
Proposition of an Action Layer for Electrum?

Julien Brunel1, David Chemouil1, Alcino Cunha2,
Thomas Hujsa1, Nuno Macedo2, and Jeanne Tawa1

1 ONERA/DTIS & Université Fédérale Toulouse Midi-Pyrénées, France
2 INESC TEC & Universidade do Minho, Portugal

Abstract. Electrum is an extension of Alloy that adds (1) mutable sig-
natures and fields to the modeling layer; and (2) connectives from linear
temporal logic (with past) and primed variables à la TLA+ to the con-
straint language. The analysis of models can then be translated into a
SAT-based bounded model-checking problem, or to an LTL-based un-
bounded model-checking problem. Electrum has proved to be useful to
model and verify dynamic systems with rich configurations. However,
when specifying events, the tedious and sometimes error-prone handling
of traces and frame conditions (similarly as in Alloy) remained necessary.
In this paper, we introduce an extension of Electrum with a so-called
“action” layer that addresses these questions.

1 Introduction

The specification and verification of software and systems are crucial tasks at
early development phases. Indeed, the later the detection of an error happens
in the development cycle, the more costly it is. This calls for expressive formal
specification languages, ideally supported by automatic verification tools. Then,
an important issue is the trade-off between the expressiveness of the specification
language and the automation degree of the verification. Alloy [44], one of the main
propositions in lightweight formal methods, does not favor one concern over the
other. Instead, it gives up on the completeness of the verification: it performs an
exhaustive exploration of the system states up to a user-specified depth.

Alloy is based on an extension of first-order logic and offers a rich way
to specify structural properties over a system. In [55], we proposed Electrum,
an extension of Alloy with support for dynamic features based upon linear
temporal logic (LTL). Electrum preserves the flexibility of Alloy while easing the
specification of behavioral properties and enabling verification over an unbounded
temporal horizon. With Electrum, the system behavior is specified using FOLTL
formulas. Electrum thus preserves the fully declarative feature of Alloy: there is
no “constructive” description of the system, but only the constraints that the
? This work is financed by the ERDF - European Regional Development Fund -
through the Operational Programme for Competitiveness and Internationalisation -
COMPETE 2020 - and by National Funds through the Portuguese funding agency,
FCT - Fundação para a Ciência e a Tecnologia, within project POCI-01-0145-FEDER-
016826, and the French Research Agency project FORMEDICIS ANR-16-CE25-0007.



system satisfies. However, in practice, it is often convenient to specify the basic
actions of the system (which needs little expressiveness in terms of temporal logic)
separately from other behavioral requirements, such as the way these actions are
ordered (which may need the full expressive power of temporal logic). Relying on
this kind of idioms can have several advantages: (1) some part of the behavior,
such as the frame conditions or the time model, can be specified in a systematic
way; (2) such a description of the evolution of the system is more likely to be
exploited by a verification procedure that relies on a model checker.

Thus, still pursuing the goal of allowing the straightforward specification and
verification of models featuring rich structure and behavior, we propose here an
extension of Electrum with an action layer.

The remainder of the article is organized as follows. In § 22 we present the
Electrum framework. In § 33, we define the syntax and semantics of the action
layer and illustrate it on an example.

2 Electrum

Following Alloy, structure in an Electrum specification is introduced through the
declaration of signatures, which represent sets of uninterpreted atoms, and fields
of arbitrary finite arity, which relate atoms belonging to different signatures. Each
of these signatures and fields can be declared as static (by default) or variable
(keyword var): the former have the same valuation throughout a given time trace,
while the latter are mutable and hence may evolve in time. Hierarchy between
signatures (which can additionally be declared as abstract) can be introduced
through extension (extends keyword) or inclusion (in). Finally, both signatures
and fields may be restricted by simple multiplicity constraints. Notice that for
variable elements, these restrictions are applied globally in time.

Additional restrictions can be imposed through facts, axioms that every
instance of the specification is required to conform to. Those may rely on reusable
predicates and functions. Relational expressions are built by composing signatures
and fields (and some built-in constants) with common set-theoretic operators
and relational operators like join � or transitive closure ^.

Every relational expression can be primed, referring to its valuation in the
succeeding state. Atomic formulas are then built as inclusion (or equality) tests
of relational expressions, which can be composed through the common Boolean
operators, first-order quantifications and future and past LTL operators.

Execution instructions consist of run and check commands restricted by scopes
that determine the maximum (or exactly the) number of atoms of each signature
that will be considered by the analyses: (1) run instructs the Analyzer to search for
an instance satisfying a given constraint; (2) check instructs the Analyzer to prove
a given assertion valid (in practice: by checking that it cannot find a counter-
example). A protected keyword Time restricts the size of the traces when analysis
is performed by bounded model checking (BMC). Note that unbounded model
checking (UMC) is still bounded on the atoms in the valuations of signatures.
The complete semantics of Electrum can be consulted in [55].



1 open util/ordering[Key]
2 sig Key {}
3 sig Room {
4 keys: set Key,
5 var current: one keys }
6 fact DisjointKeySets {
7 Room<:keys in Room lone→ Key }
8 one sig Desk {
9 var lastKey: Room → lone Key,

10 var occupant: Room → Guest }
11 sig Guest { var gkeys: set Key }
12 . . .
13 fun nextKey[k: Key, ks: set Key] : set Key {
14 min[nexts[k] & ks] }
15
16 act checkin[g: Guest, r: Room, k: Key]
17 modifies gkeys, occupant, lastKey {
18 no r � (Desk � occupant)
19 k = nextKey[r � (Desk � lastKey), r � keys]
20 gkeys’ = gkeys + g → k

21Desk � occupant’ = Desk � occupant + r→g
22Desk � lastKey’ = Desk � lastKey ++ r→k }
23act checkout[g: Guest] modifies occupant {
24some Desk � occupant � g
25Desk � occupant’ = Desk � occupant − Room→g }
26. . .
27
28fact init {
29no Guest � gkeys
30no Desk � occupant
31all r: Room | r � (Desk � lastKey) = r � current }
32
33pred consistent {}
34run consistent for 4 but 10 Time
35assert BadSafety {
36always { all r: Room, g: Guest, k: Key |
37entry[g, r, k] and
38some r � (Desk � occupant)
39⇒ g in r � (Desk � occupant) } }
40check BadSafety for 4 but 10 Time

Fig. 1. Hotel example in Electrum with actions (syntax additions are underlined).

3 Extending Electrum with Actions

In this section, we present the syntax and semantics of the action layer. The
layer is actually syntactic sugar on top of plain Electrum, therefore the semantics
is defined by translation into Electrum. For the sake of readability, we illustrate
this translation over an example (Fig. 11) inspired by the classic Alloy Hotel
example. The latter specifies a system handling entries in the rooms of a hotel
with disposable key-cards carrying cryptographic keys that must match other
keys stored in room-door locks to release these and open the rooms.

Specifying behavior in Electrum is completely unrestricted. However, in prac-
tice (and as the Hotel example shows), many models are specified using ac-
tions (represented as predicates or using the event idiom [44]) that only relate two
consecutive instants. Said otherwise, a large class of Electrum models does not
rely on the full power of LTL to specify the valid traces: this logic is mainly useful
when specifying additional facts (e.g. fairness properties) or stating properties
to evaluate on a model using a run or a check command. Besides, the frame
conditions and the time model could be described in a systematic way. Their gen-
eration could be automated, depending only on a few parameters (e.g. allowing,
or not, simultaneous actions).

In practice, we add to plain Electrum an action syntactic sugar that is optional
but committing: if no action is present in a model, then its semantics is fully
unrestricted, as usual, but as soon as an action is present, the semantics associ-
ated with actions applies. The sugar thus introduces a notion of action. Frame
conditions are automatically generated out of a specific parameter of actions.
Traces are automatically generated, forcing a specific time model. Finally, the
occurrence of an action can be referred to in the syntax of constraints.



Actions and time model We add an act keyword that introduces a named
action, possibly with parameters. Parameters may only be singletons (i.e., no set
may be passed as an argument: if this is needed, then a new signature pointing
to the said set should be introduced first and then passed as an argument). An
action executes atomically and relates two consecutive instants, therefore the
only temporal constructs allowed are the after keyword and the prime operator.
As in plain Electrum, formulas (from the action body) relating to the “current”
instant represent a guard (necessary condition) for the action to occur, and the
ones talking about the next instant stand for the post-condition.

The most important semantic constraint in our action layer is that the time
model imposes an interleaving semantics: exactly one action is executed at every
instant. Also, it does not feature stuttering steps by default: if this is needed, the
user may define an ad hoc action: act skip {} (with an empty modifies clause).

Actions are translated into a structure of signatures and fields encoding the
possible events (action occurrences). We introduce first an _Action enumeration
for all action names. Then we add a relation encoding all possible events by
taking the union of all possible valuations of actions (as actions may differ in
arity, we pad them to the highest arity with a dummy signature). Simultaneously,
we specify the time model by forcing exactly one event to occur at every instant.
Finally, a fact states the effect of every action when it is fired (cf. p. 44):

enum _Action { checkin, checkout, . . . } // action names
one sig _Dummy {}
one sig _E { // simply an enclosing signature for _event

var _event: (checkin → Guest → Room → Key)
+ (checkout → Guest → _Dummy → _Dummy)
+ . . . // other possible events

} { one _event } // time model
fact { always { // effect of every action when it is fired:
all g : Guest, r : Room, k : Key {
fired[checkin, g, r, k] implies . . . /* checkin body */ }

. . . /* the same for other actions */ } }

Frame Conditions An action can specify, using a modifies clause, which
variable signatures and fields it controls. In practice, this allows the automatic
generation of frame conditions under a simple rule saying that any variable
signature or field that is not controlled by an action is left unchanged by this
action. E.g., the checkout action (see Fig. 11 l. 2323–2525) controls the occupant field
only, inducing that current, lastKey and gkeys do not change when this action
fires. On the other hand, notice every action is responsible for handling the frame
conditions for the variable constructs declared in its modifies clause.

Referring to Actions in Constraints Any occurrence of an action can be
referred to in a constraint, with actual parameters (e.g. as entry[g,r,k] in
Fig. 11 l. 3737) or without (in which case, there is an implicit existential quan-
tification over all parameters). For instance, after checkout actually means:



after (some g: Guest | checkout[g]). To allow this, we generate a fired pred-
icate saying whether an action is indeed fired. As actions may take parameters
of different types, the fired predicate profile accepts arguments in the union of
all these types. Again, its arity is the highest arity for actions.
var sig _Arg = _Dummy + Guest + Room + Key {} // union of all types
pred fired [a : _Action, x1, x2, x3 : _Arg] { // if max arity = 3

a→x1→x2→x3 in _E � _event }

This way, entry[g,r,k] (Fig. 11 l. 3737) translates to fired[entry, g, r, k].

4 Related Work and Conclusion

TLA+ inspired Electrum in general, and its action layer in particular. However,
significant differences between TLA+ and plain Electrum have already been
pointed out in [55]. Moreover, our proposition slightly differs as Electrum is
stuttering sensitive and the time model is forced. The enhancement of Alloy
with behavior [33,11,66,77,22] has been widely studied. Among these propositions,
DynAlloy [33] defines a syntax for actions similar to ours, but the semantics differs
in the time model and in the firing of actions. Besides, all these frameworks propose
in the end a translation into plain Alloy and thus, they only offer verification
over a bounded temporal horizon. In our experience, using the Electrum action
layer makes the behavior specification both easier (specifying the actions, and
reasoning about their occurrence, is quite natural) and less error-prone because
part of the behavior specification is automatically generated. We benchmarked
(not shown due to lack of space) the action layer on examples coming from the
Alloy literature: w.r.t. plain Electrum, the efficiency of analyses is often reduced
for valid properties, but still acceptably. In the future, we intend to assess several
new compilation strategies (and perhaps semantics) to improve the efficiency.

References

1. Chang, F.S., Jackson, D.: Symbolic model checking of declarative relational models.
In: ICSE 2006. pp. 312–320. ACM (2006). doi: 10.1145/113432910.1145/1134329

2. Cunha, A.: Bounded model checking of temporal formulas with Alloy.
In: ABZ 2014. LNCS, vol. 8477, pp. 303–308. Springer (2014). doi:
10.1007/978-3-662-43652-3_2910.1007/978-3-662-43652-3_29

3. Frias, M.F., Galeotti, J.P., Pombo, C.L., Aguirre, N.: DynAlloy: upgrading Alloy with
actions. In: ICSE 2005. pp. 442–451. ACM (2005). doi: 10.1145/1062455.106253510.1145/1062455.1062535

4. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press,
revised edn. (2012)

5. Macedo, N., Brunel, J., Chemouil, D., Cunha, A., Kuperberg, D.: Lightweight
specification and analysis of dynamic systems with rich configurations. In: SIGSOFT
FSE. pp. 373–383. ACM (2016). doi: 10.1145/2950290.295031810.1145/2950290.2950318

6. Near, J.P., Jackson, D.: An imperative extension to alloy. In: ABZ 2010. LNCS,
vol. 5977, pp. 118–131. Springer (2010). doi: 10.1007/978-3-642-11811-1_1010.1007/978-3-642-11811-1_10

7. Vakili, A., Day, N.A.: Temporal logic model checking in Alloy. In: ABZ 2012. LNCS,
vol. 7316, pp. 150–163. Springer (2012). doi: 10.1007/978-3-642-30885-7_1110.1007/978-3-642-30885-7_11

http://dx.doi.org/10.1145/1134329
http://dx.doi.org/10.1007/978-3-662-43652-3_29
http://dx.doi.org/10.1145/1062455.1062535
http://dx.doi.org/10.1145/2950290.2950318
http://dx.doi.org/10.1007/978-3-642-11811-1_10
http://dx.doi.org/10.1007/978-3-642-30885-7_11

	Proposition of an Action Layer for Electrum

