕ).

We use FO-LTL as underlying logic of the language Electrum.

Finite domain semantics

First-Order variables xi : finite domain
Implicit time: infinite domain N

LTL: Good properties of expressiveness and complexity, widely
used in verification.

What is the theoretical cost of adding LTL to Alloy’s logic ?
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FO-LTL ON FINITE FO DOMAINS

1 Complexity of “bounded SAT” (i.e. given a bound on the FO
domain)

2 Finite model property of FO-LTL
Considering finite FO domain can be enough in some
fragments.
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COMPLEXITY

Definition (BSAT Problem)

Given ϕ and N, is there a model for ϕ, for which the size of the
first-order domain is at most N ?

Parameters
Logic: FO versus FO-LTL
Encoding of N: unary versus binary
Rank of formulas (nested quantifiers): bounded (⊥) versus
unbounded (>).
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COMPLEXITY

Definition (BSAT Problem)

Given ϕ and N, is there a model for ϕ, for which the size of the
first-order domain is at most N ?

Theorem

N unary N binary

FO ⊥ NP-complete NEXPTIME-complete
FO > NEXPTIME-complete NEXPTIME-complete

FO-LTL ⊥ PSPACE-complete EXPSPACE-complete
FO-LTL > EXPSPACE-complete EXPSPACE-complete
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IDEAS OF THE PROOFS

Membership:

Guess a structure and verify it,
Unfold the formula according to the elements of this structure,
Use PSPACE LTL Satisfiability.

Hardness
Reduce from Turing machines or SAT for NP-hardness,
Encode states and alphabet in the signature,
Structure encodes space/time for FO and space for FO-LTL,
Formula in the studied fragment encode run of the machine.
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FINITE MODEL THEORY

Definition (Finite Model Property (FMP))

If there is a model for ϕ, then there is a finite one.

Some First-Order Fragments with FMP

[∃∗∀∗,all]= (Ramsey 1930)
[∃∗∀∃∗,all]= (Ackermann 1928)
[∃∗,all ,all]= (Gurevich 1976)
FO2 (Mortimer 1975) : 2 variables.
[∃∗∀,all , (1)]= (Grädel 1996)
[all , (ω), (ω)] (Gurevich 1969, Löb 1967)
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LIFTING FMP TO FO-LTL: A GENERAL RESULT

Definition (FMP for FO-LTL)

If there is a model for ϕ, then there is a model with finite
FO-domain.

Theorem
Adding X,F to FO preserves FMP if the fragment imposes no
constraint on the number and arity of predicates/functions.

Applies to the above-mentioned fragments except:
[∃∗∀,all , (1)]= only one function of arity one.
[all , (ω), (ω)] only predicates and functions of arity one.
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IDEAS OF THE PROOF

Consider an FO fragment Frag that has the FMP
Suppose that ϕ ∈ Frag + {X,F} has a model.
We translate ϕ into a pure FO (in Frag) formula ψ (also
satisfiable)
Example: Xp ∧ XXp  p1 ∧ p2

Since ψ ∈ Frag, ψ has a finite model M
We build a finite model of ϕ from M
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LIFTING FMP TO FO-LTL: AD-HOC RESULTS

Theorem (Extension of the Gurevich fragment)

[all , (ω), (ω)] + {X,F} has the FMP.

Theorem (Extension of the Ramsey fragment)

The FO-LTL fragment of formulas of the form ∃x1 . . . ∃xn.ψ, where
ψ is a FO-LTL formula without any ∃ quantifiers, has the FMP.
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AXIOMS OF INFINITY

In general, adding LTL allows to write axioms of infinity:

Wrong extension of the Ramsey fragment

G(∃x .P(x) ∧ X(G¬P(x)))).

(only one existential variable!)

Without nesting quantifiers in temporal operators

∀x∃y .P(c) ∧G(P(x)⇒ X(P(y) ∧G¬P(x))).

Without G

∀x∃y .P(c) ∧ ((P(x) ∧ P(y))U(¬P(x) ∧ P(y))).
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CONCLUSION

Theoretical study of FO-LTL on finite domain
Complexity
Finite model property

Open questions:
Complexity of BSAT for FO-LTL[1] with n in binary
Can we drop (or weaken) the condition for adding X and F to a
fragment that has the FMP?
Can we find a reasonable condition to extend the FO fragments
that have the FMP with G and/or U?
Decidability of FO-LTL fragments
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Backup slides
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PROOF SCHEME FOR HARDNESS

Idea : encode runs of Turing Machines via formulas.

For FO, unbounded rank, binary encoding :

Reduction :
Start from non-deterministic M running in time 2n on inputs of
size n. States Q and alphabet A.
Consider the first-order structure {1, . . . ,2n} with predicate
successor, representing both time and space of the machine.
Predicate a(x , t) with a ∈ A: the cell x is labeled a at time t
Predicate q(x , t): M is in state q in position x at time t
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For any word u of size n, we can now write a formula ϕu of size
polynomial in n, stating that:

The initial configuration of the tape is u:
a1(1,1) ∧ a2(2,1) ∧ · · · ∧ an(n,1)
For all time t , the tape is updated from t to t + 1 according to
the transition table of M
there is a time tf where M is in its accepting state.

Correctness: ϕu has a model of size 2n ⇐⇒ u is accepted by M

Size 2n is given in binary→ polynomial reduction.

Extension to FO-LTL: LTL uses implicit time→ we can start from
an EXPSPACE machine.
Constraint on transitions is now of the form
G(∀x ,q(x) =⇒ Xϕq(x))
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Tricky case: unbounded rank but unary N.
→We can no longer use the domain as a model for the tape.

Solution: Use a structure of size 2, and binary encoding to point
to a cell or time instant : a(~x ,~t) for FO and a(~x) for FO-LTL.

Example: For size 8, a(0,1,1,1,0,1) means that the 3th cell is
labeled by a at instant 5.
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