
Typed Connector Families and Their Semantics

José Proençaa,∗, Dave Clarkeb

aINESC TEC & University of Minho, Dep. Informática, 4710-057 Braga, Portugal
bUppsala University, Box 337, SE-751 05 Uppsala, Sweden

Abstract

Typed models of connector/component composition specify interfaces describ-
ing ports of components and connectors. Typing ensures that these ports are
plugged together appropriately, so that data can flow out of each output port
and into an input port. These interfaces typically consider the direction of data
flow and the type of values flowing. Components, connectors, and systems are
often parameterised in such a way that the parameters affect the interfaces.
Typing such connector families is challenging. This paper takes a first step
towards addressing this problem by presenting a calculus of connector families
with integer and boolean parameters. The calculus is based on monoidal cate-
gories, with a dependent type system that describes the parameterised interfaces
of these connectors. We use families of Reo connectors as running examples, and
show how this calculus can be applied to Petri Nets and to BIP systems. The
paper focusses on the structure of connectors—well-connectedness—and less on
their behaviour, making it easily applicable to a wide range of coordination and
component-based models. A type-checking algorithm based on constraints is
used to analyse connector families, supported by a proof-of-concept implemen-
tation.

1. Introduction

Software product lines provide the flexibility of concisely specifying a family
of software products, by identifying common features of functionality among
these products and automatising the creation of products from a selection of
relevant features. Interesting challenges in this domain include how to specify
families and combinations of features, how to automatise the creation process,
how to identify features from a collection of products, and how to reason about
(e.g., verify) whole families of products.

This paper investigates such variability in coordination languages, i.e., it
studies connector families that exogenously describe how (families of) compo-
nents are connected. The key problem is that different connectors from a single
family can have different interfaces, i.e., different ways of connecting to other

∗Corresponding author

Preprint submitted to Elsevier April 13, 2017



connectors. Hence, specifying and composing such families of connectors while
guaranteeing that interfaces still match becomes non-trivial.

sensor

clock
worker

Int

Float

String

DB-query

Figure 1: Composition of components: a sensor produces a pair of values, a clock produces a
time stamp, and the worker produces a database query to store the sensor values.

Consider, for example, the simple component composition on Figure 1. In
our calculus we can write this composition as sensor⊗ clock ; worker, where ‘⊗’
has higher precedence and denotes parallel composition, and ‘;’ denotes sequen-
tial composition. In this scenario type-checking means guaranteeing that the
interfaces match when plugging these 3 components together.

sensor

sensor

clock

clock

worker
(n, b)

Int

Int

Int

Int

String

Float

Float

n

if b:

else:

...

sensor

sensor

clock

clock

worker

n

if b:

else:

...

Figure 2: Composition of families of components: combinations of sensors and clocks are
composed with a parameterised worker (left) and with a simpler worker after some extra
coordination (right).

The case becomes more complex when components can be configured to
have varying interfaces. For example, if the clock can chose to produce a pair
of integers or a string based on a configuration parameter b, or if the sensor
components is replaced by a number n of sensors running in parallel. This
scenario is depicted in Figure 2, where reasoning about composition of such
families is more complex than that of instantiated components. One can, for
example, either (1) define a parameterised worker (left side of the figure) and
require the interfaces to match for at least some instances of the families, or
(2) replace the connections by a (parameterised) connector that combines the
values of the sensors into an interface that matches the one from the worker
(right side of the figure).

The first option (left of Figure 2) can be written in our calculus as λn :N, b :B·
(sensorn ⊗ clock(b) ; worker(n, b)), where parameters are written as lambda ab-
stractions, and exponentials replicate a given component or connector. An alter-
native and more modular expression for this scenario, also expressible in our cal-
culus, could be (λn :N ·sensorn)⊗(λb :B ·clock(b)) ; (λn′ :N, b′ :B ·worker(n′, b′)),
where each composition block is itself parameterised. This modular version is

2



implicitly imposing the parameters n and b to match the parameters n′ and b′
of the worker, hence the resulting composition is restricted by constraints over
the parameters that make the composition be well-typed.

The second option (right of Figure 2) can be written in our calculus as
λn :N, b :B · (sensorn⊗ clock(b) ; (unzip(n); (∇n⊗∇n))⊗ idString ; worker), where
unzip(n) is a connector that swaps the orders of 2∗n connections (that will be for-
mally specified later in this paper) and∇n is a connector that merges n dataflows
into one. The type-system of our calculus yields that this connector is well-typed
exactly when b is false and for any possible n, i.e., the clock component must
be configured with b = false in order to have a String outgoing interface, so it
can be composed with idString . This constraint is explicit in our types; more
specifically, the type of this connector is ∀x :N, b :B · (0 → DB-query) |b=false ,
indicating that it has no inputs, it has a single output with type DB-query, and
it is restricted by the constraint b = false.

Summarising, the main contributions of this paper are:

• a calculus for families of connectors with constraints;

• a type system to describe well-defined compositions of such families;

• a semantics for families of connectors given by the Tile Model [1]; and

• a constraint-based type-checking algorithm for this type system.

This paper extends a previous publication at FACS 2015 [2] mainly by (1)
formalising the semantics of connector families using the Tile Model, which was
previously used briefly for the basic connector calculus, and by (2) instantiating
the typed connector calculus with Petri Nets and with BIP systems.

Connectors are defined incrementally. We start by defining a basic connector
calculus for composing connectors inspired by Bruni et al.’s connector algebra [3,
4] (Section 2). This calculus is then extended with parameters and expressions,
over both integers and booleans (Section 3), being now able to specify connectors
(and interfaces) that depend on input parameters. Both the basic and the
extended calculus are accompanied by a type system; the latter is an extension
of the former, allowing integer and boolean parameters (and effectively becoming
a dependent type system). Section 4 introduces connector families, by explicitly
incorporating constraints over the parameters, and by lifting the composition
of connectors to the composition of constrained and parameterised connectors.
Section 5 describes an algorithm to type-check connector families with untyped
ports, i.e., when the type flowing over each port is not relevant, and presents our
prototype implementation. Typed connector calculus is used to model families
of Petri Nets and BIP connectors in Section 6. This paper wraps up with related
work (Section 7), conclusions and future work (Section 8).

2. Basic Connector Calculus

This section describes an algebraic approach to specify connectors (or com-
ponents) with a fixed interface, that is, with a fixed sequence of input and

3



output ports that are used to send and receive data. The main goal of this alge-
braic approach is to describe the structure of connectors and not so much their
behaviour. We illustrate the usage of this algebra by using Reo connectors [5],
which have well-defined semantics, although our approach can be applied to any
connector-like model that connects entities with input and output interfaces.

We start by presenting an overview of how to specify connectors using our
calculus. We then describe the syntax of the basic connector calculus and a type
system to verify if connectors are well-connected, followed by a brief discussion
on how to describe the semantics of connectors orthogonally to this calculus.

2.1. Overview
Our basic connector calculus is based on monoidal categories—more specifi-

cally on traced symmetric monoidal categories [6]—where connectors are mor-
phisms, “ ;” is the composition of morphisms with identity id, and “⊗” is the
tensor product. The operator “⊗” composes connectors in parallel, while the
operator “ ;” connects the ports of the given connectors. Objects of this cate-
gory are interfaces, which correspond to ports in our connectors and include the
unit of the tensor product represented by 0. The commutativity of the tensor
product is captured by a family of symmetries that swap the order of ports
in parallel. Loops can be represented via traces, which plug part of the right
interface to the left interface of the same connector.

The connector in Table 1 helps understanding the intuition behind our al-
gebra of connectors. Our algebra is inspired by the graphical notation used for
monoidal categories (see, e.g., Selinger’s survey [6]), and by Bruni et al.’s con-
nector algebra [3, 4]. The Reo connector on the left is composed out of smaller
subconnectors, connected with each other via shared ports ( ). The second
column describes a possible representation of the same connector, writing the
names of each subconnector parameterised by its ports. For example, the con-
nector ‘ ’ is written as sdrain(a, b) to mean that it has two ports named a and
b. Composing connectors is achieved via the 1 operator, which connects ports
with the same names – this is the most common way to compose Reo connectors
in the literature. In this paper we will use instead the algebraic representation
on the right of Table 1, where port names are not necessary. The connector
∆ ⊗ ∆, for example, puts two duplicator channels in parallel, yielding a new
connector with 2 input ports and 4 output ports. This can be composed via “;”
with id⊗ sdrain⊗ fifo because this connector has 4 input ports: both the id and
the fifo channels have one input port and the sdrain has 2 input ports.

Table 1: Specification of the alternator connector with port names and algebraically.

Graphical With port names Algebraic term

∆(a, a1, a2) 1 ∆(b, b1, b2) 1
sdrain(a2, b1) 1
id(a1, c1) 1 fifo(b2, c2) 1
∇(c1, c2, c)

∆⊗∆;
id⊗ sdrain⊗ fifo;
∇

4



2.2. Syntax
The syntax of connectors and interfaces of our basic connector calculus is

presented in Figure 3. Each connector has a signature I → J consisting of an
input interface I and an output interface J . For example, the identity connector
idI has the same input and output interface I, written idI : I → I. Ports of an
interface are identified simply with a capital letter, such as A, which capture the
type of messages that can be sent via that port. In our examples we assume that
A can only be the type 1, which represents any port type. This more specific
model is known in the literature as PROP [7], which is a symmetric monoidal
category generated by a single object, is also exploited in our algorithm for
constraint solving later in Section 5.1

c ::= c1 ; c2 sequential composition
| c1 ⊗ c2 parallel composition
| idI identity connectors
| γI,J symmetries
| TrI(c) traces
| p ∈ P primitive connectors

p ∈ P ::= ∆I duplicator with output I
| ∇I merger with input I
| sdrain synchronous drain
| fifo buffer
| . . . user-defined connectors

I, J ::= I ⊗ J tensor
| 0 interface with no ports
| A port type

Figure 3: Connectors (left), primitive connectors (top-right), interfaces (bottom-right).

The intuition of these connectors becomes clearer with the visual represen-
tations exemplified in Figure 4. All connectors are depicted with their input
interface on the left side and the output interface on the right side. Each iden-
tity connector idI has the same input and output interface I; each symmetry
γI,J swaps the top interface I with the bottom interface J , hence it has input
interface I ⊗ J and output interface J ⊗ I; and each trace TrI(c) creates a loop
from the bottom output interface I of c with the bottom input interface I of c,
hence if c has input interface I ′ ⊗ I and output interface J ′ ⊗ I then the trace
has input and output interaces I ′ and J ′, respectively.

Parallelism is represented by tensor products, plugging of connectors by
morphism composition, swapping order of parameters by symmetries, and loops
by traces. Connectors and types obey a set of Equations for Connectors that
allow their algebraic manipulation and capture the intuition behind the above
mentioned representations. Figure 5 presents some of these equations, which
reflect properties of traced monoidal categories. For example, the fact that two
symmetries in sequence with swapped interfaces are equivalent to the identity
connector, or how the trace of the symmetry γ1,1 is also equivalent to the identity.
We chose not to present a full axiomatisation because this paper focuses on the

1This connection with PROP was the motivation to denote as 0 the identity of the tensor
and 1 the singleton object, instead of using the more commonly used notation of 1 for the
identity of the tensor.

5



id1 id1 ; fifo sdrain γ1⊗1,1 ∇1⊗1 id1 ⊗ fifo Tr1(γ1,1)

Figure 4: Visual representation of simple connectors.

type-checking of families of connectors, and leaves as future work the analysis
of such axiomatisation.

if c : I → J then
idI ; c = c = c ; idJ (1)
γI,J ; γJ,I = idI⊗J (2)

(c1 ⊗ c2)⊗ c3 = c1 ⊗ (c2 ⊗ c3) (3)
TrI(γI,I) = idI (4)

Tr0(c) = c (5)
TrI(TrJ(c)) = TrI⊗J(c) (6)

c1 ; TrI(c2) = TrI(c1 ⊗ idI ; c2) (7)
TrI(c1) ; c2 = TrI(c1 ; c2 ⊗ idI) (8)

0⊗ I = I = I ⊗ 0 (9)
(I1 ⊗ I2)⊗ I3 = I1 ⊗ (I2 ⊗ I3) (10)

if I = I ′, J = J ′ then
I → J = I ′ → J ′ (11)

Figure 5: Equations for connectors, interfaces, and types – based on properties of traced
symmetrical monoidal categories.

2.3. Type rules
Every connector c has an input interface I and an output interface J , written

c : I → J . We call these two interfaces the type of the connector. Every primitive
has a fixed type, for example, fifo : 1 → 1 and ∇1⊗1 : 1 ⊗ 1 → 1. The typing
rules for connectors (Figure 6) reflect the fact that two connectors can only be
composed sequentially if the output interface of the first connector matches the
input interface of the second one. A connector is well-connected if and only if
it is well-typed.

(sequence)

` c1 : I1 → J
` c2 : J → J2

` c1 ; c2 : I1 → J2

(parallel)

` c1 : I1 → J1
` c2 : I2 → J2

` c1 ⊗ c2 : I1 ⊗ I2 → J1 ⊗ J2

(trace)

` c : I1 ⊗ J → I2 ⊗ J
` TrJ(c) : I1 → I2

(sym)

` γI,J : I ⊗ J → J ⊗ I

(id)

` idI : I → I

(prim)

p : I → J ∈ P
` p : I → J

Figure 6: Type rules for basic connectors.

For example, using these type rules it is possible to infer the type of the con-
nector Tr1⊗1(γ1⊗1,1 ; (fifo⊗fifo⊗fifo)) to be 1→ 1, but no type could be inferred

6



after removing one occurence of fifo. This connector is chaining in sequence 3
parallel fifo connectors (i.e., it is equivalent to the connector fifo; fifo; fifo).

The type rules from Figure 6 rely on the syntactic comparison of interfaces,
e.g., rule (sequence) allows c1 and c2 to be composed only if the output interface
J of c1 is syntactically equivalent to the input interface of c2. To support
more complex notions of interfaces we use the constraint-based type rules from
Figure 7, which explicitly compare interfaces that must be provably equivalent
(based on the equations for connectors and interfaces, and other properties
of traced symmetrical monoidal categories) instead of syntactically comparing
them. Rules (sym), (id), and (prim) remain the same, only with the context. The
typing judgements now include a context Γ |φ consisting both of a set of typed
variables Γ (that will only be used in the next section) and a set of constraints φ
that must hold for the connector to be well-typed. The context must be always
well-formed, i.e., Γ cannot have repeated variables and φ must have at least one
solution.

Observe that the (trace) rule introduces variables XI and XJ representing
interfaces, which are not in the syntax of interfaces. These variables are used
to decompose an interface into the (tensor) composition with another constant
interface.

(sequence)

Γ |φ ` c1 : I1 → J1 Γ |φ ` c2 : I2 → J2

Γ |φ, J1 = I2 ` c1 ; c2 : I1 → J2
(trace)

Γ |φ ` c : J1 → J2

Γ |φ, J1=XI⊗I, J2=XJ⊗I ` TrI(c) : XI → XJ

Figure 7: Constraint-based type rules.

Type preservation of equations for connectors The equations for con-
nectors in Figure 5 preserve types. We prove this property for 4 equations, and
the other proofs follow a similar approach.

Identity. We show that, when c : I → J , the types of idI ; c, c and c; idJ are the
same up to the interface equalities. The type rules yield the type judgements
[I=I ` idI ; c : I → J ], [` c : I → J ] and [J=J ` c ; idJ : I → J ], which are
equivalent since I = I and J = J always hold.

Associativity. We show that, for any ci : Ii → Ji with i ∈ {1, 2, 3}, the type
of (c1 ⊗ c2) ⊗ c3 is the same as the type of c1 ⊗ (c2 ⊗ c3) up to the interface
equalities. Indeed, type rules yield the types (I1⊗ I2)⊗ I3 → (J1⊗J2)⊗J3 and
I1 ⊗ (I2 ⊗ I3)→ J1 ⊗ (J2 ⊗ J3), respectively, which are indeed equal.

Trace yanking. We show that, for any interface I, TrI(γI,I) and idI have the
same type. The type rules yield the type judgements [I ⊗ I = XI ⊗ I, I ⊗ I =
XJ ⊗ I ` TrI(γI,I) : XI → XJ ] and [` idI : I → I], respectively. These types

7



are indeed the same because I⊗I = X⊗I has a unique solution (up to equality
defined for interfaces) where X = I.

Trace naturality. We show that, for any c1 : I1 → J1 and c2 : J1 ⊗ I → J2 ⊗ I,
the types of c1 ; TrI(c2) and TrI(c1⊗ idI ; c2) are the same. The type rules yield,
respectively, the type judgements [J1 = J1, J1 ⊗ I = XI ⊗ I, J2 ⊗ I = XJ ⊗ I `
c1 ; TrI(c2) : I1 → XJ ] and [I1⊗ I = X ′I ⊗ I, J2⊗ I = X ′J ⊗ I, J1⊗ I = J1⊗ I `
c1 ; TrI(c2) : X ′I → X ′J ]. These are indeed the same because the only solutions
for the constraints in the type judgements are XI = J1, XJ = J2, X ′I = I1, and
X ′J = J2, making both types the same as I1 → J2 (after applying the solution).

2.4. Connector behaviour
Semantics for the behaviour of connectors can be given in various ways.

For this paper we use the Tile Model [1], as it aligns closely with the algebraic
presentation of connectors. We also use the Reo coordination language—more
specifically its context independent semantics [4]—as the behaviour of our prim-
itive connectors, whose visual representation has been being used.

We use the same ideas from the Tile Model proposed for Reo [4], using
a variation of the category used to describe connectors. Each connector in
the Tile Model consists of a set of tiles, one for each possible behaviour, as
exemplified in Figure 8. Each of these tiles contains 4 objects, which belong to
two monoidal categories with the same objects, and 4 morphisms between pairs
of objects. Visually, a tile is depicted as a square with an object in each corner
and with morphisms on the sides of this square. These morphisms go from left to
right and from top to bottom: horizontal morphisms are from one category H,
describing the construction of a connector, and the vertical morphisms are from
another category V, describing the evolution in time of the connector. More
specifically, horizontal morphisms are connectors as specified in Figure 3, and
objects are interfaces. Vertical morphisms are either flow, noFlow, or a tensor
product of these (with identity 0), representing a step where data flows over
the ports where the flow morphism is applied, and data does not flow over the
ports where noFlow is applied. Other vertical monoidal categories can be used,
inducing a different semantics for connectors; for example one could include a
different morphism flowd for each data value d being sent, allowing the semantics
to depend on data being sent, or could include two different notions of noFlow
to model context dependency as in connector colouring’s semantics [8].

1 1

1 1

flow flow

1 1

1 1

noFlow noFlow

1 1

1 1•
flow noFlow

1 1

1 1

noFlow noFlow

Figure 8: Tiles for the behaviour of the id1 (left) and the empty fifo (right) connectors.

Primitive tiles The examples in Figure 8 describe the tiles for the id1 and
the fifofull primitive. For simplicity, we write c1

v1−→
v2

c2 (following [1, 4]) to

8



denote a tile with horizontal morphisms (i.e., connectors) c1 and c2, and with
vertical morphisms (i.e., evolutions) v1 and v2. In the fifo example, its 2 tiles
are fifo flow−→

noFlow
fifofull and fifo noFlow−→

noFlow
fifo. The behaviour of fifofull, in turn, is given

by
{
fifofull noFlow−→

flow
fifo, fifofull noFlow−→

noFlow
fifofull

}
, meaning it can either have dataflow

in its sink port (and becoming a fifo) or no dataflow at all. The behaviour (set
of possible tiles) of other primitives used in this paper can be found in Figure 9.

γ1,1 =

{
γ1,1

flow−→
noFlow

γ1,1 , γ1,1
noFlow−→
flow

γ1,1 , γ1,1
flow−→
flow

γ1,1 , γ1,1
noFlow−→
noFlow

γ1,1

}

∆1⊗1 =

{
∆1⊗1

flow−→
flow⊗flow

∆1⊗1 , ∆1⊗1
noFlow−→

noFlow⊗noFlow
∆1⊗1

}

∇1⊗1 =

{
∇1⊗1

flow⊗noFlow−→
flow

∇1⊗1 , ∇1⊗1
noFlow⊗flow−→

flow
∇1⊗1 , ∇1⊗1

noFlow⊗noFlow−→
noFlow

∇1⊗1

}

TrI(c1) =

{
TrI(c1)

v1−→
v2

TrI(c2)
∣∣∣ ∃(v : I → I) ∈ V · c1

v1⊗v−→
v2⊗v

c2 exists
}

id1 =

{
id1

flow−→
flow

id1 , id1
noFlow−→
noFlow

id1

}

sdrain =

{
sdrain flow−→

flow
sdrain , sdrain noFlow−→

noFlow
sdrain

}

lossy =

{
lossy flow−→

flow
lossy , lossy flow−→

noFlow
lossy , lossy noFlow−→

noFlow
lossy

}

Figure 9: Behaviour of primitive connectors using tiles.

Tile composition Tiles can be composed horizontally, vertically, and in
parallel [3, 4, 1]. Two tiles can be composed horizontally if their right and
left morphisms match, respectively; can be composed vertically if their down
and up morphisms match, respectively; and can always be composed in parallel
by combining with ⊗ all their morphisms and objects. Formally, let ◦ be the
composition of morphisms in the vertical category V, then:

c1
v1−→
v
c2 ; c′1

v−→
v2

c′2 = (c1; c′1)
v1−→
v2

(c2; c′2) (12)

c1
v1−→
v2

c ◦ c v′1−→
v′2

c2 = c1
v′1◦v1−→
v′2◦v2

c2 (13)

c1
v1−→
v2

c2 ⊗ c′1
v′1−→
v′2

c′2 = c1 ⊗ c2
v1⊗v′1−→
v2⊗v′2

c′1 ⊗ c′2 (14)

9



Examples Consider the simple connector obtained from composing a fifo with
a ∆1⊗1 (that we will simply denote as ∆). The semantics of fifo ; ∆ is given
by combining the possible tiles of fifo and ∆. Figure 10 depicts the possible
horizontal combinations of tiles.

1 1

1 1•
flow noFlow ;

1 1⊗ 1

1 1⊗ 1

noFlow noFlow ⊗ noFlow =
1

1 •
flow

1⊗ 1

1⊗ 1

noFlow ⊗ noFlow

1 1

1 1

noFlow noFlow ;
1 1⊗ 1

1 1⊗ 1

noFlow noFlow ⊗ noFlow =
1

1

noFlow

1⊗ 1

1⊗ 1

noFlow ⊗ noFlow

Figure 10: Combining tiles to give the semantics of fifo ; ∆. No other pairs of tiles can be
combined with ‘;’.

The vertical composition of tiles is illustrated in Figure 11, exemplifying
a possible composition of (4) tiles that describe a possible evolution of the
connector fifo ; fifo, where data initially flows into an empty FIFO buffer, and
later it flows from that buffer to a second FIFO buffer.

1 1 1

1 1 1

1 1 1

•

•

flow noFlow noFlow

noFlow flow noFlow

Figure 11: Horizontal and vertical composition of tiles yielding a possible execution of fifo ; fifo.

Type preservation for Reo We showed in Section 2.3 that the non-exhaustive
list of equations of connectors preserves types. We now repeat this process for
the tile semantics of Reo. More specifically we show that, given the Reo primi-
tives presented above (Figure 10 and the fifo connector), a well-typed connector
c can only evolve to well-typed connectors, i.e., if c v1−→

v2
c′ and c has type T ,

then c′ also has type T . We do this by induction on the structure of the tiles.

Stateless primitives. Stateless primitives are connectors c that have only tiles
with shape c v1−→

v2
c, i.e., that never change after an evolution step. These include

most of the connectors: idI , γI,J , ∆I , ∇I , sdrain, and lossy. In this case types
are trivially preserved, as the connector is not modified.

Fifo connector. The types of the connectors fifo and fifofull are also trivially
preserved, because they both have the fixed type 1 → 1 and only use the tiles
fifofull noFlow−→

flow
fifo and fifofull noFlow−→

noFlow
fifofull.

10



Traces. We show that any tile TrI(c)
v1−→
v2

TrI(c
′) preserves types, i.e., the types

of TrI(c) and TrI(c
′) are the same. If TrI(c) is well-typed, then by rule (trace)

TrI(c) : XI → XJ if c : J1 → J2, J1 = XI ⊗ I and J2 = XJ ⊗ I. By the
definition of the tile we conclude that c v1⊗v−→

v2⊗v
c′ must exist, for some v : I → I.

By induction we now conclude that c′ : J1 → J2, and using again the type rule
(trace) (and knowing that J1 = XI ⊗ I and J2 = XJ ⊗ I) we conclude that
TrI(c

′) : XI → XJ .

Tile horizontal composition – ; . Following Eq. (12), (c1; c′1) can evolve via tiles
with shape c1; c′1

v1−→
v2

c2; c′2 when the smaller tiles c1
v1−→
v
c2 and c′1

v−→
v2

c′2 exist,

for some vertical morphism v. We show that, when (c1; c′1) : I1 → J ′1, then also
(c2; c′2) : I1 → J ′1. The type rule (sequence) states that c1 : I1 → J1, c′1 : I ′1 → J ′1,
and J1 = J ′1. From the smaller tiles, we conclude by induction that c2 : I1 → J1
and c′2 : I ′1 → J ′1. Finally, using again the type rule (sequence) and knowing that
J1 = J ′1 we conclude that (c2; c′2) : I1 → J ′1.

Tile vertical composition – ◦. Following Eq. (13), every tile c1
v′1◦v1−→
v′2◦v2

c2 can be

decomposed into the tiles c1
v1−→
v2

c and c
v′1−→
v′2

c2, for some morphism c. By

induction, we can directly conclude that, if c1 : T , then also c : T and c2 : T ,
hence c1 and c2 have the same type.

Tile parallel composition – ⊗. Following Eq. (14), (c1 ⊗ c2) can evolve via tiles

with shape c1 ⊗ c′1
v1⊗v′1−→
v2⊗v′2

c2 ⊗ c′2 when the smaller tiles c1
v1−→
v2

c2 and c′1
v′1−→
v′2

c′2

exist. The type rule (parallel) states that c1⊗c′1 : I1⊗I ′1 → J1⊗J ′1 if c1 : I1 → J1
and c′1 : I ′1 → J ′1. By induction, we conclude that also c2 : I2 → J2 and
c′2 : I ′2 → J ′2. Finally, using again the type rule (parallel) we conclude that
c2 ⊗ c′2 : I1 ⊗ I ′1 → J1 ⊗ J ′1 (the same type as c1 ⊗ c′1).

3. Parameterised Connector Calculus

Connectors are now extended in two ways: (i) by adding integer and boolean
expressions to control n-ary replication and conditional choice, and (ii) by
adding free variables that can be instantiated with either natural numbers or
booleans. These variables are also used in the connector types, previously writ-
ten as I → J , which are now given by the grammar:

T ::= I → J | ∀x :P · T
where x is a variable and P ∈ {N,B} represents a primitive type that can be
either the natural numbers (N) or booleans (B).

This section introduces the extended syntax and some of its properties, de-
scribes motivating examples, and extends the type rules for the connector types
described above with boolean and integer parameters.

11



3.1. Syntax
The extended syntax of connectors and interfaces with integers and booleans

is defined in Figure 12. We write cα (resp. Iα) instead of cx←α (resp. Ix←α)
when x is not a free variable in c.

c ::= . . . connectors
| cx←α n-ary parallel replication
| c1 ⊕φ c2 conditional choice
| λx :P · c parameterised connector
| c(φ) bool-instantiation
| c(α) int-instantiation

I ::= . . . interfaces
| Ix←α n-ary parallel replication
| I ⊕φ J conditional choice

α, β integer expressions
φ, ψ boolean expressions

Figure 12: Extended syntax of connectors (left) and interfaces (right).

This paper does not formalise integer and boolean expressions with typed
variables, since the details of these expressions are not relevant. The semantics
of the n-ary parallel replication, the conditional choice, and the instantiation of
parameters2 is captured by the new equations in Figure 13. These equations
include a new notation—c[v/x] and I[v/x]—that stands for the substitution of
all variables x in c and I that appear freely (i.e., not bounded by a λ or a ∀
quantifier) by the expression v.3 This paper does not formalise free variables
nor substitution, which follow the standard definitions.

cx←α = c[0/x]⊗ . . .
. . .⊗ c[α−1/x] (15)

c1 ⊕true c2 = c1 (16)

c1 ⊕φ c2 = c2 ⊕¬φ c1 (17)

c⊕φ c = c (18)
(λx :P · c)(v) = c[v/x] (19)

Ix←α = I[0/x]⊗ . . .
. . .⊗ I[α−1/x] (20)

I ⊕true J = I (21)

I ⊕φ J = J ⊕¬φ I (22)

I ⊕φ I = I (23)

I ⊕φ J = I ⊕φ
′
J (if φ↔ φ′) (24)

∀x : P · T = ∀x : P · T ′ (if T = T ′) (25)

Figure 13: Equations for connectors, interfaces, and types for the parameterised calculus.

Examples Although this extension allows an n-ary composition in parallel
of connectors and not in sequence, n-ary sequences of connectors can also be
expressed by using traces, as exemplified in the general sequence of fifo connec-
tors in Figure 14. We write expressions such as n − 1 instead of the interface
1n−1 for simplicity, when it is clear that these expressions represent interfaces.
Observe that this example has been mentioned in the end of Section 2.3, for

2Known as β-reduction in lambda calculus.
3Note that, when α ≤ 0, cx←α = id0 and Ix←α = 0.

12



the specific case of 3 fifos in sequence, already defined using traces and parallel
replication.

The example in Figure 15 is more complex, and is based on the sequencer
connector found in Reo-related literature [5]. This connector forces n (syn-
chronous) streams of data to alternate between which one has dataflow. A
sequencer with size n has three inputs and three outputs: it starts by allowing
data from the first input to flow to the first output atomically, it then allows
the second input to flow to the first output, and so on. After the nth input and
output it starts over by allowing the first input and output to flow data. It uses
the zip and unzip connectors to combine γ connectors (symmetries) in order to
regroup sequences of pairs into a pair of sequences and vice-versa. The top part
of the figure defines the zip connector based on the function seq introduced in
Figure 14, and instantiates this function with n = 3. This instantiation provides
a better intuition about the zip connector, and its visual representation unfolds
the trace for readability.

seq-fifo =
λn :N ·
Trn−1
(fifon ; γn−1,1)

More generally:
seqnx(c : I → I) =
TrIn−1

(cx←n ; γIn−1,I)

Figure 14: A sequence of n fifo connectors, and a function that generalises the sequence of
connectors equal input and output interfaces.

zip = λn :N·
seqnx(idn−x⊗ γx1,1⊗ idn−x)

e.g.:


zip(3) = Tr12((

id3−x⊗ γx1,1
⊗ id3−x

)
x←3

; γ12,6

)
≈

sequencer = λn :N ·
(∆n ; unzip(n))⊗ Trn(γn−1,1 ;

(fifofull; ∆2)⊗
(fifo; ∆2)n−1 ; unzip(n)) ;

idn ⊗ (zip(n) ; drainn)

unzip = λn :N·
seqnx(idx+1⊗ γn−x−11,1 ⊗ idx+1)

unzip(n)

unzip(n)

zip(n)•

Figure 15: Zip connector and one of its instance (top), and an n-ary sequencer (bottom).

The details about the behaviour of the sequencer connector are out of the
scope of this paper. However, observe that the visual representation is no longer
precise enough, since the dotted lines only help to provide intuition but do not

13



specify completely the connector. The parameterised calculus, on the other
hand, precisely describes how to build a n-ary sequencer for any n ≥ 0.

3.2. Parameterised type rules
The extended type rules are presented in Figure 16, which now use the

context Γ consisting of a set of variables and their associated primitive type (B
or N).

(parameterisation)

Γ, x :P |φ ` c : T

Γ |φ ` λx :P · c : ∀x :P · T

(choice)

Γ |φ ` ψ : B Γ |φ ` c1 : I1 → J1
Γ |φ ` c2 : I2 → J2

Γ |φ ` c1 ⊕ψ c2 : I1⊕ψI2 → J1⊕ψJ2
(replication)

Γ |φ ` α : N Γ, x :N |φ ` c : I → J

Γ |φ ` cx←α : Ix←α → Jx←α

(instantiation)

Γ |φ ` v : P Γ |φ ` c : ∀x :P · T
Γ |φ ` c(v) : T [v/x]

Figure 16: Parameterised type rules—x /∈ φ means x does not appear in φ. Previous type
rules remain unchanged.

The actual verification of the type of the boolean and integer variables is
done during the type-checking of boolean and integer expressions, which is well
known and not defined in this paper. Hence the new type rules have some gray
premises, corresponding to the type rules for booleans and integer expressions.
The typing judgement Γ |φ ` c :T means that, given a set of typed variables Γ
and a constraint φ with variables that do not need to be in Γ, the type of c must
be T , the free variables in c and T must be in Γ, and φ must be satisfiable. The
typing judgement Γ |φ ` e :P for integer and boolean expressions means that
Γ ` e :P (i.e., the variables in the boolean or integer expression e have the type
specified in Γ) in a context where φ is satisfiable. The notation T [e/x] denotes
the substitution of free occurrences of x in T by the expression e, similarly to the
substitution in connectors, also not formalised here. Observe that the constraint
ψ in the (choice) rule does not influence the typing of c1 and c2. Intuitively, if
ψ and ¬ψ was to be added to the context when typing c1 and c2, respectively,
then very likely one of these branches would have false in the context, meaning
it could not be typed.

Example We illustrate the usage of these type rules by building the derivation
tree for the seq-fifo connector (Figure 17), where we illustrate how to calculate
the type of this connector by consecutively applying type rules. For simplicity,
we write Trn and γn,m to denote Tr1n and γ1n,1m . At every step of this derivation
tree the context is well-formed (Γ has no repeated variables and φ is always
satisfiable). From the existence of this derivation tree one can conclude that the
seq-fifo connector is well-typed, and by further analysing the constraints in the
context using the equations for interfaces and types it is possible to simplify the
type to ∀n :N · 1→ 1.

14



∅ | 1n = 1n−1 ⊗ 1, 1n−1 ⊗ 1 = XI ⊗ 1n−1, 1n = XJ ⊗ 1n−1

` λn :N · Trn−1(fifon ; γn−1,1) : ∀n :N ·XI → XJ

pa
ra
m
et
er
is
at
io
n



n :N | 1n = 1n−1 ⊗ 1, 1n−1 ⊗ 1 = XI ⊗ 1n−1, 1n = XJ ⊗ 1n−1

` Trn−1(fifon ; γn−1,1) : XI → XJ

tr
ac
e



n :N | 1n = 1n−1 ⊗ 1
` fifon ; γn−1,1 : 1n → 1⊗ 1n−1

se
qu

en
ce


n :N |∅
` fifon : 1n → 1n

re
pl
.

[
n :N |∅ ` n :N
n :N |∅ ` fifo : 1→ 1

n :N |∅ ` γn−1,1 : 1n−1 ⊗ 1→ 1⊗ 1n−1

Figure 17: Derivation tree for the seq-fifo connector; contexts are represented in grey.

Type preservation of equations for connectors The equations for con-
nectors, also including the extension in Figure 13, preserve the type rules for
parameterised connectors. We prove this for only a couple of cases—the remain-
der can be proven in a similar way.

Replication. We show that, for any c : I → J with a free integer variable x
and any integer expression α, the types of cx←α and c[0/x] ⊗ . . . ⊗ c[α − 1/x]
are the same. Let the type rules yield the type judgement for c of x :N | φ `
c : I → J . The type rules of the two expressions yield, respectively, the types
Ix←α → Jx←α and I[0/x]⊗ . . .⊗ I[α− 1/x]→ J [0/x]⊗ . . .⊗J [α− 1/x]. These
types are the same based on Eq. (20) from Figure 13

Choice negation. We show that, for any c1 and c2, c1 ⊕φ c2 and c2 ⊕¬φ c1 have
the same type. This can be quickly verified by applying the type rules and
verifying that I ⊕φ J = J ⊕¬φ I.

Instantiation. We show that, for any connector c : T with a possible free variable
x : P and value v : P , the types of (λx :P · c)(v) and c[v/x] match. On one
hand the type rules yield the typing judgement ∅|φ ` λx :P · c : ∀x : P · T ,
and applying the (instantiation) rule ∅|φ ` (λx :P · c)(v) : T [x/v]. On the other
hand the typing judgement for c is x : P |φ ` c : T . Hence one must still prove
that ∅|φ ` c[v/x] : T [v/x] can be inferred. This can be proved by induction on
the structure of c: for every type rule one can show that, when some connector
c′ has type T ′, then also c′[v/x] will have type T ′[v/x]. The key observation
is that x can occur in explicit interfaces in c′ (idI , TrI(·), and γI,J), in integer
expressions (cx←α), and in boolean expressions (c1⊕φ c2). In any of these cases
the expected type equality can be verified.

3.3. Behaviour of parameterised connectors
This section introduced so far parameters and (boolean and integer) ex-

pressions to the syntax of connectors and interfaces. We now show that these

15



parameterised connectors and interfaces still form a monoidal category, after
the necessary adjustments. Furthermore, we present a new vertical monoidal
category to describe the behaviour of parameterised Reo connectors.

The type system introduced above gives to each connector c a type with
the shape ∀x1 : P1 · ∀xn : Pn · · · I → J . When looking at these connectors as
morphisms, the objects can no longer be standard interfaces (as in Figure 12),
but they need to include the scope of the variables, given the grammar below.

IP ::= I | ∀x :P · IP
Similarly to types in Figure 13, we extend the equations for interfaces with the
equality ∀x : P ·I = ∀x : P ·I ′ whenever I = I ′. It can be easily verified that the
category with objects IP and morphisms given by parameterised connectors is
still a traced symmetric monoidal category, as with the basic connector calculus
(Section 2). In this category, the composition of 2 parameterised connectors
requires their parameters and interfaces to match, and every connector c : ∀x :
P ·I → J will connect objects ∀x : P ·I and ∀x : P ·J with common parameters.
For example, composing λn : N · c1 ; λn : N · c2 yields the connector λn : N ·
(c1; c2). Observe that this connector composition is very restrictive in practice,
since it forces the matching of interfaces to use the same variables, and is not
captured (yet) by the type rules. The following section (Section 4) will present
a more relaxed approach to compose parameterised connectors whose interfaces
are similar enough, i.e., when they can be restricted until their interfaces match.

The vertical monoidal category presented in Section 2.4 is adapted to also
include parameters. This new category has again the objects IP , and the mor-
phisms are not only the ones shown before (noFlow, flow, and the tensor product
of morphisms) but also new morphisms that instantiate variables. More specif-
ically, for every number vn, boolean vb, and variables n :N and b :B, the mor-
phism inst(n 7→ vn) is the unique arrow (∀n :N ·I)→ I[vn/n] and the morphism
inst(b 7→ vb) is the unique arrow (∀b :B · I)→ I[vb/b]. Intuitively, this notion of
behaviour means that families of connectors can only be executed after being
instantiated, and this instantiation is made via morphisms in the same category
that describes the evolution of connectors.

For every parameterised connector c with type ∀x :P · (I → J), we define
one tile for each value v of P (a number or a boolean), as depicted on the left of
Figure 18. For example, the semantics of the parameterised connector fn with
n parallel fifos is given by a set of tiles, one for each natural number i, that
instantiate the n-ary connector to the more concrete connector fn(i). When
i = 2, the corresponding tile is the one on the right of Figure 18.

Type refinement (not preservation) for parameterised connectors We
showed in Section 3.3 that the tile semantics for Reo preserves types, i.e., that
for every tile c v−→

v′
c′ the type of c and c′ are the same. We introduced above

a new set of vertical morphisms that break type preservation: every time a
connector is instantiated, its type is refined to a more particular one. Hence we
need to use a weaker notion of type preservation. Our weaker notion says that,
if c has type T and can evolve to c′, then the type T ′ of c′ must be a refinement

16



∀x:P · I ∀x:P · J

I[v/x] J [v/x]

c

c(v)

inst(x 7→ v) inst(x 7→ v)

∀n:N · 1n ∀n:N · 1n

12 12

λn:N · fifon

fifo2
inst(n 7→ 2) inst(n 7→ 2)

Figure 18: Tile for a parameterised connector c that instantiates x as v (left), and example of
a tile for a family of n parallel fifo connectors by instantiating n with 2 (right).

of T , which we define below.
Here refinement has a similar (but stricter) meaning to its usage the context

of refinement types [9], where a type T ′ is a refinement of T if it is subject to
constraints that restricts its variables. Formally, we say a parameterised type
∀x′ :P ′ · T ′ refines the type ∀x :P · T if there is a substitution σ—assigning
variables from x to values or variables—that makes T ′[σ] equal to T . I.e., a
type can be refined by instantiating and renaming some of its variables.

To show that the evolution of families of Reo connectors, under the tile
semantics, refines types, we only need to observe the following two points.

• Tiles that preserve types, such as the ones used in Section 3.3, also refine
types (since any type T refines T ).

• If c
inst(x 7→ v)−→
inst(x 7→ v)

c(v) then there exists x, P, I, J such that c is an arrow from

(∀x :P · I) to (∀x :P · J), and c′ is an arrow from I[v/x] to J [v/x]. This
means that c has type ∀x :P, x′′ :P ′′ · I → J and c′ has type (∀x′′ :P ′′ ·
I → J)[v/x], for some x′′ :P . Therefore, by the definition of refinement
presented above, the type of c(v) refines the type of c.

4. Connector families

This section introduces connector families: parameterised connectors that
can (i) be restricted by given constraints ψ, written c |ψ, and (ii) be composed
with each other—sequentially, in parallel, via the choice or replication operators,
or within traces. These restricted and composable connector families represent
families in the same sense as software families in the context of software product
lines (SPL) engineering [10]. The added constraints represent the family, which
in the SPL community are often derived from feature models.

4.1. Restricted connectors and types
Connectors can now be written as c |ψ, meaning that the connector c is

restricted by the constraint ψ. For example, the connector with at most 5 fifo
connectors in parallel can be written as λn :N · (fifon |n≤5). The type of this
connector is written similarly as ∀n :N · n → n |n≤5. More formally, types now

17



c |true = c (26)

c1 |ψ1
= c2 |ψ2

iff

∀σ1 · σ1 |= ψ1 ⇒
(
∃σ2 · σ2 |= ψ2 ⇒

(
c1[σ1] = c2[σ2]

))
and

∀σ2 · σ2 |= ψ2 ⇒
(
∃σ1 · σ1 |= ψ1 ⇒

(
c1[σ1] = c2[σ2]

))
(27)

Figure 19: Equations for connectors and types – only the rules for connectors are included
above because the rules for types are analogous to these above, simply replacing the connectors
(c1, c2) by types (T1, T2).

(restriction)

Γ |φ ` ψ Γ |φ, ψ ` c : T

Γ |φ ` c |ψ : T |ψ

(parallel)

Γ |φ ` c1 : I1 → J1 |ψ1 Γ |φ ` c2 : I2 → J2 |ψ2

Γ |φ ` c1 ⊗ c2 : I1 ⊗ I2 → J1 ⊗ J2 |ψ1,ψ2

Figure 20: Adding restrictions to types. Other rules remain almost the same, adapted in a
similar way to the (parallel) rule.

include these constraints, also called type families, given by TF in the following
grammar.

TF ::= tf | ∀x :P · TF
tf ::= I → J | tf |ψ

For readability we will continue to use the letter T for types instead of TF . The
new equation that captures the semantics of the restriction operator is shown
in Figure 19. The second equation (Eq. (27)), capturing the general case, states
that two restricted connector are equivalent if any (valid) substitution on the
first connector can be matched by a (valid) substitution on the second, and vice-
versa. The main type rules are presented in Figure 20. The new rule (restriction)
introduces a constraint ψ from the connector to the context. All other rules are
adapted in a similar way to the (parallel) rule, by simply collecting the restriction
constraints in the conclusions of the rules. For readability we write ‘ψ1, ψ2’ to
denote ‘ψ1 ∧ ψ2’. A connector c is now well-typed if there is a derivation tree
∅ |φ ` c : ∀x :P · T |ψ such that φ ∧ ψ is satisfiable, i.e., ψ has at least one
solution that does not contradict at least one solution of φ. This approach
resembles Jones’s qualified types [11], where types can be qualified with general
predicates; in our work predicates can include only integer and boolean variables,
and are not over type variables.

Example Recall the parameterised sequence of fifos from Figure 17. They
can be restricted to sequences of at most 5 fifos, yielding the typing judgement:

∅ | 1⊗ (n− 1) = 1n , (n− 1)⊗ 1 = XI ⊗ (n− 1) , 1n = XJ ⊗ (n− 1)

` λn :N · (Trn−1(γn−1,1 ; fifon) |n≤5) : ∀n :N ·XI → XJ |n≤5

18



(fam-parallel)

Γ |φ ` c1 : ∀x1 :T1 · I1 → J1 |ψ1
Γ |φ ` c2 : ∀x2 :T2 · I2 → J2 |ψ2

x1 ∩ x2 = ∅
Γ |φ ` c1 ⊗ c2 : ∀x1 :T1, x2 :T2 · I1 ⊗ I2 → J1 ⊗ J2 |ψ1,ψ2

(fam-sequence-1)

Γ |φ ` c1 : ∀x :T · I1 → J1 |ψ Γ |φ ` c2 : ∀x :T · I2 → J2 |ψ
Γ |φ ` c1 ; c2 : ∀x :T · I1 → J2 |ψ,J1=I2

(fam-sequence-2)

Γ |φ ` c1 : ∀x1 :T1 · I1 → J1 |ψ1
Γ |φ ` c2 : ∀x2 :T2 · I2 → J2 |ψ2

x1 ∩ x2 = ∅
Γ |φ ` c1� c2 : ∀x1 :T1, x2 :T2 · I1 → J2 |ψ1,ψ2,J1=I2

(fam-replication)

Γ |φ ` α : N
Γ, x :N |φ ` c : ∀x′ :P · I → J |ψ

Γ |φ
` cx←α : ∀x′ :P · Ix←α → Jx←α |ψ

(fam-choice)

Γ |φ ` ψ : B
Γ |φ ` c1 : ∀x1 :T1 · I1 → J1 |ψ1

Γ |φ ` c2 : ∀x2 :T2 · I2 → J2 |ψ2

Γ |φ ` c1⊕ψc2 : ∀x1 :T1, x2 :T2 ·
I1⊕ψI2 → J1⊕ψJ2 |ψ→ψ1,¬ψ→ψ2

(fam-trace)

Γ |φ ` c : ∀x :P · J1 → J2 |ψ
Γ |φ ` TrI(c) : ∀x :P ·XI → XJ |ψ,J1=XI⊗I,J2=XJ⊗I

Figure 21: Type rules for the lifted composition operators of connectors.

The conjunction of the above constraints is satisfiable: the possible solutions
map XI and XJ to 1, and map n to any value between 0 and 5. Hence the
connector is well-typed.

4.2. Family composition
Parameterised connectors (Section 3) allow integer and boolean expressions

to influence the final connector. However, the existing type rules for compos-
ing connectors do not describe how to compose connectors with parameters.
The type rules in Figure 21 add support for composing connector families via
the operators ‘;’ and ‘�’. The composition of two parameterised connectors
with ‘;’ requires the variables and the restrictions of matching interfaces to be
the same, making this composition closer to the categorical composition of mor-
phisms. The composition of two parameterised connectors with � produces
a new connector parameterised by the parameters of both connectors and re-
stricted by both restrictions. We write ∀x :P to represent a (possibly empty)
sequence of nested pairs ∀x :P . Note that connectors without parameters and
restrictions are specific instances of connector families; indeed, the new rules
(fam-*) coincide with their simpler counterparts whenever the set of parameters
and restrictions are empty.

Examples The two connectors below have the same type: ∀x1 :N, x2 :N, x3 :N·
1x1 → 1x2 ⊗ 1x3 , under a context where 1x1 = 1x2 ⊗ 1x3 . The first composes 3

19



connector families, while the second is a family that composes 3 connectors.

(λx1 :N · idx1
1 )�(λx2 :N · idx2

1 )⊗ (λx3 :N · idx3
1 ) (composition of families)

λx1 :N, x2 :N, x3 :N · (idx1
1 ; idx2

1 ⊗ idx3
1 ) (family of compositions)

Observe that the modularity gain with the composition of families is achieved
by serialising all input arguments. I.e., it is possible to compose λ-connectors
by grouping all of their arguments in a single sequence. As a consequence the
tensor product ⊗ does not obey the distributive property (c1� c2)⊗(c3� c4) =
(c1 ⊗ c3)�(c2 ⊗ c4) whenever the left hand side exists when composing connec-
tor families, since the serialisation of the arguments produces different orders.
For example, the composition (λx :N·f � λy :N·g) ⊗ (λz :N·h � id) has type
∀x :N, y :N, z :N ·T , for some type T , while (λx :N·f ⊗λz :N·z)� (λy :N·h⊗ id)
has type ∀x :N, z :N, y :N · T , where the order of the parameters is different.
However, this distributed property is preserved for the categorical composition
(;) of connectors. This is because λx :N·f �λy :N·g cannot be well typed, since
it requires both terms to be over the same variable.

Type preservation of equations for connectors Each connector type de-
notes a (possibly empty) family of types, in the sense that it includes a restriction
constructor (as defined in Section 4.1) that may have unsatisfiable constraints.
Hence some of the equalities used previously to show type preservation need to
be adapted to this family setting. Furthermore, the role of the constraints in the
context changed, since the type rules for families allow such constraints to refer
to variables (which must be in the context). Hence the type preservation argu-
ment is now reformulated: for any variable context Γ such that Γ|φ1 ` c1 : T1
and Γ|φ2 ` c2 : T2, for some c1, c2, φ1, φ2, T1, T2, it must hold that

c1 = c2 ⇒ (T1 = T2 and φ1 ↔ φ2).

We sketch the key arguments to prove the equality of restrictions introduced
in Figure 19, and leave as future work the exploration of properties (i.e., type
preserving equations) of the composition operator �, since it does not obey the
properties of a composition of morphisms in the category.

Let c1 |ψ1
= c2 |ψ2

; from where we get the two type judgements Γ|φ1 ` c1 :
T1 |ψ1 and Γ|φ2 ` c2 : T2 |ψ2 . By definition of equality one gets that

∀σ1 · σ1 |= ψ1 ⇒
(
∃σ2 · σ2 |= ψ2 ⇒

(
c1[σ1] = c2[σ2]

))
and its symmetric property (by swapping 1 and 2). To show that T1 = T2 one
must show that

∀σ1 · σ1 |= ψ1 ⇒
(
∃σ2 · σ2 |= ψ2 ⇒

(
T1[σ1] = T2[σ2]

))
.

and its symmetric property. In the following we omit the arguments for the
symmetric property because they do not change. To show the type equality we
select σ1 and σ2 such that σ1 |= ψ1, σ2 |= ψ2, and c1[σ1] = c2[σ2]. Furthermore,
we can assume without loss of generality that σ1 and σ2 instantiate all variables
in Γ. The rest of the proof continues by applying the substitutions over the
derivation trees of c1 and c2 to produce T1[σ1] and T2[σ2] (and also φ1[σ1] and
φ2[σ2]), and showing that these terms with no variables are indeed the same.
These are omitted in this paper.

20



4.3. Behaviour of connector families
Recall that the behaviour of parameterised connectors was given by tiles

over two monoidal categories that shared the objects IP (Section 3.3), where
IP extends interfaces with scope variables to match the types of parameterised
connectors. Similarly, this section (1) extends interfaces a second time with
constraints, to match the types of connector families, and (2) presents a new
vertical monoidal category to describe the behaviour of Reo connector families.

Objects - extended interfaces The objects of our Tile Model, previously de-
fined as IP (Section 3.3), are now defined as family of interfaces with parameters
(as before) and with restrictions, defined by IF in the grammar below.

IF ::= if | ∀x :P · IF
if ::= I | if |ψ

Furthermore, we require objects to have non-empty instances, i.e., the conjunc-
tion of all restrictions ψ must be satisfiable. This follows the same principle
as requiring connector families to have a derivation tree with a satisfiable con-
straint in order to be well-typed, i.e., the requiring connector families to have
instances. We say that two interfaces in IF are equal if their possible instantia-
tions (replacing variables by values that obey the restrictions) are the same, i.e.,
the rules in Figure 19 also apply to IF after replacing the connectors (c1, c2) by
extended interfaces (IF 1, IF 2).

Morphisms - evolving families The temporal evolution (execution seman-
tics) of connectors is given by the vertical morphisms of our tile semantics. In
Section 3.3 we presented a vertical category with morphisms flow, noFlow, and
inst(x 7→ v), for any variable x and value v. We now extend these to the new ob-
jects of the vertical category IF. More concretely, we leave flow and noFlow to be
reflexive morphisms over simple interfaces, i.e., without parameters nor restric-
tions, and redefine the instantiation morphism for IF. Given a variable x :P we
define inst(x 7→ v) as the only morphism with signature (∀x :P · IF )→ IF [v/x],
defined only if IF [v/x] is either a simple interface or if it has at least one element
of the family. Intuitively, the instantiation morphism cannot produce interfaces
with unsatisfiable restrictions.

For our tile semantics we define a tile for every parameterised connector c
with type ∀x :P ·(I → J) and for every value v of P , exactly as in Section 3.3 (left
of Figure 18). The only exception is that the instantiation morphism is the one
described above, for families of interfaces (parameterised and with restriction).

Example Consider a simple variation of the n-ary FIFO1s in parallel bn-fifo =
λb :B, n :N · (fifon |n<5)⊕b fifon. This variation is parameterised by a boolean b,
indicating whether this connector has to be constrained, and a natural number n
with the size of the connector. The bn-fifo connector has type ∀b :B, n :N ·(1n⊕b
1n) → (1n ⊕b 1n) |b→n<5,¬b→true, or more simply after applying the equations
for connectors ∀b :B, n :N · 1n → 1n |b→n<5. The only 2 tiles that can be used
to evolve the connector are presented on the left of Figure 22, each capturing

21



a different instantiation of the parameter b. The bottom connector when after
the instantiation of the left side has a restriction: n < 5. Consequently, the
vertical category does not have the morphism inst(n 7→ 6) because the resulting
interfaces are 6 < 5 |16 , which does not have any instance because 6 < 5 is false.

∀b :B, n :N·
1n |b→n<5

∀b :B, n :N·
1n |b→n<5

∀n :N·
1n |n<5

∀n :N·
1n |n<5

bn-fifo

λn :N · fifon |n<5

inst(b 7→ true) inst(b 7→ true)

∀b :B, n :N·
1n |b→n<5

∀b :B, n :N·
1n |b→n<5

∀n :N·
1n

∀n :N·
1n

bn-fifo

λn :N · fifon
inst(b 7→ false) inst(b 7→ false)

Figure 22: Two only tiles that can be applied to the connector bn-fifo.

Type refinement for connector families Recall that Section 3.3 showed
that, when a parameterised connector c evolves via a tile c v−→

v′
c′, then the

type of c′ refines the one of c. We now show that this result extends from
parameterised connectors to connector families. It is enough to observe that
the tile semantics remains practically the same, with only two differences: (1)
the objects of the tiles can now include constraints, which does not affect the
semantics, and (2) the tiles that use the instantiation morphism must have a
valid outgoing interfaces (i.e., with satisfiable constraints). In both cases the
type of evolving a connector is always a refinement of the original type, since the
constraints in the types are either preserved or instantiated (without becoming
unsatisfiable).

5. Solving type constraints

This section describes an algorithm to check if the constraints produced by
the type rules are satisfiable; if so, this algorithm also provides an assignment
of variables to values or to other variables.

Constraint-based approaches to type-checking are well-known, for example,
for the lambda calculus [12, Chapter 22], where constraints are solved using an
unification algorithm. However, the unification algorithm used for the lambda
calculus is not enough for our calculus, because interfaces can include complex
expressions that cannot be just syntactically compared. Hence our algorithm
performs algebraic rewritings, uses an unification algorithm (for the simpler
cases), and invokes a constraint solver (for the more complex cases).

We focus only on untyped ports, represented by 1, which mean that any
data can go through these ports.4 Consequently, interfaces are interpreted as
integer expressions, denoting the number of ports, as we will shortly explain.

4More precisely, this means that we move from generic traced symmetric monoidal cate-
gories to a more concrete PROP category [7], where we develop our type-checking algorithm.

22



5.1. Overview
In our type-checking algorithm interfaces are interpreted as integers, by map-

ping constructors of interfaces to integer operations. For example, ([1]) = 1,
([I ⊗ J ]) = ([I]) + ([J ]), ([Iα]) = ([I]) ∗ α, and ([Ix←α]) =

∑α−1
x=0 ([I]), where ([I]) rep-

resents the interpretation of I as an integer. Both the constraints that appear
in the context and the constraints that appear in the type are combined, hence
producing a type ∀x :P · I → J |ψ, where ψ represents the conjunction of these
constraints.

We exemplify our approach using the zip connector (Figure 15), under the
restriction that n must be smaller than 5. This example was analysed auto-
matically using our prototype implementation, which will be presented in Sec-
tion 5.3 and follows closely our type rules. The type rules produce the type
∀n :N · 1x1 → 1x2 |ψ, where ψ is defined below (after interpreting the interfaces
as integer expressions), and x1, x2 are variables introduced by the (trace) rule
(Figure 7). We do not present the associated derivation tree for simplicity.

ψ =


x1 + (2∗n) ∗ (n− 1) =

∑n−1
x=0 (n− x) + (2∗x) + (n− x) ,

x2 + (2∗n) ∗ (n− 1) = (2∗n) + ((2∗n) ∗ (n− 1)) ,

((2∗n) ∗ (n− 1)) + (2∗n) =
∑n−1
x=0 (n− x) + (2∗x) + (n− x) , n < 5

Using algebraic laws such as distributivity, commutativity, and associativity of
sums and multiplications, the constraints are simplified as follows.

x1 = 2n , x2 = 2n , n < 5

The unification algorithm then produces the substitution below, leaving the
n < 5 constraint to be handled in a later phase.

[2n/x1] ◦ [2n/x2]

The final step is to verify that the remaining constraint (n < 5) is satisfiable us-
ing a constraint solver, allowing us to conclude that the connector is well-typed.
Furthermore, applying the substitution above to the type produced by the type
rules gives the most general type ∀n :N · 2n → 2n |n<5. The constraint solver
provides a solution, say {n 7→ 0}, which can be used to produce an instance of
the general type: 0→ 0.

This three-phase approach (simplification, unification, and constraint solv-
ing) can be reduced to only constraint solving. I.e., to know if a connector c
is well-typed it is enough to collect the constraints using the type rules, and to
directly use a constraint solver without any simplification or unification. How-
ever we found this very limited in practice. For example, knowing that the type
of the zip connector is ∀n :N · 1x1 → 1x2 |ψ under the constraints mentioned
above is not fully satisfactory: it is very difficult to understand how the inter-
faces vary with n. The extra simplification and unification phases reuse known
type-checking techniques that can handle most simple cases (without constraints
and with basic expressions). In our example, the type ∀n :N · 2n→ 2n |n<5 al-
ready provides a much clearer description of the interfaces of zip. Hence, using
this phased approach to type-check it is possible to combine the simplicity of

23



the resulting types obtained via unification with the power of more complex
constraints that need to be delegated to constraint solvers.

Towards typed ports This section focus on untyped ports, because the
general constraint solving problem is then reduced to integer constraint solving
problem, which is easier to tackle, and because it already covers a large range
of connectors. However a similar approach could have been followed for typed
ports, at the cost of performance, as we briefly explain. Port types could be seen
as elements from an enumerable and finite global set T (instead of the singleton
type 1). In this setting, interfaces could be represented as lists of port types
(instead of integers), such that ([I⊗J ]) = ([I]) ·([J ]) (where · concatenates 2 lists)
and ([Ix←α]) = ([I[0/x]]) · . . . · ([I[α− 1/x]]). Consequently simplifying connector
types and constraints would be more complex, since the algebraic manipulation
is more limited when working with lists. The constraint solving phase would no
longer be handled by an integer constraint solver, but it would require a more
general solver. For example, a rewriting engine (such as Prolog) could be used
to solve equations over lists based on unification and backtracking.

5.2. Three-phase solver
This section explains in more detail the three-phase algorithm used to reason

about constraints, exemplified in the previous subsection. These phases are
performed in sequence, and consist of the simplification phase, the unification
phase, and the constraint-solving phase, explained below.

Simplification This first phase prepares the constraints obtained by the type
rules to be used by the unification phase. More specifically, it rewrites the
constraints by applying algebraic laws of sums and multiplications, building a
polynomial and manipulating the coefficients. For example, sums like

∑n2−1
x=n1(5∗

x), where 5∗x is linear on x, are rewritten into (5∗n2+ 5∗n1)∗ (n2−n1)/2; to
avoid integer divisions the denominator 2 is dropped and the other coefficients
are multiplied by 2. Equalities are rewritten to match, if possible, the pattern
x = α, which is exploited by the unification phase.

Note that the type rules, apart from (restriction), only produce equalities of
integer expressions. Our choice of rewrites included in the prototype implemen-
tation took into account the constraints generated by the type rules using a
range of different connectors. These rewrites are able to simplify all the exam-
ples presented in this paper that do not use inequalities, most of which involve
only linear expressions or are reduced to linear expressions, to a point where
the constraint solving phase was not needed. Furthermore, other fast off-the-
shelf technologies, such as computer algebra systems, could be used to quickly
manipulate and simplify more complex expressions.

Unification The second phase consists of a traditional unification algo-
rithm [12, Chapter 22] adapted to our type system, which produces both an
unification and a set of constraints postponed to the constraint solving phase.
An unification is formally a sequence of substitutions σ1 ◦ · · · ◦σn, and applying
a unification to a connector or interface t consists of applying the substitutions

24



unify(φ) = unify(φ ; true)

unify(true ; ψ) = (∅ ; ψ)
unify(true, φ ; ψ) = unify(φ ; ψ)

(σ ; ψ) ◦ σ′ = (σ ◦ σ′ ; ψ)

unify(α = α′, φ ; ψ) =
unify(φ ; ψ) if α ≡ α′
unify(φ[α′/x] ; ψ[α′/x]) ◦ [α′/x] if α ≡ x and x /∈ fv(α′)
unify(φ[α/x] ; ψ[α′/x]) ◦ [α/x] if α′ ≡ x and x /∈ fv(α)
unify(φ ; ψ, α = α′) otherwise

Figure 23: Unification algorithm for constraints over boolean and integer variables.

in sequence ((t σ1) . . .)σn. For example, unifying the constraints x = 2 + y, z =
3+x, y = w produces the sequence of substitutions [2+y/x]◦[3+2+y/z]◦[w/y].
Applying this unification to an interface means first substituting x by 2 +y, fol-
lowed by the substitutions of z and y. The resulting interface is guaranteed to
have no occurrences of x, y, nor z, and not to have w bound by any constraint.

The unification algorithm is described by the unify function (Figure 23) that,
given a set of constraints φ to be solved, returns a pair with a unification and
a set of postponed constraints. The core of unify is defined in the right side of
Figure 23. For every equality α = α′, it first checks if they are syntactically
equivalent (using ≡). It then checks if either the left or the right side is a
variable that does not occur on the other side; if so, it adds the equality to the
resulting unification. If none of these cases apply, it postpones the analysis of
the constraint for the third phase, by using the second argument of unify as an
accumulator.

Constraint solving The last phase consists of collecting the constraints
postponed by the unification phase and use an off-the-shelf constraint solver.
This will tell us if the constraints are satisfiable, producing a concrete example
of a substitution that satisfies the constraints. In the example of the sequence of
fifos with at most 5 fifos (Section 5.1), a possible solution for the constraints is
{n 7→ 4, x1 7→ 1, x2 7→ 1}. This substitution, when applied to the type obtained
for seq-fifo, yields a concrete type instance seq-fifo : 1→ 1. In this example the
concrete type instance matches its general type (∀n :N · 1→ 1), since the value
of n does not influence the type of the connector.

Note that a wide variety of approaches for solving constraints exist. One can
use, for example, numerical methods to find solutions, or SMT solvers over some
specific theory. The expressive power supported by the constraint solver dictates
the expressivity of the expressions α and φ used in the connector, which we are
abstracting away in this paper. The choices made in our proof-of-concept imple-
mentation, briefly explained in the next subsection, are therefore not strict and
can be rethought if necessary. For example, one could use a Prolog-like engine
to search for solutions based on backtracking, or a more dedicated mathematical
engine if the restrictions involve more complex operations such as derivatives or
trigonometric calculations. The rewriting rules included in our prototype tool
are for simple arithmetic, the solver is a Java library for integer constraints, ba-

25



import paramConnectors.DSL._

val x = "x":I ; val n = "n":I ; val b = "b":B

//----- λx :N · (fifox |x>5) -----//
typeOf( lam(x, (fifo^x) | (x>5)) )
// returns ∀x:I . x -> x | x > 5
typeInstance( lam(x, (fifo^x) | (x>5)) )
// returns c© 6 -> 6
typeSubstitution( lam(x, (fifo^x) | (x>5)) )
// returns c© [x:I -> 6]

//----- seq-fifo -----//
typeOf( lam(x, Tr(x-1, sym(x-1,1) & (fifo^x))) )
// returns ∀x:I . 1 -> 1 [type obtained only after constraint solving]
typeTree( lam(x, Tr(x-1, sym(x-1,1) & (fifo^x))) )
// returns ∀x:I . x1 -> x2 | ((x1 + (x - 1)) == ((x - 1) + 1))
// & ((x2 + (x - 1)) == x) & ((1 + (x - 1)) == x) & (x1 >= 0) & (x2 >= 0)

//----- composing families -----//
typeOf( lam(x,fifo^x | x<5) & lam(y,id^y) )
// returns ∀x:I,y:I . y -> y | (y < 5) & (x == y)

//----- zip and sequencer -----//
val zip = /*...*/ ; sequencer = /*...*/
typeOf( zip )
// returns ∀n:I . 2 * n -> 2 * n
typeOf( sequencer )
// returns ∀n:I . n -> n

Listing 1: Calculating the type of connectors using our tools.

sic interfaces are not typed, and a small fixed set of operators is used for integer
and boolean expressions. With more complex interfaces or more complex set of
operators we would need to use different tools and/or rewriting rules.

5.3. Implementation
We developed a proof-of-concept implementation in the Scala programming

language that covers all the examples described in this paper, which can be
found online.5 Listing 1 exemplifies the usage of this library—more examples
can be also found online.

This implementation includes a simple domain specific language to spec-
ify connectors, making them similar to the syntax used throughout this pa-
per. Composition of (families of) connectors is performed via the & operator,
which corresponds to the composition operator � for connector families. It
provides four main top-level functions: typeTree, typeOf, typeInstance, and
typeSubstitution. The first creates the derivation tree (if it exists); typeOf
simplifies the constraints, uses the unification algorithm, invokes the constraint

5https://github.com/joseproenca/parameterised-connectors

26

https://github.com/joseproenca/parameterised-connectors


solver, and returns the most general type that it found (i.e., it simplifies the
type using term rewriting and unification, and instantiates variables that have
unique solutions); and typeInstance and typeSubstitution perform the same
steps as typeOf, but the former returns the result of the constraint solving phase
(even if the type is not the most general one) and the latter returns the sub-
stitutions obtained by the unification and the constraint solver phases. Hence
the result of typeInstance never includes constraints. Finally, a function debug
prints all intermediate calculations when type-checking a connector (family).
The constraint solving phase uses the Choco solver6 to search for solutions of
the constraints.

Observe that the resulting type instance and substitution of the first connec-
tor start with c©—this means that the resulting type is a concrete instance of a
type, i.e., the constraint solving phase found more than one solution for the vari-
ables of the inferred type (after unification). However, if we would ask for a type
instance of (λx :N·fifox|x > 5)(7), for example, the result would be also its (gen-
eral) type 7 → 7, without the c©. Typing the connector (λx :N · fifox|x > 5)(2)
gives a type error, because the constraints are not satisfied.

6. Modelling more Connector Families

Our calculus for families is exemplified in this paper using Reo’s notation
and semantics. We claim, however, that the usefulness of our calculus extends
Reo. To support this claim, we use a different set of primitives to model Petri
Nets [13, 14] and BIP connectors [15].

6.1. Families of Petri Nets
Petri Nets are a formalism with a well-known graphical notation that capture

the movement of resources. More precisely, it is depicted as a graph of places
( ) and transitions ( ), combined by linking places to transitions and transitions
to places. Two simple examples can be found in Figure 24.

Figure 24: Example of a simple Petri Net in two different configurations.

Places can contain tokens, denoted by •. We will consider the simple variant
of Petri Nets whose places can contain at most one token. The semantics of
such Petri Net is given by sequences of transitions that fire. A transition t is
fired when all its incoming places (places linked to t) have a token, and when
all its outgoing places (places linked from t) have no token. After t is fired the

6http://choco-solver.org

27

http://choco-solver.org


incoming places become empty, and the outgoing places become full (with a
token). In the example from Figure 24, the Petri Net on the left can fire the
top transition and evolve to the Petri Net on the right, which in turn can fire
the bottom transition and evolve back to the transition on the left.

Basic connector calculus for Petri Nets Recall the basic connector calcu-
lus described in Section 2. Petri Nets can be modelled using the same calculus
with a different set of primitive connectors P and port types A, introduced
in Figure 25. The resulting calculus roughly coincides with the Petri calculus
introduced by Sobociński [16, 17], where he also extends (stateless) connector
algebras [3] to model Petri Nets, exploring in more detail the semantics of Petri
Nets and of the Petri calculus.

p ∈ P ::= : 1→ 1 | ∇I : I → 1
| • : 1→ 1 | ∆I : 1→ I
| : 1→ 1 | ∨I : I → 1
| ↑ : 0→ 1 | ∧I : 1→ I
| ↓ : 1→ 0

I, J ::= I ⊗ J tensor
| 0 empty interface
| 1 singleton port type

Figure 25: Primitives and interfaces for connector calculus for Petri Nets

With this new set of primitives and interfaces, the Petri Nets in Figure 24 can
be encoded as Tr1( • ; ; ; ) and Tr1( ; ; • ; ), respectively. The trace
constructor binds the output of the last transition to the first place, building a
loop between a two places. The type rules confirm that these two connectors
have type 0 → 0, i.e., they have no input and no outputs. The parameters of
both traces have the type 1→ 1.

The semantics of our calculus of Petri Nets can be given using the same tile
model as described in Section 2.4, using the tiles in Figure 26 for the newly
introduced primitives. For simplicity we included only ∆1⊗1, ∇1⊗1, ∧1⊗1, and
∨1⊗1, but these can be easily extrapolated for arbitrary interfaces. Note that the
notation for these mergers and splitters differ from the one used for Reo. Namely,
the connector ∇I was previously used to merge two dataflows exclusively (either
one or the other), while here it merges dataflows inclusively (both one and the
other) following [16].

Families of Petri Nets The power of parameters and restrictions in connector
families can now be applied to this basic calculus of Petri Nets, using the same
definition as in Section 4. A simple example of an n-ary Petri Net can be
found in Figure 27, where a token alternates between being in a (left) place
and replicated in n places (right). The type of this parameterised connector
is ∀n :N · 0 → 0, i.e., given any natural number n, it has no open inputs nor
outputs, as one would expect.

Modelling Feature Nets Feature Nets [14] are Petri Nets parameterised
on a selection of features that determine which transitions are active (i.e., can
be fired). More concretely, transitions are marked with a so-called application
condition, which is a propositional formula over feature names. Figure 28 depicts

28



=

{
flow−→

noFlow
• , noFlow−→

noFlow

}
=

{
flow−→
flow

,
noFlow−→
noFlow

}

• =

{
• noFlow−→

flow
, • noFlow−→

noFlow
•
}

↑=
{
↑ 0−→
noFlow

↑
}

↓=
{
↑noFlow−→

0
↑
}

∆1⊗1 =

{
∆1⊗1

flow−→
flow⊗flow

∆1⊗1 , ∆1⊗1
noFlow−→

noFlow⊗noFlow
∆1⊗1

}

∇1⊗1 =

{
∇1⊗1

flow⊗flow−→
flow

∇1⊗1 , ∇1⊗1
noFlow⊗noFlow−→

noFlow
∇1⊗1

}

∧1⊗1 =

{
∧1⊗1

flow−→
flow⊗noFlow

∧1⊗1 , ∧1⊗1
flow−→

noFlow⊗flow
∧1⊗1 , ∧1⊗1

noFlow−→
noFlow⊗noFlow

∧1⊗1
}

∨1⊗1 =

{
∨1⊗1

flow⊗noFlow−→
flow

∨1⊗1 , ∨1⊗1
noFlow⊗flow−→

flow
∨1⊗1 , ∨1⊗1

noFlow⊗noFlow−→
noFlow

∨1⊗1
}

Figure 26: Behaviour of Petri Net primitives using tiles.

λn :N · Tr1( • ; ; ∆1n ;
n

; ∇1n ; ) = ...


n times

Figure 27: N -ary Petri Net example: connector (left) and its visual representation (right).

an example of a Feature Net borrowed from [14], where transitions are labelled
(above) with a propositional formula over the feature names Coffee and Milk .
When the Coffee feature is selected and the Milk feature is not, the Feature Net
behaves as if only the two left transitions could be fired, because the application
condition Coffee ∧Milk evaluates to false.

wait ready

brew coffee

Coffee

serve

Coffee milk
ready

add milk

Coffee ∧Milk

serve coffee w/milk

Coffee ∧Milk

Figure 28: Feature Net for a coffee machine with two features: Coffee and Milk .

Feature Nets can be easily modelled using boolean variables in our parame-

29



terised calculus, and introducing a new primitive : 1→ 1 with behaviour given
by a single tile noFlow−→

noFlow
. I.e., introducing a new transition construct that can

never be fired. The example in Figure 28 can then be specified in our calculus
as follows.

λCoffee :B,Milk :B · Tr1( • ; cf ; ; ∆ ; cf⊗ (mi ; ; mi) ; ∨)

where cf = ⊕Coffee and mi = ⊕Coffee∧Milk

This example uses the choice operator ⊕ to decide on whether each transition
is active (using ) or inactive (using ), with a boolean predicate given precisely
by the application condition. The variables of these predicates are then used as
variables under lambda abstractions in our parameterised calculus. The same
approach can be used to any Feature Net with transitions marked by application
conditions.7

Feature models can also be added to our connectors via restrictions. A fea-
ture model describes valid combinations of features, often specified as a feature
diagram [18]. Such feature models are typically formalised as boolean con-
straints over the set of features. For example, a feature model for the coffee
machine family may impose that Coffee → Milk, i.e., that the Milk feature
can only be selected when the Coffee feature is selected. This fits our calculus
of connector families using restrictions; the example above with the restriction
Coffee → Milk can be written as λCoffee :B,Milk :B · Tr1( • ; cf ; ; ∆ ; cf ⊗
(mi ; ; mi) ; ∨) |Coffee→Milk.

6.2. BIP families
A coordinated system in BIP, following e.g. [19], is comprised of a set of

primitive components connected by an interaction model. We do not consider
priority in BIP, as most papers on BIP also disregard it, and because it has little
influence in our contribution to express families. Each primitive component Bi is
a labelled transition system with an associated set Pi of labels (ports), and where
sets of ports Pi are pairwise disjoint. An interaction model γ is a set of non-
empty sets of ports called interactions, where each of these interactions describes
a set of ports that performs a multi-way synchronisation, i.e., either all ports
execute at the same time or none can execute. The example in Figure 29 depicts
a BIP system, borrowed from [19, Section 6], where a blackboard component
Blb with ports b1 and b2 interacts with a controller Contr and with 3 services
Srvi via 4 possible interactions. Each of these interactions is depicted with a
different colour, binding ports that are expected to occur simultaneously.

Basic connector calculus for BIP BIP can be modelled in our basic cal-
culus by representing interaction models using connectors that connect ports of

7The authors [14] also present a semantics where arcs—and not transitions—are marked
with application conditions; the encoding of such nets can be modelled in our parameterised
calculus using an analogous approach to what we presented.

30



Blb

Contr

Srv1

Srv3

Srv2

b1

b2

c

s1

s2

s3

Figure 29: Five BIP components interacting with each other via 4 possible interactions:
synchronising either [b2,c] (black), [b1,s1,b2,c] (blue), [b1,s2,b2,c] (red), or [b1,s3,b2,c] (green).

primitive components. These connectors use merger and splitters in a similar
way to our encoding of Petri Nets, indicating what ports can have dataflow to-
gether. The idea of using mergers, splitters, and other primitive connectors to
describe interactions is analogue to the ideas behind interaction formulas [19],
which are propositional logic formulas whose solutions describe interaction mod-
els. More specifically, these connectors compose ports by combining a primitive
set of connectors, whereas each contribute to a global set of constraints over
the behaviour of these ports. Our approach also follows the ideas from Bruni
et al. [17], where BIP is encoded as a Petri Net variation, and in turn described
using the Petri calculus (an algebra of connectors with buffers mentioned in the
previous subsection). The authors encode each component as a connector with
type 0 → n, where n is its number of ports. Our representation of BIP as a
connector algebra differs in that it distinguishes between left and right ports,
where left and right could be interpreted as input ports and output ports, for
example. I.e., a component with n left ports and m out ports has type n→ m,
instead of 0→ (n+m). Consequently it provides a more compact representation
at the cost of distinguishing between left (input) and right (output) ports.

p ∈ P ::=Bi : Ii → Ji | ∇I : I → 1
| ↑ : 0→ 1 | ∆I : 1→ I
| ↓ : 1→ 0 | ∨I : I → 1
| : 0→ 1 | ∧I : 1→ I
| : 1→ 0

I, J ::= I ⊗ J tensor
| 0 empty interface
| 1 singleton port type

Figure 30: Primitives and interfaces for connector calculus for BIP

The chosen set of primitive connectors for our BIP calculus is introduced
in Figure 30, which overlaps with the previous calculus for Petri Nets. These
connectors, instead of places and transitions, include a set of primitive compo-
nents Bi, for some indexing set K and i ∈ K, with left ports Ii and right ports
Ji. The distinction between left and right port is not related to direction of
dataflow, although it could be used for such task.

The tile semantics of the primitive connectors that are not defined for Petri
Nets (Figure 26) is specified in Figure 31. The connectors and represents
connectors with one ports, which is always ready to have dataflow. Components

31



can evolve by having flow on some of its ports (left or right) and no-flow on the
remaining ports. This is modelled by including one tile for each transition, using
the vertical morphisms flow and noFlow to represent ports that have dataflow.
For example, if a component B has two left ports a, b and a right port c, and it
has a transition q a,c−−→ q′, then we include the tile Bq

flow⊗noFlow−→
flow

Bq′ . Here we
write Bq to represent the labelled transition system B with initial state q, and
assume ports have a fixed order.

Bi =


Bi

ai1⊗···⊗ain−→
bi1⊗···⊗bim

B′i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

B has a transition q A−→ q′,
q is the initial state of Bi,
B′i is the same as Bi with initial state q′,
each a ∈ {ai1, . . . , ain} is a left port,
each b ∈ {bi1, . . . , bim} is a right port,
a = flow if a ∈ A, otherwise a = noFlow, and
b = flow if b ∈ A, otherwise b = noFlow.


=

{
0−→

flow
,

0−→
noFlow

}
=
{

flow−→
0

,
noFlow−→

0

}

Figure 31: Behaviour of BIP primitive connectors using tiles.

Using this calculus for BIP systems, the example from Figure 29 can be
written using basic connector calculus as presented in Figure 32. Here we assume
that the primitive components have type Blb : 0→ 1⊗ 1, Contr : 0→ 1, and for
each i ∈ {1, 2, 3}, Srvi : 1→ 0.

Blb

Contr

Srv1

Srv3

Srv2

Blb⊗ Contr ;
∆⊗ ⊗∇ ;
id⊗ ∨⊗ id ;
∧1⊗1⊗1 ⊗∇ ;

Srv1 ⊗ Srv2 ⊗ Srv3 ⊗

Figure 32: Re-specification of the BIP system in Figure 29 using connector calculus; the left
side presents a visual representation of the expression on the right side.

Families of BIP connectors The basic connector calculus for BIP systems
presented above is now extended for connector families. A simple example of n-
ary BIP systems is described in Figure 33, which adapts the system in Figure 32
to support an arbitrary number of services. It uses a single parameter n that is
used to determine how many right ports the (exclusive) splitter ∧ has, and how
many instances of Srv are used.

32



Blb

Contr

Srv

Srv

...

λn :N ·
Blb⊗ Contr ;
∆⊗ ⊗∇ ;
id⊗ ∨⊗ id ;
∧1n ⊗∇ ;
Srvn ⊗

Figure 33: N -ary BIP system: connector family (right) and its visual representation (left).

7. Related Work

Algebras of connectors The usage of symmetric monoidal categories to
represent Reo connectors (and others) has been introduced by Bruni et al. [3],
where they introduce an algebra of stateless connectors with an operational
semantics expressed using the Tile Model [1]. The authors focus on the be-
havioural aspects, exploiting normalisation and axiomatisation techniques. An
extension of this work dedicated to Reo connectors [4] investigates more com-
plex semantics of Reo (with context dependent connectors) using the Tile Model.
Other extensions to connector algebras exist. For example, Sobocinski [16], and
more recently Bonchi et al. [20], present stateful extensions to model and rea-
son about the behaviour of Petri Nets and of Signal Flow Graphs, respectively.
The former was introduced in Section 6.1. The latter also describes the usage
of traces (Tr) as a possible way to specify loops in their algebra. In all these
approaches, interfaces (objects of the categories) can be either input or output
ports, independently of being on the left or right side of the connector (mor-
phism), focusing on the behaviour of connectors instead of how to build families
of these connectors.

In our work we do not distinguish input from output ports, assuming data
always flows from left to right, and use traces to support loops and achieve the
same expressivity. As a result, we found the resulting connectors to be easier
to read and understand. For example the connector fifo has type •◦ → 0 in
Bruni et al.’s algebra, meaning that the left side has two ports: an input • and
an output ◦ one. Composing two fifos in sequence uses extra connectors (called
nodes) and has type 0→ ◦•—for a more complete explanation see [1]. Indeed,
our algebra has stronger resemblances with lambda calculus (and with pointfree
style in functional programming [21]), facilitating the extension to families of
connectors, which is the main novelty of this work.

Analysis of software product lines In the context of software product
lines Kästner et al. [22], for example, investigated how to lift a type-checking
algorithm from programs to families of programs. They use featherweight Java
annotated with constraints used during product generation, and present a type-
checking approach that preserves types during this product generation. Their
focus is on keeping the constraints being solved as small as possible, unlike pre-
vious approaches in the generative programming community (e.g., by Thaker et

33



al. [23]) that compile a larger global set of constraints. Many other verification
approaches for software product lines have been investigated [24, 25, 26, 27].
Post and Sinz [24] verify families of Linux device drivers using the CBMC
bounded model checker, and Apel et al. [25] verify more general families of
C programs using the CPAchecker symbolic checker. More recently Thüm et
al [26] presents an approach to use the KeY theorem prover to verify a feature-
oriented dialect of Java with JML annotations. They encode such annotated
families of Java programs into new (traditional) Java programs with new JML
annotations that can be directly used by KeY to verify the family of products.
Dimovski et al [27] take a more general view and provide a calculus for mod-
ular specification of variability abstractions, and investigate tradeoffs between
precision and time when analysing software product lines and abstractions of
them.

Our approach targets connector and component interfaces instead of typed
languages, and explicitly uses parameters that influence the connectors. Con-
sequently, feature models can contribute not only with feature selections but
also with values used to build concrete connectors. Our calculus is simpler than
other more traditional programming languages since it has no statements, no
notion of heap or memory, nor tables of fields or methods.

8. Conclusion and Future Work

This paper formalises a calculus for connector families, i.e., for connectors
(or components) with an open number of interfaces and restricted to given
constraints. A dependent type system guarantees well-connectedness of such
families, i.e., that interfaces of subconnectors can be composed as long as the
parameters obey the constraints in the type. These constraints are reducible
to nonlinear constraints on integers when considering untyped ports (only the
type 1), in which case arithmetic properties and integer constraint solvers can be
used to check the constraints under which a connector family is well-connected.
The runtime semantics of families of connectors is based on the Tile Model,
using a different monoidal category over interfaces (other that the one given by
connectors and interfaces) to model both the instantiation of parameters and
the execution of discrete steps of the connector.

In the future we will explore more deeply the equations for families of connec-
tors, providing a better insight on different categories of (families of) connector
calculus and their relation with the type rules. From a more practical perspec-
tive, we will investigate approaches to type check connector families where the
type of the data passing through the ports is also checked. Finally, we also plan
to investigate how to reduce the size of the constraints being solved, by using
the more dedicated contexts while building the type tree instead of collecting
the constraints for a follow-up phase, similarly to the work of Kästner et al. [22].

34



Acknowledgements

This work is financed by the ERDF – European Regional Development Fund
through the Operational Programme for Competitiveness and Internationalisa-
tion – COMPETE 2020 Programme and by National Funds through the Por-
tuguese funding agency, FCT – Fundação para a Ciência e a Tecnologia, within
project POCI-01-0145-FEDER-016826. This work is also partially funded by
the personal grant from FCT – Fundação para a Ciência e a Tecnologia – with
reference SFRH/BPD/91908/2012.

[1] F. Gadducci, U. Montanari, The tile model, in: G. D. Plotkin, C. Stirling,
M. Tofte (Eds.), Proof, Language, and Interaction, Essays in Honour of
Robin Milner, The MIT Press, 2000, pp. 133–166.
URL http://dl.acm.org/citation.cfm?id=345868.345889

[2] J. Proença, D. Clarke, Typed connector families, in: C. Braga, P. C.
Ölveczky (Eds.), Formal Aspects of Component Software - 12th Interna-
tional Conference, FACS 2015, Niterói, Brazil, October 14-16, 2015, Re-
vised Selected Papers, Vol. 9539 of Lecture Notes in Computer Science,
Springer, 2015, pp. 294–311. doi:10.1007/978-3-319-28934-2_16.

[3] R. Bruni, I. Lanese, U. Montanari, A basic algebra of stateless connectors,
Theor. Comput. Sci. 366 (1-2) (2006) 98–120. doi:10.1016/j.tcs.2006.
07.005.

[4] F. Arbab, R. Bruni, D. Clarke, I. Lanese, U. Montanari, Tiles for Reo,
in: A. Corradini, U. Montanari (Eds.), Recent Trends in Algebraic De-
velopment Techniques, Vol. 5486 of Lecture Notes in Computer Science,
Springer, 2009, pp. 37–55. doi:10.1007/978-3-642-03429-9_4.

[5] F. Arbab, Reo: A channel-based coordination model for component com-
position, Mathematical Structures in Computer Science 14 (3) (2004) 329–
366. doi:10.1017/S0960129504004153.

[6] P. Selinger, A survey of graphical languages for monoidal categories, in:
B. Coecke (Ed.), New Structures for Physics, Vol. 813 of Lecture Notes
in Physics, Springer Berlin Heidelberg, 2011, pp. 289–355. doi:10.1007/
978-3-642-12821-9_4.

[7] S. Lack, Composing PROPs., Theory and Applications of Categories [elec-
tronic only] 13 (2004) 147–163.
URL http://eudml.org/doc/124613

[8] D. Clarke, D. Costa, F. Arbab, Connector colouring I: Synchronisation
and context dependency, Science of Computer Programming 66 (3) (2007)
205–225. doi:10.1016/j.scico.2007.01.009.

[9] P. M. Rondon, M. Kawaguchi, R. Jhala, Liquid types, in: R. Gupta, S. P.
Amarasinghe (Eds.), Proceedings of the ACM SIGPLAN 2008 Conference

35

http://dl.acm.org/citation.cfm?id=345868.345889
http://dl.acm.org/citation.cfm?id=345868.345889
http://dx.doi.org/10.1007/978-3-319-28934-2_16
http://dx.doi.org/10.1016/j.tcs.2006.07.005
http://dx.doi.org/10.1016/j.tcs.2006.07.005
http://dx.doi.org/10.1007/978-3-642-03429-9_4
http://dx.doi.org/10.1017/S0960129504004153
http://dx.doi.org/10.1007/978-3-642-12821-9_4
http://dx.doi.org/10.1007/978-3-642-12821-9_4
http://eudml.org/doc/124613
http://eudml.org/doc/124613
http://dx.doi.org/10.1016/j.scico.2007.01.009
http://doi.acm.org/10.1145/1375581.1375602


on Programming Language Design and Implementation, Tucson, AZ, USA,
June 7-13, 2008, ACM, 2008, pp. 159–169. doi:10.1145/1375581.1375602.
URL http://doi.acm.org/10.1145/1375581.1375602

[10] K. Pohl, G. Böckle, F. van der Linden, Software Product Line Engineering,
Springer, 2005. doi:10.1007/3-540-28901-1.

[11] M. P. Jones, A theory of qualified types, Science of Computer Programming
22 (3) (1994) 231 – 256. doi:10.1016/0167-6423(94)00005-0.

[12] B. C. Pierce, Types and Programming Languages, MIT Press, 2002.

[13] T. Murata, Petri nets: Properties, analysis and applications, Proceedings
of the IEEE 77 (4) (1989) 541–580. doi:10.1109/5.24143.

[14] R. Muschevici, J. Proença, D. Clarke, Feature Nets: behavioural modelling
of software product lines, Software and Systems Modeling (2015) 1–26.
doi:10.1007/s10270-015-0475-z.

[15] S. Bliudze, J. Sifakis, Synthesizing Glue Operators from Glue Constraints
for the Construction of Component-Based Systems, in: S. Apel, E. Jackson
(Eds.), Software Composition, LNCS, Springer, Berlin / Heidelberg, 2011,
pp. 51–67. doi:10.1007/978-3-642-22045-6_4.

[16] P. Sobocinski, Representations of Petri net interactions, in: P. Gastin,
F. Laroussinie (Eds.), CONCUR 2010 - Concurrency Theory, 21th Inter-
national Conference, CONCUR 2010, Paris, France, August 31-September
3, 2010. Proceedings, Vol. 6269 of Lecture Notes in Computer Science,
Springer, 2010, pp. 554–568. doi:10.1007/978-3-642-15375-4_38.

[17] R. Bruni, H. C. Melgratti, U. Montanari, Connector algebras, Petri Nets,
and BIP, in: E. M. Clarke, I. Virbitskaite, A. Voronkov (Eds.), Ershov
Memorial Conference, Vol. 7162 of Lecture Notes in Computer Science,
Springer, 2011, pp. 19–38. doi:10.1007/978-3-642-29709-0_2.

[18] D. Batory, Feature models, grammars, and propositional formulas, in:
Proceedings of the 9th International Conference on Software Product
Lines, SPLC’05, Springer-Verlag, Berlin, Heidelberg, 2005, pp. 7–20. doi:
10.1007/11554844_3.

[19] A. Mavridou, E. Baranov, S. Bliudze, J. Sifakis, Configuration logics: Mod-
elling architecture styles, in: C. Braga, P. C. Ölveczky (Eds.), Formal
Aspects of Component Software - 12th International Conference, FACS
2015, Niterói, Brazil, October 14-16, 2015, Revised Selected Papers, Vol.
9539 of Lecture Notes in Computer Science, Springer, 2015, pp. 256–274.
doi:10.1007/978-3-319-28934-2_14.

[20] F. Bonchi, P. Sobocinski, F. Zanasi, Full abstraction for signal flow graphs,
in: Proceedings of the 42nd Annual Symposium on Principles of Program-
ming Languages, POPL ’15, ACM, New York, NY, USA, 2015, pp. 515–526.
doi:10.1145/2676726.2676993.

36

http://dx.doi.org/10.1145/1375581.1375602
http://doi.acm.org/10.1145/1375581.1375602
http://dx.doi.org/10.1007/3-540-28901-1
http://dx.doi.org/10.1016/0167-6423(94)00005-0
http://dx.doi.org/10.1109/5.24143
http://dx.doi.org/10.1007/s10270-015-0475-z
http://dx.doi.org/10.1007/978-3-642-22045-6_4
http://dx.doi.org/10.1007/978-3-642-15375-4_38
http://dx.doi.org/10.1007/978-3-642-29709-0_2
http://dx.doi.org/10.1007/11554844_3
http://dx.doi.org/10.1007/11554844_3
http://dx.doi.org/10.1007/978-3-319-28934-2_14
http://dx.doi.org/10.1145/2676726.2676993


[21] J. Gibbons, A pointless derivation of radix sort, Journal of Functional Pro-
gramming 9 (3) (1999) 339–346. doi:10.1017/s0956796899003354.

[22] C. Kastner, S. Apel, Type-checking software product lines - a formal ap-
proach, in: Proceedings of the 2008 23rd IEEE/ACM International Confer-
ence on Automated Software Engineering, ASE ’08, IEEE Computer Soci-
ety, Washington, DC, USA, 2008, pp. 258–267. doi:10.1109/ASE.2008.36.

[23] S. Thaker, D. Batory, D. Kitchin, W. Cook, Safe composition of product
lines, in: Proceedings of the 6th International Conference on Generative
Programming and Component Engineering, GPCE ’07, ACM, 2007, pp.
95–104. doi:10.1145/1289971.1289989.

[24] H. Post, C. Sinz, Configuration lifting: Verification meets software con-
figuration, in: Proceedings of the 2008 23rd International Conference on
Automated Software Engineering, ASE ’08, IEEE Computer Society, 2008,
pp. 347–350. doi:10.1109/ASE.2008.45.

[25] S. Apel, H. Speidel, P. Wendler, A. von Rhein, D. Beyer, Detection of
feature interactions using feature-aware verification, in: Proceedings of the
2011 26th IEEE/ACM International Conference on Automated Software
Engineering, ASE ’11, IEEE Computer Society, Washington, DC, USA,
2011, pp. 372–375. doi:10.1109/ASE.2011.6100075.

[26] T. Thüm, I. Schaefer, S. Apel, M. Hentschel, Family-based deductive
verification of software product lines, in: Proceedings of the 11th Inter-
national Conference on Generative Programming and Component Engi-
neering, GPCE ’12, ACM, New York, NY, USA, 2012, pp. 11–20. doi:
10.1145/2371401.2371404.

[27] A. S. Dimovski, C. Brabrand, A. Wasowski, Variability abstractions: Trad-
ing precision for speed in family-based analyses, in: J. T. Boyland (Ed.),
29th European Conference on Object-Oriented Programming, ECOOP
2015, July 5-10, 2015, Prague, Czech Republic, Vol. 37 of LIPIcs, Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015, pp. 247–270. doi:
10.4230/LIPIcs.ECOOP.2015.247.

37

http://dx.doi.org/10.1017/s0956796899003354
http://dx.doi.org/10.1109/ASE.2008.36
http://dx.doi.org/10.1145/1289971.1289989
http://dx.doi.org/10.1109/ASE.2008.45
http://dx.doi.org/10.1109/ASE.2011.6100075
http://dx.doi.org/10.1145/2371401.2371404
http://dx.doi.org/10.1145/2371401.2371404
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.247
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.247

	Introduction
	Basic Connector Calculus
	Overview
	Syntax
	Type rules
	Connector behaviour

	Parameterised Connector Calculus
	Syntax
	Parameterised type rules
	Behaviour of parameterised connectors

	Connector families
	Restricted connectors and types
	Family composition
	Behaviour of connector families

	Solving type constraints
	Overview
	Three-phase solver
	Implementation

	Modelling more Connector Families
	Families of Petri Nets
	BIP families

	Related Work
	Conclusion and Future Work

