
This work is financed by the ERDF – European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation -

COMPETE 2020 Programme and by National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia, within project

POCI-01-0145-FEDER-016826.

L
ig
h
tw

e
ig
h
t
T
ru
s
tw

o
rt
h
y
H
ig
h
-L
e
v
e
l
S
o
ft
w
a
re

D
e
s
ig
n

L
iu

C
h
o
n
g

U
M
in
h
o
|
2
0
2
2

Departamento de Informática

Liu Chong

Lightweight Trustworthy High-Level

Software Design

Programa de Doutoramento em Informática

das Universidades do Minho, de Aveiro e do Porto

January 2022

Universidade do Minho

Escola de Engenharia

Departamento de Informática

Liu Chong

Lightweight Trustworthy
High-Level Software Design

Tese de Doutoramento

Programa de Doutoramento em Informática

das Universidades do Minho, de Aveiro e do Porto

Trabalho realizado sob a orientação do
Professor Doutor Manuel Alcino Cunha
e do

Professor Doutor Nuno Moreira Macedo

January 2022

D I R E I T O S D E AU TO R E COND I Ç Õ E S D E U T I L I Z A Ç Ã O DO T R A B A LHO PO R

T E R C E I R O S

Este é um trabalho académico que pode ser utilizado por terceiros desde que respeitadas as regras e boas

práticas internacionalmente aceites, no que concerne aos direitos de autor e direitos conexos.

Assim, o presente trabalho pode ser utilizado nos termos previstos na licença abaixo indicada.

Caso o utilizador necessite de permissão para poder fazer um uso do trabalho em condições não previstas

no licenciamento indicado, deverá contactar o autor, através do RepositóriUM da Universidade do Minho.

Licença concedida aos uti l izadores deste trabalho

Atribuição

CC BY

https://creativecommons.org/licenses/by/4.0/

i

https://creativecommons.org/licenses/by/4.0/

A C KNOWL EDG EMEN T S

I still remember when I walked out of Professor Alcino’s office for the first time five years ago, at the

beginning of my five-year doctoral journey. I am very grateful to Professor Alcino for choosing me as his

PhD student and introducing me to the wonders of scientific research. These five years have been the most

unforgettable and happiest time for me. This experience will be one of the most memorable moments of

my life.

Foremost, I would like to express my sincere gratitude to my supervisors Professor Alcino and Professor

Nuno for the continuous support of my studies and research. I am sure that without your patience,

enthusiasm, and immense knowledge, this journey wouldn’t be possible. I could not have imagined having

better advisors.

Besides my supervisors, I would like to thank Professor Alexandre Santos, Professor Joaquim Macedo,

and Professor António Duarte Costa, who gave me a lot of help during my studies at the University of Minho.

I thank my Master’s supervisor, Professor Liu Dayou – without his help I would never have the opportunity

to study in Portugal as an exchange student and would never choose to pursue my PhD in Portugal.

I am very grateful to my country. During the COVID-19 epidemic, I received masks, disinfectants, and

medicine from the embassy many times, which made me feel the warmth of home outside. I would like to

thank my friends and my colleagues in Lab Room 207 who helped and colored my life in Portugal. Although

we hadn’t seen each other for a long time since the outbreak, we spent a lot of happy times together.

Finally, I would like to express my heartfelt thanks to all the professors who participated in the thesis

evaluation and defense.

ii

S T A T EMEN T O F I N T E G R I T Y

I hereby declare having conducted this academic work with integrity.

I confirm that I have not used plagiarism or any form of undue use of information or falsification of results

along the process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of Minho.

iii

R E S UMO

A modelação e análise formal de software é essencial para obter um projecto de software confiável

antes da implementação. O Alloy, uma linguagem de especificação com uma ferramenta de análise

automática, é uma abordagem popular para esta tarefa. Frequentemente, um projecto de software inclui

muitas variantes com grande partilha de código. Em vez de considerar cada variante individualmente, o

desenvolvimento de software orientado à funcionalidade procura desenvolver em conjunto toda a família

de variantes, também designada por linha de produtos de software (LPS). Aspectos em comum são

organizados em funcionalidades, implementando cada variante um sub-conjunto das mesmas. Existem

duas abordagens típicas para implementação de uma LPS: abordagens composicionais, onde cada

funcionalidade é implementada num módulo distinto, e abordagens anotativas, onde o código específico

de cada funcionalidade é assinalado com uma anotação. A primeira é melhor para adicionar grandes

blocos de código a uma funcionalidade, por exemplo uma nova classe, enquanto que a segunda suporta

melhor pequenas extensões, tais como adicionar uma instrução a um método.

O primeiro objectivo desta tese é propor uma extensão anotativa para o Alloy, para suportar a concepção

formal de software orientada à funcionalidade. A ideia é suportar pequenas extensões a um modelo mas

sem os problemas de compreensão que derivam das típicas anotações #ifdef usadas na implementação

de uma LPS. Para tal, permitimos cores de fundo para identificar os fragmentos associados com cada

funcionalidade, dando origem à linguagem Colorful Alloy. Também propusemos uma técnica de análise

amalgamada para verificar toda uma família de variantes de uma só vez. O segundo objectivo é propor

uma técnica para migração de um conjunto de variantes, possivelmente desenvolvidos com a abordagem

clone-and-own, para um único modelo em Colorful Alloy. Para tal, propusemos um catálogo de refatorações

e mostramos como podem ser usadas para iterativamente migrar modelos Alloy clonados para um único

modelo “colorido”. Também desenvolvemos uma técnica de migração que automatiza todo este processo.

Este trabalho foi avaliado com recurso a vários casos de estudo de LPSs, desenvolvidos quer pro-activamente

com Colorful Alloy, quer com a abordagem clone-and-own com Alloy normal. Esta avaliação mostrou que

a técnica de análise amalgamada pode aumentar consideravelmente a eficiência da verificação de uma

família de variantes, quando comparada com a análise variante a variante. Também mostrou que a técnica

de migração (incluindo a completamente automática) pode reduzir significativamente a quantidade de

código clonado, o que em princípio permitirá simplificar a compreensão de um projecto de uma LPS.

P a l a v r a s - c h a v e Concepção formal de software, Alloy, linhas de produtos de software, variabilidade,

refatoração, clone-and-own.

iv

A B S T R A C T

Formal modeling and analysis is essential to achieve a trustworthy software design prior to its implementation.

Alloy, a specification language with a lightweight model finder, is a popular approach to accomplish this

task. Frequently, a software design encompasses many variants with a large commonality between them.

Instead of considering each variant individually, feature-oriented software development tackles at once

the whole family of variants, also known as a software product line (SPL). Commonalities are organized

as features, with each variant implementing a particular set of features. SPL implementation techniques

mainly fall into two groups: compositional approaches, which implement features in distinct modules,

and annotative approaches, that wrap feature-specific code with annotations. The former is well suited to

coarse-grained feature extensions, such as adding a new class, while the latter is better for fine-grained

extensions, like adding a statement in a method.

The first goal of this thesis is to propose an annotative extension to Alloy, to support formal feature-

oriented software design. Our aim was to easily support fine-grained extensions to a model, but without the

comprehension obstacles of the typical #ifdef annotations used in SPL implementation. To that end, we

added support for background colors to identify the fragments associated with each feature, ending up with

the Colorful Alloy language. We also proposed an amalgamated analysis technique that can verify a full

family of design variants at once. Our second goal was to propose a technique for migrating a collection of

variants, possibly developed with the clone-and-own approach, into a single managed Colorful Alloy design.

To achieve this, we proposed a catalog of refactorings and showed how they can be used to iteratively

merge cloned Alloy models into a colorful model. We also proposed a one-step merging strategy that

automates this technique. We evaluated our work with several SPL case studies that were either developed

proactively directly with Colorful Alloy or using clone-and-own using normal Alloy. The evaluation showed

that the amalgamated analysis strategy can considerably speed-up the verification of a full family of design

variants, when compared to the iterative and separate analysis of each variant. It also showed that the

clone merging technique (including the automatic one) can substantially reduce the amount of cloned code,

which in principle simplifies the understanding of an SPL design.

K e y w o r d s Formal software design, Alloy, software product lines, variability, refactoring, clone-and-

own.

v

CON T EN T S

1 Introduction 1

2 Formal Software Design with Alloy 6

2.1 Alloy by Example 6

2.1.1 E-commerce Example 7

2.1.2 Signature and Field Declaration 8

2.1.3 Type System 9

2.1.4 Exploring Scenarios 11

2.1.5 Specifying Constraints 13

2.1.6 Verifying Assertions 15

2.1.7 Modularization 17

2.2 Formal Presentation of the Language 21

2.2.1 Formal Syntax 21

2.2.2 Formal Semantics 24

2.2.3 Type Inference 27

2.2.4 Analysis 29

2.3 Refactoring Alloy Models 32

2.3.1 Laws for Signatures 33

2.3.2 Laws for Fields 34

2.3.3 Laws for Formulas 36

2.4 Alloy Extensions 37

3 Feature-oriented Software Design 44

3.1 Feature Modeling 45

3.1.1 Specifying Feature Models 45

3.1.2 Analyzing Feature Models 49

3.2 Modeling in Feature-oriented Design 55

vi

contents

3.2.1 Ad-hoc Approaches 57

3.2.2 Composition-based Languages 61

3.2.3 Annotation-based Languages 71

3.3 Analysis in Feature-oriented Design 76

3.4 Supporting Clone-and-own 81

3.4.1 Migrating Clones into an SPL 82

4 Colorful Alloy 88

4.1 The Background Color Approach 89

4.2 Colorful Alloy Syntax 93

4.3 An Example of Proactive SPL Design 95

4.4 Type Checking Rules 99

4.5 Semantics 104

4.6 Analysis 106

5 Merging Cloned Alloy Models with Colorful Refactorings 113

5.1 Migrating Code Clones into an SPL with Refactoring 114

5.2 Refactoring Rules for Colorful Alloy 117

5.3 Migrating Clones into a Colorful Alloy Model 129

5.4 Automatic Merging Strategy 133

6 Implementation and Evaluation 138

6.1 The Colorful Alloy Analyzer 138

6.2 Proactive Case Studies 142

6.2.1 E-commerce 142

6.2.2 GrandpaFamily 143

6.2.3 Alloy4Fun 144

6.2.4 Graph 148

6.2.5 Vending Machine 149

6.2.6 Bestiary 151

6.2.7 Comparison with Compositional Approaches 151

6.3 Evaluating the Clone Migration Strategy 152

vii

contents

6.3.1 Extractive Case Studies 153

6.3.2 Clone Migration Results 160

6.4 Evaluating Colorful Analysis 164

7 Conclusion 167

Bibliography 169

A Colorful Examples 181

viii

L I S T O F F I G U R E S

Figure 1 An instance of the single-variant e-commerce example. 12

Figure 2 An instance of the single-variant e-commerce example improved with a cus-

tomized theme. 13

Figure 3 An instance of the single-variant e-commerce example considering facts. 16

Figure 4 A counterexample for an expected assertion of the single-variant e-commerce

example. 17

Figure 5 Single-variant e-commerce model in Alloy. 20

Figure 6 Concrete syntax of the Alloy language. 21

Figure 7 Syntax of the core Alloy language. 25

Figure 8 Semantics of formulas. 27

Figure 9 Semantics of relational operators. 27

Figure 10 Inference rules for bounding types. 29

Figure 11 Simplified e-commerce specification in Alloy. 30

Figure 12 Kodkod problem corresponding to the simplified e-commerce. 30

Figure 13 Transition system of a vending machine. 37

Figure 14 The pre- and post-state of the cancel operation. 40

Figure 15 The pre- and post-state of the cancel operation in the Electrum Analyzer. 43

Figure 16 Feature diagram typical notation. 46

Figure 17 Cross-tree constraints. 46

Figure 18 Feature diagram of the e-commerce platform. 47

Figure 19 E-commerce FM encoded in TVL. 49

Figure 20 Language categorization based on variability representation. 56

Figure 21 E-commerce catalog SPL encoded in Clafer. 60

Figure 22 Feature diagram of the vending machine example. 61

Figure 23 Vending machine SPL encoded in Electrum. 62

Figure 24 Base vending machine model in fSMV. 64

Figure 25 Feature Cancel of the vending machine in fSMV. 65

ix

l ist of figures

Figure 26 Feature MultiSelection of the vending machine in fSMV. 66

Figure 27 Derivative feature for Cancel and MultiSelection of the vending machine in

fSMV. 67

Figure 28 Base model of the e-commerce catalog in FeatureAlloy. 67

Figure 29 Feature Thumbnails of the e-commerce catalog in FeatureAlloy. 68

Figure 30 Feature Categories of the e-commerce catalog in FeatureAlloy. 68

Figure 31 Derivative feature for Categories and Thumbnails of the e-commerce catalog in

FeatureAlloy. 69

Figure 32 Core class diagram for e-commerce. 70

Figure 33 Class diagram Δ-Model for Categories. 70

Figure 34 Class diagram Δ-Model for Multiple. 70

Figure 35 Vending machine in fPromela with Free, Cancel and MultiSelection features. 74

Figure 36 Annotated class diagram for the e-commerce catalog. 75

Figure 37 Annotated activity diagram for the vending machine. 76

Figure 38 FTS of a vending machine. 78

Figure 39 Projected transition systems for the vending machine. 80

Figure 40 SMV model for the amalgamated verification of the vending machine exam-

ple. 81

Figure 41 Clone Alloy model of an e-commerce platform with thumbnails. 84

Figure 42 Possible result of merging clones with the approach proposed by (Rubin et al.,

2015). 85

Figure 43 Excerpt of Berkeley DB with background colors (Feigenspan et al., 2013). 90

Figure 44 CIDE screenshot (Kästner et al., 2008). 91

Figure 45 FeatureCommander screenshot (Kästner et al., 2008) 93

Figure 46 Concrete syntax of the Colorful Alloy language (additions w.r.t. the Alloy syntax

are colored red). 94

Figure 47 Feature diagram of the colorful e-commerce specification. 96

Figure 48 E-commerce specification in Colorful Alloy. 97

Figure 49 Collecting a typing context from declarations. 100

Figure 50 Type rules for kernel paragraphs. 102

Figure 51 Type rules for kernel expressions. 103

Figure 52 Paragraph projection. 104

x

l ist of figures

Figure 53 Expression projection. 105

Figure 54 E-commerce example projection to variant 1 , 2 . 106

Figure 55 Paragraph translation into the amalgamated model with variability. 109

Figure 56 Expression translation into the amalgamated model with variability. 110

Figure 57 Amalgamated translation of the e-commerce model from Fig. 48 (except com-

mands). 111

Figure 58 Amalgamated translation of the e-commercemodel from Fig. 48 (commands).112

Figure 59 Clone migration process of (Fenske et al., 2017) 115

Figure 60 E-commerce base model (variant 1 2 3). 130

Figure 61 Clone introducing categories (variant 1 2 3). 130

Figure 62 Part of the initial migrated e-commerce colorful model. 131

Figure 63 E-commerce specification obtained with the automatic merging strategy. 137

Figure 64 The e-commerce in the Colorful Analyzer, showing the editor and the visual-

izer. 139

Figure 65 Automatic merge strategies. 141

Figure 66 Contextual refactoring menu Remove Feature. 142

Figure 67 Feature diagram of the e-commerce specification. 143

Figure 68 Feature diagram of the GrandpaFamily specification. 144

Figure 69 GrandpaFamily specification in Colorful Alloy. 145

Figure 70 Alloy4fun specification in Colorful Alloy. 146

Figure 71 Feature diagram of the Alloy4fun specification. 147

Figure 72 Feature diagram of the Graph specification. 148

Figure 73 Feature diagram of the Vending Machine example. 149

Figure 74 Snippet of Vending Machine specification in Colorful Alloy. 150

Figure 75 Feature diagram of the Bestiary specification. 151

Figure 76 Feature diagram of the Grandpa specification. 153

Figure 77 A snippet of variant 1 2 of the GrandPa specification. 154

Figure 78 A snippet of variant 1 2 of the GrandPa specification. 154

Figure 79 A snippet of variant 1 2 of the GrandPa specification. 155

Figure 80 Feature diagram of the Ring Election specification. 156

Figure 81 A snippet of Ring Election specification, variant 1 . 157

Figure 82 A snippet of Ring Election specification, variant 1 . 158

xi

l ist of figures

Figure 83 Feature diagram of the AdressBook specification. 158

Figure 84 A snippet of AddressBook1h.als specification, variant 1 2 . 159

Figure 85 A snippet of AddressBook2e.als specification, variant 1 2 . 159

Figure 86 A snippet of AddressBook3b.als specification, variant 1 2 . 159

Figure 87 Feature diagram of the Hotel specification. 160

Figure 88 A snippet of the Hotel variant 1 2 . 160

Figure 89 A snippet of the Hotel variant 1 2 . 161

Figure 90 A snippet of the Hotel variant 1 2 . 161

Figure 91 A snippet of the Hotel variant 1 2 . 162

Figure 92 E-commerce specification in Colorful Alloy. 181

Figure 93 Graph specification in Colorful Alloy. 182

Figure 94 Vending Machine specification in Colorful Alloy (part 1). 183

Figure 94 Vending Machine specification in Colorful Alloy (part 2). 184

Figure 95 Bestiary specification in Colorful Alloy. 185

Figure 96 OwnGrandPa specification in Colorful Alloy. 186

Figure 97 Ring Election specification in Colorful Alloy. 187

Figure 98 AddressBook specification in Colorful Alloy. 188

Figure 99 Hotel specification in Colorful Alloy (part 1). 189

Figure 99 Hotel specification in Colorful Alloy (part 2). 190

xii

L I S T O F T A B L E S

Table 1 A bestiary of binary relations. 23

Table 2 Rules for translating FMs to propositional formulas. 52

Table 3 Evaluation results. 163

Table 4 Evaluation of the amalgamated and iterative approaches for the proactive

examples. 164

Table 5 Evaluation of the amalgamated and iterative approaches for the extractive

examples. 165

xiii

1

I N T R ODUC T I O N

Nowadays, computers have become increasingly powerful and essential in our life. Therefore, rigorous

software design techniques for dependable systems become an imperative requirement in the software

developing process. A simple straightforward approach to develop a new system is to write the requirements

(usually in natural language) that specify the desired behavior of the system, and then attempt to implement

it directly into code by the programmer. Finally, the functionality of the system can be tested during and

after the coding to ensure that the generated program meets the specification and is free of errors or

bugs. However, this process is not easy to achieve, especially for some safety-critical systems. First of

all, a complete and unambiguous specification is difficult to have; second, programmers must fully and

correctly understand the content of the requirements and handle all possible ambiguities; third, the testing

must be exhaustive, that is, all possible states of the system must be rigorously tested. However, for

some safety-critical systems such as medical devices or aerospace systems, we have to fully ensure its

correctness, otherwise their operation may result in severe consequences. Furthermore, testing some

large and complex systems can be time-consuming, and due to the size of the system, exhaustive testing

may not even be possible in practice. Therefore, in addition to exhaustive testing, techniques based on

mathematical analysis should be used to ensure the correct implementation of requirements. In particular,

formal software development methods, including specification, verification, and validation, are mathematical

techniques to identify errors and discrepancies in the early phases of the software development process.

Specifically, formal methods allow us to formally check that an implementation (or a formal model of

an implementation) of a system (or parts of a system) meets the expected requirements (specified in

some formal language). Among the myriad of the proposed formal methods, lightweight ones – which rely

on automatic analyses to verify (often partial) specifications – have become increasingly popular, since

they bring the power of fast verification and validation to most software developers. That is the case of

model checkers like NuSMV (Cimatti et al., 2000) or SPIN (Holzmann, 1997), for verifying temporal logic

properties of (behavioral) designs (modeled as transition systems), or model finders like Alloy (Jackson,

1

1. Introduction

2012), more geared towards verifying first-order properties of structural designs specified at a high level of

abstraction (using simple mathematical concepts like sets and relations). Given its popularity, lightweight

analysis, and suitability for high-level design, Alloy will precisely be the focus of this thesis.

In order to suit the wide variety of (different) customer requirements, many systems are actually developed

as a family of systems, many times with only slight differences in the implementation between different

family members. Using conventional formal methods, each family member of those systems would be

designed and analyzed individually. The engineers conducting the design have to perform tedious and

repeated work, especially when a new functionality is added that affects all family members. Therefore,

such classic single variant formal methods are not suitable for the development of software families. In

this context, techniques for designing, analyzing, and implementing a full family of systems at once are

mandatory. A common paradigm that is adopted when developing such large-scale software systems

is feature-oriented software development (Apel and Kästner, 2009), a paradigm that organizes software

around the key concept of feature, a unit of functionality that satisfies some of the requirements and that

originates a configuration option. If the implementation is properly decomposed, it is possible to deliver

many variants of the system just by selecting the desired features. The set of all those variants is usually

called a software product line (SPL). Ideally, the design of SPLs should already explicitly take features

into account, and formal methods should be adapted to support such feature-oriented design (Apel et al.,

2010). In fact, even when developing a single software product, it is still convenient to explicitly consider

features and multi-variant analysis during design to support the exploration of different implementation

alternatives. In feature-oriented design, the set of all product line features together with their relationships

should be specified in a feature model, and the system itself should be modeled in feature-aware extensions

of common modelling formalisms such as transition systems. Having proper language and tool support for

feature-oriented design is a key enabling technology for developing a wide variety of software systems of

high quality in a fast, consistent, effective, and comprehensive way.

The key for effective variability modeling is to design a system family exploiting its commonalities and

efficiently express and manage its variability. Most general-purpose programming and modeling languages

can already somehow support feature-oriented design with their standard constructs in an ad-hoc fashion,

a technique that is often cumbersome and error-prone for realistic SPLs. In addition to these ad-hoc

techniques, proper feature-oriented programming languages fall into one of two categories: compositional

approaches, which implement features as distinct modules and have some sort of module composition

technique to generate a specific variant; and annotative approaches, which implement features with explicit

(or sometimes implicit) annotations in the source code, that dictate which fragments will be present in

2

1. Introduction

a specific variant. The former are well suited to support coarse-grained feature extensions, for example

adding a complete new class to implement a particular feature, but are not good for fine-grained extensions,

for example adding a sentence to a method or changing the expression in a conditional, to affect the way a

code fragment works with different features (Kästner et al., 2008). Annotative approaches are much better

suited for such fine-grained variability.

Unfortunately, explicit support for feature-oriented design in formal methods, providing a uniform

formalism for feature, architectural and behavioral modeling, as advocated for SPL engineering (Schaefer

and Hähnle, 2011), is still scarce. Support for features in model checking has been proposed, namely a

compositional approach for the SMV modeling language of NuSMV (Plath and Ryan, 2001; Classen et al.,

2014) and an annotative approach for the Promela modeling language of SPIN (Cordy et al., 2013). A

compositional approach has also been proposed to explicit support features in Alloy (Apel et al., 2010).

However, modeling and specifying in Alloy is usually done at high levels of abstraction, and adding a feature

can require only minimal and very precise changes, for instance, adding one new relation to the model

or changing part of the specification of a desired property, and such compositional approach is not well

suited for these fine-grained extensions.

This thesis addresses precisely this problem. As such, the first main goal of our work is to propose an

annotative approach to add explicit support for features to Alloy and its Analyzer. This involves developing a

new language extension as well as adapting the existing or proposing novel analysis techniques. A classic

annotative approach for source code is the use of #ifdef and #endif C/C++ compiler preprocessor

directives to delimit the code fragments that implement a specific feature. Unfortunately, such annotation

style obfuscates the code and makes it hard to understand and maintain, leading to the well-known #ifdef

hell (Feigenspan et al., 2013). To alleviate this problem, while retaining the advantages of annotative

approaches, Kästner et al. (2008) proposed to annotate code fragments associated with different features

with different background colors, which was later shown to clearly improve SPL code comprehension and

be favored by developers (Feigenspan et al., 2013). Inspired by this colorful approach, we developed a

colorful extension to Alloy and its Analyzer, denoted Colorful Alloy, that allows users to annotate model

and specification fragments belong to distinct features with different background colors, and run analysis

commands to verify either a particular variant, or several variants at once. To the best of our knowledge,

this is the first color-based annotative approach formal method for feature-oriented design focusing on

structural requirements.

Evolution is an important software development activity, as the original design usually does not comply

with new requirements. One approach widely used by software developers when developing new software

3

1. Introduction

variants is the clone-and-own approach, where new variants are implemented by copying code from existing

variants and then adapting it to fit the new requirements. Since the cost to maintain the clones and

synchronize changes in replicas increases rapidly with the number of clones, developers may benefit from

migrating (by merging) such variants into a single proper SPL implementation, where the common parts of

the clones are factored out and implemented only once. The resulting code provides significant benefits for

management and requires less effort in subsequent maintenance and design evolutions.

Many techniques have been proposed to migrate product variants into managed SPLs, as detailed in

the survey conducted by Assunção et al. (2017). However, most of these techniques work at the code

level, and only a few have been proposed specifically for design models. The second main goal of our work

is to propose a technique for migrating legacy Alloy models developed with a clone-and-own approach into

a single SPL Colorful Alloy model. We achieve this by a step-by-step automated refactoring technique. A

refactoring is a kind of transformation that changes the structure of the source code while preserving its

external behavior. However, classical refactoring is not well-suited for feature-oriented development, since

both the set of possible variants and the behavior of each variant must be preserved (Schulze et al., 2012),

and refactoring laws are typically too coarse-grained to be applied in this context, focusing on constructs

such as entire functions or classes. In this thesis, we propose a catalog of variability-aware refactoring laws

for Colorful Alloy, covering all model constructs – from structural declarations to axioms and assertions –

and granularity levels – from whole paragraphs to formulas and expressions. Then, we show how these

refactorings can be used to migrate a set of legacy Alloy clones into a colorful SPL using an approach

similar to the one previously proposed by Fenske et al. (2017) for Java code. To simplify this process we

also proposed a one-step fully automatic merging strategy that composes a sequence of refactorings.

The organization of this thesis is as follows.

Chapter 2 gives an overview of formal software design with Alloy. It starts by showing an application of

the Alloy language in the design of a catalog structure of an e-commerce site. Then it gives a formal

presentation of the language and, finally, presents some work on Alloy refactoring and extensions.

Chapter 3 presents a literature review on feature-oriented software design, including an overview about

feature modeling, a collection of approaches that can be used to model and analyse feature-oriented

systems, and some approaches for migrating clones into an SPL.

Chapter 4 formally presents the Colorful Alloy language, including its syntax, typing rules, and semantics.

It also presents the multi-variant analysis technique developed for this new language extension.

4

1. Introduction

Chapter 5 presents a catalog of variability-aware refactoring laws and shows how they can be used to

migrate a set of cloned Alloy variants into a Colorful Alloy model.

Chapter 6 presents the implementation and evaluation of this work. We first present a description of

the implementation of Colorful Alloy language, analysis, as well as the catalog of refactoring rules

in the so-called Colorful Analyzer. The evaluation includes a qualitative analysis where we show

how Colorful Alloy was used to develop several case-studies, and a quantitative analysis focused on

evaluating the effectiveness of the proposed automatic analysis and clone migration techniques.

Chapter 7 summarizes the research in this thesis and identifies possible directions for future work.

Appendix A presents the Colorful Alloy models of the case studies used in the evaluation.

The work in this thesis originated two publications: the first (Liu et al., 2019) was accepted at the 5th

International Symposium on Dependable Software Engineering Theories, Tools and Applications (SETTA),

and describes a preliminary version of the Colorful Alloy language and analysis technique that are presented

in Chapter 4; the second (Liu et al., 2020) was accepted at the 23rd Brazilian Symposium on Formal

Methods (SBMF) and describes a preliminary version of the catalog of variability-aware refactoring laws

and the clone migration technique presented in Chapter 5. The latter paper won the 2nd place for best

paper award at the symposium and was invited to be submitted as a journal version to a special issue of

Science of Computer Programming (Elsevier). We have recently submitted this paper, which presents the

final version of the Colorful Alloy language and of the clone migration technique.

5

2

F O RMA L S O F TWA R E D E S I G N W I T H A L L O Y

A good software design is key to achieve a high-quality system that meets all the expected requirements.

In particular, it is very important to have clear specifications for the structure and behavior of a software

system prior to its implementation. Among the various approaches proposed currently to help software

developers reason about a software design, those that combine simple but formal specification languages

with automatic analysis tools, that allow users to quickly explore different design alternatives and verify

model assumptions, have more potential to be widely adopted. Alloy, which consists of a lightweight

declarative modeling language and an automatic analysis tool, the Alloy Analyzer, is a prime example of

such formal approaches and is becoming increasingly popular for validating software designs in the early

stages of development.

In this chapter, we present the Alloy language and its Analyzer in detail, as well as how to use them for

software design. Specifically, Section 2.1 illustrates the application of Alloy in the design of the catalog

structure of a simple e-commerce system, including how to model the catalogue structure, how to specify

its constraints, how to use the Analyzer to simulate different scenarios and check expected properties, as

well as how to structure an Alloy model for reuse and better understanding. Section 2.2 gives a formal

presentation of the Alloy language, including its syntax, core semantics, type inference mechanism, as well

as the analysis procedure implemented in its Analyzer. Section 2.3 presents some work on refactoring

Alloy specifications and, finally, Section 2.4 briefly presents some Alloy extensions and variants that have

been developed to address some of its shortcomings.

2.1 Al loy by Example

Alloy is a lightweight declarative modeling language that provides a simple syntax to introduce sets and

relations, as well as a powerful relational logic syntax to express constraints. A model written in Alloy can be

automatically analyzed by the Alloy Analyzer, and the obtained results are displayed through a user-friendly

6

2.1. Alloy by Example

visualizer. In this section, we will step through the use of the Alloy language as well as its Analyzer by an

example of an e-commerce platform, namely by modeling the catalog structure of such a system.

2.1.1 E-commerce Example

Nowadays, with the rapid development of computer network and communication technology, people can

not only conduct face-to-face traditional transactions on tangible goods, but also through websites offering a

wide range of products, supported by an advanced logistics and distribution system, and a secure payment

system to complete transactions. This increasingly popular way of using the Internet to buy and sell goods

or services is called e-commerce and it has begun to become an important part of everyday life.

There are many types of e-commerce systems, all of which provide a web interface, generally a HTML

page, which displays the catalog of products offered by the company. Buyers can view a company’s

entire product offer through this catalog. The main purpose of the catalog is to advertise the products and

thus attract the attention of the customer, so each product is typically illustrated by a set of images and

catalogues are illustrated by thumbnails. An e-commerce platform can implement several variants of this

basic catalogue structure, to support different needs from different e-commerce sites. For example, some

sites organize products in categories listing together similar products, in which case, a catalog is organized

as a set of categories, each containing some products. Also, in some sites categories may be organized

in a hierarchy, and in some each product may belong to more than one category. This means that an

e-commerce platform can be designed as an SPL, where each variant supports a different set of features. In

this example a possible feature is having categories or not, and when this feature is present, two additional

optional features are available: hierarchical categories and multiple categories per product. In this chapter

we will focus on the design of a single variant of this system, the one having all the aforementioned features.

Later in this thesis, we will see how the proposed Alloy extension allows us to develop all the five variants

in a single model. In the following sections, we will detail how to model this simple example from scratch

using the Alloy language, and how to analyze it with the Alloy Analyzer.

This example is an adaptation of a similar one proposed by Czarnecki and Pietroszek (2006) also in the

context of SPL design.

7

2.1. Alloy by Example

2.1.2 Signature and Field Declaration

An Alloy model typically declares some signatures, each with an arbitrary number of field declarations.

Signatures introduce sets of elements (also known as atoms in Alloy) and fields capture the relations

between them. Everything in Alloy can be viewed as a relation, which is a set of tuples that relates atoms to

each other. The size of a relation is the number of tuples it contains and the arity of a relation is the length

of its tuples. Note that all tuples of a relation must have the same length. Relations with arity one, two,

three are called unary, binary, and ternary, respectively. Those with an arity greater than two are called

multi-relations. A set in Alloy is just a unary relation. In particular, signatures are unary relations.

A signature is declared with the keyword sig followed by a user-defined name and a body enclosed

in braces. For example, the following code fragment introduces four signatures, which capture the main

concepts of an e-commerce framework, namely the catalogs and the respective categories, the products

provided by the company, and the images illustrating these products.

sig Catalog {}

sig Category {}

sig Product {}

sig Image {}

Each signature declaration can include an (optional) multiplicity constraint to limit the number of atoms

in the respective set. For example, we could restrict Product to be non-empty to capture the fact that an

e-commerce site must have some products for sale.

some sig Product {}

The some qualifier before the sig keyword states that signature Product has at least one atom. In

addition to some, the lone or one qualifiers can also be used in signature declarations, indicating that

at most one or exactly one atom must be present in the respective set.

A signature declaration can also introduce a number of fields separated by commas, each field relating

the atoms of the enclosing signature with other atoms in the universe of elements. For instance, to declare

fields to relate products with the respective images and catalogs, the declaration of Product could be

changed as follows.

sig Product {

images: set Image,

category: some Category }

8

2.1. Alloy by Example

This declaration now introduces two binary relations, images and category that, respectively,

associate each product with its set of images and categories. The set multiplicity imposed on images

means that images relates each Product to any number of atoms from Image (possibly zero). The

some quantifier imposed on category means that category relates each Product to at least one

Category.

To capture the relation between catalogues and their thumbnails, and the hierarchy between cate-

gories, we introduce fields thumbnails and inside in the declarations of Catalog and Category,

respectively.

sig Catalog {

thumbnails: set Image

}

sig Category{

inside: one Catalog+Category

}

Notice that inside relates each category with either one category or a catalog, to capture the fact that a

category can be inside a catalog or inside another category. In this field declaration, + denotes set union,

and is one example of the relational logic operators that will be introduced in Section 2.1.5 for specifying

constraints on our model.

2.1.3 Type System

The image of a product may have a variety of formats, such as JPG or PNG. Alloy’s type system allows users

to specify a hierarchy between signatures. Similarly to other languages, a signature can be introduced

as an extension of another signature (declared with an extends keyword). Sibling extension signatures

represent disjoint subsets of the parent signature. The parent signature can optionally be marked as

abstract (with the keyword abstract). An abstract signature has no elements other than those that

belong to its extensions. For example, to introduce the different image formats in our running example, we

could refine the declaration of images as follows.

abstract sig Image {}

sig Jpg,Png extends Image {}

By declaring Image as abstract, each atom of Image must belong to either Jpg or Png.

9

2.1. Alloy by Example

The format of images could be captured alternatively with an enumerated data type Format, that

specifies the available formats, and a binary relation format that associates each image with its format.

To declare an enumerated data type in Alloy, we declare it as a normal abstract signature, and extend it

with as many singleton signatures as its different values. A singleton signature contains exactly one atom,

and thus captures a possible value of the enumerated data type. The alternative specification of image

formats would be as follows.

abstract sig Format {}

one sig Jpg,Png extends Format {}

sig Image {

format : one Format

}

Besides extension, a signature can also be declared by inclusion (using the keyword in instead of

extends), indicating the signature is an arbitrary subset of its parent signature. For instance,

sig Product { … }

sig onSale in Product {}

declares onSale as a subset signature of Product, to capture products that are on sale. Unlike

extension signatures, sibling subset signatures are not necessarily disjoint and cannot be extended.

Two non-overlapping signatures may have overloaded fields, declared with the same name. When an

overloaded field is used in formulas and expressions, the Alloy type system will use context information

(such as the type of the values to which it is being applied) to disambiguate which concrete field is being

referred. If it cannot disambiguate, an error message will be generated to report an ambiguous reference.

This is just an example of the possible type errors detected by Alloy’s type system, which will be presented

with more detail in Section 2.2.3.

For example, since Product and Catalog are disjoint, we could have used the same name images

to associate a product with its images and a catalog with its thumbnails, as follows.

sig Product {

images: set Image,

category: some Category

}

sig Catalog {

images: set Image

}

10

2.1. Alloy by Example

In the remaining of this section we will however still use the name thumbnails for the latter, to make

the model more clear.

2.1.4 Exploring Scenarios

Having modeled the catalog structure of our e-commerce platform with several signature and field dec-

larations, we could now perform some scenario exploration with the goal of validating our model. One

way to achieve this is to instruct the Alloy Analyzer to depict a possible instance of our model with a run

command. The command

run {} for 2

instructs the Analyzer to find any possible instance of our model (the empty body between brackets imposes

no additional constraints on the desired instance), specifying a finite scope limiting the search for instances.

Here the scope limits the top-level signatures (those that do not extend or are included in others) to have a

maximum of 2 distinct atoms. The scope in the command can be omitted, in which case the Analyzer will

use the default scope of 3. Alloy not only allows users to set a default scope for all top-level signatures (as

shown in the above command) but also a more specific scope for particular signatures. Of course, these

two settings can be mixed, in which case the explicit scope on a signature will override the default scope.

As we have seen, the command run {} for 2 instructs the analyzer to find possible instances where

top-level signatures contain no more than two atoms. If the command is changed to run {} for 2

but 3 Product, the Analyzer will also consider instances where Product has up to 3 atoms. Scopes

can further be constrained with the exactly keyword, meaning that the specified scope is now an exact

bound. For example, the command run {} for 2 but exactly 3 Product will instruct the

Analyzer to consider only instances with exactly three products.

Running the above command could return the instance shown in Fig. 1. The output can be displayed in

various ways, namely, as text, a table, or a graph, which can be selected by corresponding buttons in the

toolbar of the visualizer. Here the instance is depicted as a graph, where atoms are shown as nodes inside

boxes and relations as arrows connecting those nodes. In the case of higher arity relations, arrows would

connect the first and last atoms of its tuples, being the remaining atoms shown as labels. Figure 1 shows

an instance with one product (Product) that is on sale, belongs to two different categories (Category0

and Category1), which in turn belong to the same catalog (Catalog1). This product has a PNG

image that is also the thumbnail of the respective catalog (Image0). There is another empty catalog

11

2.1. Alloy by Example

Figure 1: An instance of the single-variant e-commerce example.

(Catalog0) that however contains a thumbnail image (Image1): this clearly denotes a problem with

our model, as catalogs should only have thumbnails that are images of the products they contain.

The visualizer allows users to ask for more instances by clicking on the Next button. Note that the

Alloy analyzer runs a symmetry breaking procedure during the analysis, which avoids the generation of

isomorphic instances (equal modulo renaming of atoms): this not only significantly improves the efficiency

of analysis, but also considerably lowers the cognitive burden needed to understand scenarios, as the user

is not encumbered with lots of instances that only differ in irrelevant details.

To further simplify the understanding of scenarios, the appearance of an instance can be customized in

the Theme menu of the visualizer. As shown in Fig. 2, distinct signatures can be configured with different

shapes and colors to highlight the important information. Moreover, relations can be configured to be

shown as an attribute of atoms, instead of using arrows (as is the case of format) and some signatures

can even be hidden (as is the case of Jpg and Png) to avoid cluttering visualizations with redundant or

irrelevant information.

By exploring scenarios with run commands we identified a problem with our model. This problem

cannot be avoided by changing only signature declarations. Additional constraints are needed in the model

to eliminate this error, which motivates us to explore how constraints are specified in Alloy.

12

2.1. Alloy by Example

Figure 2: An instance of the single-variant e-commerce example improved with a customized theme.

2.1.5 Specifying Constraints

Additional constraints in Alloy are expressed with relational logic, a logic that combines the quantifiers of

the first-order logic with the operators of the relational calculus. Since all structures in Alloy are represented

as relations, all structural properties can be expressed with a small set of simple but powerful operators.

In addition to the declared signatures and constraints, there are three pre-defined constants, representing

the set of all atoms (univ), the empty set (none), and the binary identity relation that relates every atom

to itself (iden).

The operators in Alloy fall into two categories: set operators and relational operators. The standard

set operators have the conventional meaning, and can be applied to relational expressions of any arity.

The union of two sets (denoted by +) returns a new set that contains all the tuples that are in at least one

of them; the intersection (&) returns a new set with the tuples contained in both sets; and set difference

(−) determines the tuples that belong to the first but not to the second. To compare sets we can use the

binary operators in, that returns true if the first set is a subset of (or equal to) the second one, and = that

returns true only when the two sets are the same. It is also possible to check the cardinality of a set with

the multiplicity unary operators no, lone, some, and one, with the obvious meaning.

Among the relational operators we have the product (→) of two relations, that returns all the tuples that

result from the combination (via concatenation) of all tuples from the first relation with all tuples of the

13

2.1. Alloy by Example

second one. The transpose unary operator (∼) can be applied to a binary relation and reverses the order of

the elements in all its tuples. A common use of transpose is the constraint ∼r in r, indicating that the

relation r is symmetric. Given a set and a relation, we can filter the tuples of the latter that start with an

atom in the former with the domain restriction operator (<:). Likewise, given a relation and a set, we can

filter the tuples of the former that end with an atom in the latter with the range restriction operator (:>).

For example, in our running example, onSale <: images would return the relation that associates

onSale products with their images, and inside :> Catalog would restrict relation inside to

categories directly inside a catalog.

One of the most important relational operators in Alloy is join (�), also known as composition. When

composing two relations, all the tuples from the first are joined with all tuples of the second. The join of

two tuples succeeds if the last atom of the first matches the first atom of the second, and, in that case,

the matching atoms are dropped and the resulting tuples are concatenated. Given a relation r with arity

𝑛 and a relation s with arity 𝑚, their composition r � s is possible if 𝑛 + 𝑚 − 2 > 0, being the arity of

the composed relation precisely 𝑛 + 𝑚− 2. For example, images � format is the binary relation that

associates products with the formats of their images. It is possible to compose a set (possibly a singleton

representing a scalar) with a relation of arity higher than 1. For example, onSale � category is a set

that contains the categories of all products that are on sale and format � Jpg is the set of all images

with format JPG.

The transitive closure ^r of a binary relation r is the smallest relation on that contains r and is transitive.

A binary relation r is transitive if r � r in r (hence, ^r = r + r � r + r � r � r + …). For example,

the expression ^inside associates a category with all the categories or catalogs that directly or indirectly

contain it. The reflexive transitive closure of a binary relation *r is the smallest relation that contains r

and is both transitive and reflexive, that is *r = ^r + iden.

As presented above, atomic formulas are either inclusion (or equality) tests (with in and =) or cardinality

checks (with no, lone, some, or one). These atomic formulas can be combined with the standard

boolean operators, namely conjunction (and, &&), disjunction (or, ||), implication (implies, ⇒),

equivalence (iff,⇔), and negation (not, !). It is also possible to write quantified expressions as

𝑄 𝑥 ∶ 𝑒 | 𝜙

where 𝑄 ∈ { all,some,no,lone,one } is a quantifier, 𝑥 is a variable, 𝑒 is a unary expression

denoting a set, and 𝜙 is a constraint that contains the variable 𝑥. In particular, expression all 𝑥 : 𝑒 | 𝜙

means that constraint 𝜙 is satisfied for every element in 𝑒. Multiple variables can be quantified together.

14

2.1. Alloy by Example

For instance some 𝑥, 𝑦 : 𝑒 | 𝜙 means that there are some values in 𝑒 for variables 𝑥 and 𝑦 that make 𝜙

hold.

The let expression allows one to factor out repeated subexpressions, thus making a specification shorter.

The let expression

let 𝑥 = 𝑒 | 𝐴

is equivalent to expression 𝐴 with each occurrence of variable 𝑥 replaced by the assigned expression

𝑒. A let expression is mostly used to simplify complex expressions or give meaningful names for some

subexpressions.

In Alloy, constraints that must hold in the model are expressed inside a fact paragraph. Constraints

in different lines of a fact are implicitly conjoined. In order to easily distinguish the constraints related to

different requirements or relations, they can be split in different facts and given different names, although

the Analyzer will ignore these names during the analysis. In terms of the analysis, it is no different from

having a single fact that contains every constraint, and the order in which facts appear is also irrelevant.

We can now solve the problem that was identified during scenario explanation, by adding a fact stating

that all thumbnails in a catalog must be images of products contained in it.

fact Thumbnails {

all c:Catalog | c � thumbnails in (category � (^inside) � c) � images

}

In fact Thumbnails, the expression c � thumbnails retrieves all thumbnails in catalog c, and

expression (category � (^inside) � c) � images retrieves all images of the products in c, by first

determining all categories inside catalog c with expression ^inside � c, then all products inside all these

categories by navigating backwards with relation category, and finally all images of these products by

navigating forward with relation images.

Rerunning the run command can yield an instance as shown in Fig. 3, that no longer has the identified

problem, and where a single product belongs to two categories inside two different catalogs.

2.1.6 Verifying Assertions

To validate the design of our e-commerce system we should now verify some expected properties. Properties

that are expected to hold should be enclosed in a named assertion paragraph, declared with the assert

keyword. For example, the assertion

15

2.1. Alloy by Example

Figure 3: An instance of the single-variant e-commerce example considering facts.

assert AllCataloged {

all p:Product | some (p � category � ^inside & Catalog)

}

formulates the expectation that every product is contained inside a catalog. In this assertion, p � category

determines all categories that directly contain product p, while p � category � ^inside determines all

categories or catalogs that might contain those (directly or indirectly): by intersecting with Catalog we

require that at least one of these is a catalog.

An assertion can be verified with a check command, that instructs the analyzer to find a counterexample

for the specified property. Similarly to run commands, a scope that limits the number of atoms that can be

contained in top-level signatures can be given after the name of the assertion to be verified, with a default of

3 if none is given. By issuing command check AllCataloged for 2, a counter-example is found,

meaning our assertion is not valid. The counterexample is shown in Fig. 4, and depicts a category that is

contained in itself. This counterexample exposes a problem with our specification. To fix this problem we

can add the fact

fact Acyclic {

all c:Category | c not in c � ^inside

}

16

2.1. Alloy by Example

Figure 4: A counterexample for an expected assertion of the single-variant e-commerce example.

that enforces the inside relation to be acyclic.

Rerunning the check command gives no counterexample. Notice however that the assertion is being

checked considering only a maximum of 2 atoms for each signature. To increase the confidence in the

analysis, we can execute the command with a larger scope, for example check AllCataloged for

8. Now the Analyzer takes more time to finish the verification but still does not find a counterexample.

Although we can not conclude that the assertion is valid, as the analysis is always bounded, it gives us

some assurance concerning the validity of the desired property.

Actually, there is no fundamental difference between running a predicate and checking an assertion in

the analysis process. A check command is equivalent to a run command that searches for an instance

that satisfies the negation of the constraints in an assertion.

2.1.7 Modularization

There may be some expressions that one might want to factor out of constraints, for example to improve

readability and reusability when they occur repeatedly in the model. To support that, Alloy allows the

declaration of auxiliary predicates and functions.

17

2.1. Alloy by Example

A predicate (declared with pred keyword) declares a reusable constraint. Its declaration consists of

the name of the predicate, some optional argument declarations inside square brackets, and a block with

formulas. A function (declared with fun) declares a reusable expression. Its declaration consists of the

name of the function, some optional argument declarations inside square brackets, a return type after

a colon, and a relational expression inside a block. The result of a predicate is a Boolean value, while

the result of a function is a value of its return type. Predicates and functions are called by providing an

expression for each parameter.

In our running example we can declare an auxiliary function that calculates the catalogs of a product as

follows.

fun catalog [p : Product] : Catalog {

p � category � ^inside & Catalog

}

The function receives a Product as parameter and returns a set of catalogs as a result. Using this

function, the assertion AllCataloged could be redefined as follows.

assert AllCataloged {

all p: Product | some catalog[p]

}

A typical usage for predicates is to encode different specific scenarios, for example to act as (kind of) unit

tests for a model (examples that the user knows to be valid instances). For example, the following predicate

Scenario will only be true in instances where at least one product has images. A run command can

then directly ask for an instance satisfying the predicate. If the predicate had parameters, the command

would automatically instantiate them when searching for a satisfying instance.

pred Scenario {

some Product � images

}

run Scenario for 2

In addition to predicates and functions, Alloy also has a module system that allows the modularization

and reuse of models. A module describes a model that can be used as a submodel, imported by another

with an open statement before all paragraphs. There are a number of utility modules, pre-packaged with the

Analyzer, that provide common operations. In particular, module util/relations declares common

18

2.1. Alloy by Example

operations for computing the domain and the range of a binary relation, as well as a collection of typical

constraints one might want to impose on those. For instance, it contains a predicate acyclic that

constraints a relation r to be acyclic over a given set. This predicate is declared in the util/relations

module as follows.

pred acyclic[r: univ→univ, s: set univ] {

all x: s | x !in x � ^r

}

Here we see that Alloy allows predicates and functions to receive as parameters arbitrary relations and

sets, and not just singletons. The constant univ represents the universe of all atoms, and thus a value

of type univ→univ is any binary relation. By declaring parameter s to be of type set univ we state

that s is any subset of univ, that is, an arbitrary set. Using this module, the fact Acyclic could be

expressed as follows.

open util/relation

fact Acyclic {

acyclic[inside,Category]

}

The util/ordering module is one of the most popular modules pre-packaged with Alloy. This is a

parameterized module that can be used to impose a total order over a signature. It provides functions for

capturing the total order structure, such as the first element (first), the last (last), the predecessor

relation (prev), or the the successor relation (next), and predicates for reasoning about its elements, for

example to check whether a given element precedes another (lt). For example, we could have used this

module to impose a total order on a signature that represents the star ratings that customers give to the

products.

open util/ordering[Rating]

some sig Rating {}

sig Product {

rating : one Rating

}

The final model of the running example described in this section is shown in Fig. 5. This model has no

ratings and includes an extra restriction, requiring all catalogues to display at least one thumbnail of all on

sale products contained in them.

19

2.1. Alloy by Example

open util/relation

sig Product {

images: set Image,

category: some Category

}

sig onSale in Product {}

sig Image {

format: one Format

}

abstract sig Format {}

one sig Jpg, Png extends Format {}

sig Catalog {

thumbnails: set Image

}

sig Category {

inside: one Catalog+Category

}

fact Thumbnails {

all c:Catalog | c � thumbnails in (category � (^inside) � c) � images
}

fact OnSaleThumbnails {

all p:onSale, c:catalog[p] | some p � images & c � thumbnails
}

fact Acyclic {

acyclic[inside,Category]

}

pred Scenario {

some Product � images
}

run Scenario for 2

fun catalog [p : Product] : Catalog {

p � category � ^inside & Catalog

}

assert AllCataloged {

all p:Product | some catalog[p]

}

check AllCataloged for 2

Figure 5: Single-variant e-commerce model in Alloy.

20

2.2. Formal Presentation of the Language

spec ⋅⋅⋅⋅= [moduleDecl] import∗ paragraph∗

moduleDecl ⋅⋅⋅⋅= module qualName [[name,+]]

import ⋅⋅⋅⋅= open qualName [[qualName,+]] [as name]

paragraph ⋅⋅⋅⋅= sigDecl | factDecl | funDecl | predDecl | assertDecl | cmdDecl

sigDecl ⋅⋅⋅⋅= [abstract] [mult] sig name,+ [sigExt] { decl,∗ } [block]

sigExt ⋅⋅⋅⋅= extends qualName | in qualName [+ qualName]∗

mult ⋅⋅⋅⋅= lone | some | one

decl ⋅⋅⋅⋅= [disj] name,+ : [disj] expr

factDecl ⋅⋅⋅⋅= fact [name] block

assertDecl ⋅⋅⋅⋅= assert [name] block

funDecl ⋅⋅⋅⋅= fun name [[decl,∗]] : expr block

predDecl ⋅⋅⋅⋅= pred name [[decl,∗]] block

expr ⋅⋅⋅⋅= const | qualName | @name | this | unOp expr | expr binOp expr

| expr arrowOp expr | expr [expr,∗] | expr [! | not] compareOp expr

| expr (⇒ | implies) expr else expr | let letDecl,+ blockOrBar

| quant decl,+ blockOrBar | (expr) | block | { decl,+ blockOrBar }

const ⋅⋅⋅⋅= none | univ | iden | Int

unOp ⋅⋅⋅⋅= ! | not | no | mult | set | # | ∼ | * | ^

binOp ⋅⋅⋅⋅= || | or | && | and | ⇔ | iff | ⇒ | implies | + | − | & | ++ | <: | :> | �
arrowOp ⋅⋅⋅⋅= [mult | set] → [mult | set]

compareOp ⋅⋅⋅⋅= in | =

letDecl ⋅⋅⋅⋅= name = expr

block ⋅⋅⋅⋅= { expr∗ }

blockOrBar ⋅⋅⋅⋅= block | | expr

quant ⋅⋅⋅⋅= all | no | sum | mult

cmdDecl ⋅⋅⋅⋅= [check | run] [qualName] (qualName | block) [typeScopes]

typeScopes ⋅⋅⋅⋅= for number [but typeScope,+] | for typeScope,+

typeScope ⋅⋅⋅⋅= [exactly] number qualName

qualName ⋅⋅⋅⋅= [this/] (name/)∗ name

Figure 6: Concrete syntax of the Alloy language.

2.2 Formal Presentat ion of the Language

Up to this point, we have presented a rough idea of the Alloy language with the simple e-commerce catalog

example. In this section we will give a formal presentation of this language in terms of its syntax, semantics,

type inference, and analysis.

2.2.1 Formal Syntax

The syntax of Alloy is presented in Fig. 6 using standard BNF operators: x∗ means zero or more repetitions

of symbol x; x+ means one or more repetitions of x; x | y represents a choice of x or y; [x] denotes

an optional x. In addition, x,∗ means zero or more occurrences of the x separated by commas, and

x,+ means one or more occurrences of such comma-separated x. The name symbol represents a string

identifier. Similar to other programming languages, Alloy identifiers may include the alphabetic characters,

numbers (except in the first character), underscores and quotation marks, and are case sensitive. Alloy’s

reserved keywords are displayed in bold type.

21

2.2. Formal Presentation of the Language

An Alloy model consists of one or more files, one of which contains a main module that either directly or

indirectly imports (through the use of open) modules in the other files. A module consists of an optional

module header, possibly some imports, and a set of paragraphs, each either a signature, predicate, or

function declaration, a fact, an assertion, or an analysis command. The paragraphs can appear in the

module in any order. There is no requirement of declaration before the use.

The module header provides the relative path and filename of the model and can only appear in the

first line of the model. Similar to the Java language, the path is relative to the directory that the importing

module is located. Every model that wishes to use a module must have an explicit import statement

following the optional header (and before any signatures, paragraphs, or commands), with a simple open

statement. A model can import multiple modules, each of which requires a separate open statement that

provides the respective paths and names, instantiation of its parameters (if any), and an optional alias.

The order of those import statements does not matter. Each parameter of the imported module must be

instantiated by a signature, which can be any declared signature or one of the predefined signatures such

as Int (a signature containing all integers) or univ. Each imported module can be referenced in the

model either by its alias (if given) or by its module identifier. A module can be imported more than once

but must declare aliases if their parameters are instantiated differently.

A declaration introduces one or more variables (on the left of the colon) with a bounding expression (on

the right side of the colon) constraining their value. Declarations can be used inside signature declarations

for declaring fields, to introduce quantified variables, in the definition of sets (or relations) by comprehension,

and to declare the arguments of predicates and functions. The keyword disj stands for disjoint, indicating

that the variables or declared relations are somehow disjoint (their intersection is empty). For example,

sig A {disj r,s : e} declares two disjoint binary relations r and s, while the declaration sig

A {r: disj e} declares that the r values of different members of signature A are disjoint. To give an

example of a relation defined by comprehension consider the following expression that defines a binary

relation that maps each product to the respective JPG images:

{p : Product, i : Image | i in p � images and i in Jpg}

Expressions can denote either Boolean expressions (formulas) or relational expressions. Formulas are

used, for example, in facts, assertions, and predicates. Signature declarations can also be followed by a

so called signature fact, an implicitly universally quantified formula that somehow restricts the atoms of

that signature. In signature facts, this denotes the implicitly universally quantified variable, any mention

of a field declared in the signature is implicitly projected over this, and if one wishes to override this

22

2.2. Formal Presentation of the Language

Table 1: A bestiary of binary relations.

Property Multiplicity constraint

Entire r in A → some B

Simple r in A → lone B

Surjective r in A some → B

Injective r in A lone → B

Function r in A → one B

Injection r in A lone → one B

Surjection r in A some → one B

Bijection r in A one → one B

behavior and refer to all fields, its name should be preceded by the special marking @. For example, fact

Thumbnails could have been declared as a signature fact of Catalog as follows:

sig Catalog {

thumbnails: set Image

} {

thumbnails in (category � (^inside) � this) � images

}

Atomic formulas can either be inclusion (in) or equality (=) checks between relational expressions of

equal arity, or multiplicity checks over unary relational expressions (with lone, some, one, or no). It

is also possible to check the multiplicity of both endpoints of a relational expression with a special arrow

notation: formula r in A m → n B, where m and n are multiplicity checks, is a shorthand notation for

all a : A | n a � r and all b : B | m r � b. This notation can be used to quickly restrict the

shape of a binary relation, as presented in Table 1. For example, a relation 𝑟 that maps each element

from a set 𝐴 to at most one element of 𝐵 is known as entire and if it maps to at least one element of 𝐵 is

known as simple. A relation that maps at least one element of 𝐴 to each element of 𝐵 is surjective and

one that maps at most of one element of 𝐴 to each element of 𝐵 is injective. A relation is a function if it

is both simple and entire. An injective function is called an injection and a surjective function is called a

surjection. A function is a bijection if is both injective and surjective.

Atomic formulas can be composed with the standard logical operators and with quantifiers. There are

two forms of each logical operator: a shorthand (!, ||, &&,⇒,⇔) and a verbose form (not, or, and,

implies, iff). The two form are completely interchangeable.

As seen in the previous section, relational expressions are built with both set and relational operators.

The operators +,−, & are the standard set operators of union, difference, and intersection, respectively.

23

2.2. Formal Presentation of the Language

As for relational operators we have product (→), transpose (∼), domain and range restriction (<: and :>),

transitive and reflexive closure (^ and *), and join (�). There exists an alternative notation for (dot) join,

known as box join: expression p[s] is the same as s � p, but box join has lower precedence that dot join,

hence, p � q[s] is equal to (p � q)[s]. The override operator (++) is used to replace some tuples in a

relation: the expression p ++ q is the union of p and q after removing from p the tuples that starts with

an element in the domain of q.

Alloy has limited support for integers. Signature Int contains all the integers present in the universe.

Integers are represented in two’s complement notation, and the scope of Int in a command sets the

numbers of bits used in the representation. Module util/integer provides some arithmetic functions

and predicates to work with integers. For example add is a binary function that adds two integers. All

arithmetic operations work in the usual way for two’s complement representation, namely with wrap-around

semantics. The cardinality operator (#) computes the number of tuples in a relation. There is also a

special quantifier sum that can be used to sum the integers somehow associated with all the atoms of a

unary expression. Integers should be used very carefully in Alloy due to the wrap-around semantics. For

example, if the scope for Int is not chosen correctly the operator # can return the wrong cardinality of a

set. Fortunately, when developing abstract models, integers can usually be replaced by structures with less

semantics, such as signatures with total orders (imposed with module util/ordering). An alternative

semantics for integers with the goal of preventing arithmetic overflows has been proposed in (Milicevic and

Jackson, 2014), but it is also rather cumbersome. As such, in this thesis we will not address integers in

Alloy.

2.2.2 Formal Semantics

After expanding predicates, functions and modules, an Alloy model basically consists of a collection

of relation declarations (signatures and fields inside a signature) and a collection of facts and analysis

commands. For a given command, the meaning of a model is a set of instances, each of which assigns a

value to each of the declared relations, makes the facts true, and makes the formula in the command true

or false, depending if the command is a run or a check, respectively. In practice, a check command can

be replaced by a run command with the negated assertion, and instead of putting assertions in facts, they

can just be conjoined in the command. Hence, an Alloy model can essentially be regarded just as a set of

signatures and field declarations together with one run command containing the constraint one wishes to

make true.

24

2.2. Formal Presentation of the Language

alloyModule ⋅⋅⋅⋅= sigDecl∗ cmdDecl

sigDecl ⋅⋅⋅⋅= sig name [sigExt] { decl,∗ }

sigExt ⋅⋅⋅⋅= [abstract] extends name | in name [+ name]∗

decl ⋅⋅⋅⋅= name : [set] expr

form ⋅⋅⋅⋅= expr in expr | not expr | expr and expr | all decl | form

expr ⋅⋅⋅⋅= name | const | unOp expr | expr binOp expr | { decl,+ | form }

const ⋅⋅⋅⋅= none

unOp ⋅⋅⋅⋅= ∼ | ^

binOp ⋅⋅⋅⋅= + | & | − | � | →
cmdDecl ⋅⋅⋅⋅= run { form } for typeScope,+

typeScope ⋅⋅⋅⋅= [exactly] number name

Figure 7: Syntax of the core Alloy language.

In this section, we will explain the semantics of the Alloy language in terms of such simplified core

language, where a model consists only of declarations and a single run command. This core language

also does not include some operators that can be defined with others, and does not allow multiplicity

restrictions in declarations. It is much smaller than the full Alloy language, but it captures its essential

semantics, and it is quite easy to translate the full language into it, as we will briefly explain below. The

syntax of the core language is presented in Fig. 7.

To translate an Alloy model to this core language, we can start by in-lining all imported modules, and

expand all predicate and function definitions at the point they are called. Signature facts can be converted

to normal facts by quantifying universally. Multiplicities in declarations can also be trivially replaced by

facts. For example, declaration

some sig Product {}

is equivalent to

sig Product {}

fact {some Product}

And the multiplicity in the declaration of category in signature Product

sig Product {category: some Category}

can be replaced with

sig Product {category: set Category }

fact {all p:Product | some p � category }

25

2.2. Formal Presentation of the Language

All the facts can then be eliminated and the respective assertions conjoined with the formula in the run

command. Operators not included in the core syntax can be replaced by their definition. For the logic

operators we have the usual definitions, for example, 𝜙 or 𝜓 can be replaced by not (not 𝜙 and

not 𝜓) and some 𝑥 : Φ | 𝜙 by not all 𝑥 : Φ | not 𝜙. Likewise for the missing relational

constants and operators, for example, univ can be replaced by the union of all top-level signatures,

iden can be defined by comprehension as {x, y : univ | x=y}, and 𝐴 <: Φ can be replaced

byΦ & (𝐴 → univ). In the core syntax we also assume the run command to have a scope for every

type signature, namely every top level (not extending or included in other) or extension signature, but not

inclusion signatures, which cannot be given a scope. Obtaining such scopes from the original scope in

command involves some non-trivial computations which are detailed in (Jackson, 2012, Appendix B).

An instance 𝑀 can be viewed as an assignment of a set of tuples of atoms to all declared relational

variables (signatures and fields). A valid instance 𝑀 should respect all declarations and scopes, and satisfy

the formula 𝜙 inside the run command. The satisfaction of a formula 𝜙 in a model 𝑀 is denoted by

𝑀 ⊧ 𝜙, and the value of a relational expression Φ in a model 𝑀 is denoted by JΦK𝑀.

An instance 𝑀 respects the declaration of a type signature 𝐴 with scope 𝑘 if |𝑀[𝐴]| ≤ 𝑘, or

|𝑀[𝐴]| = 𝑘 if the scope is exact. All tuples in the valuation of a signature must be of arity one, that

is ∀𝑡 ∈ 𝑀[𝐴] ⋅ |𝑡| = 1. If 𝐴 is a top-level signature then for any other top-level signature 𝐵 we have

𝑀[𝐴]∩𝑀[𝐵] = ∅. If 𝐴 is extended by signatures 𝐴1 to 𝐴𝑛 then we have 𝑀[𝐴1]∪…∪𝑀[𝐴𝑛] ⊆

𝑀[𝐴], or 𝑀[𝐴1] ∪ … ∪ 𝑀[𝐴𝑛] = 𝑀[𝐴] if 𝐴 is abstract, and for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 we have

𝑀[𝐴𝑖] ∩𝑀[𝐴𝑗] = ∅. For an inclusion signature 𝐵 contained in 𝐴 we have that 𝑀[𝐵] ⊆ 𝑀[𝐴]. An

instance 𝑀 respects the declaration of field 𝑟 declared inside signature 𝐴 with bounding expression Φ if

𝑀[𝑟] ⊆ J𝐴→ΦK𝑀.

The definition of𝑀 ⊧ 𝜙 is presented in Fig. 8 and the definition of JΦK𝑀 is presented in Fig. 9. In these

definitions 𝑥 is an identifier (a variable, signature, or field), 𝜙 and 𝜓 are formulas, Φ and Ψ are relational

expressions, and 𝑎 and 𝑏 are atoms. Given an instance 𝑀, 𝑀 ⊕ 𝑥 ↦ 𝑋 represents the instance where

the value of 𝑥 is set to 𝑋, and all other variables keep the same value. Given the informal presentation

of the language given before we believe all definitions are self-explanatory. To simplify, comprehension

semantics is presented just for the case of unary relations.

26

2.2. Formal Presentation of the Language

𝑀 ⊧ Φ in Ψ iff JΦK𝑀 ⊆ JΨK𝑀
𝑀 ⊧ not 𝜙 iff 𝑀⊧̸𝜙
𝑀 ⊧ 𝜙 and 𝜓 iff 𝑀 ⊧ 𝜙 ∧𝑀 ⊧ 𝜓
𝑀 ⊧ all 𝑥 ∶ Φ | 𝜙 iff ∀⟨𝑎⟩ ∈ JΦK𝑀 ⋅ 𝑀 ⊕ 𝑥 ↦ {⟨𝑎⟩} ⊧ 𝜙

Figure 8: Semantics of formulas.

J𝑥K𝑀 = 𝑀[𝑥]
JnoneK𝑀 = ∅
J∼ΦK𝑀 = {⟨𝑎2, 𝑎1⟩ ∣ ⟨𝑎1, 𝑎2⟩ ∈ JΦK𝑀}
J^ΦK𝑀 = JΦK𝑀 ∪ JΦ �ΦK𝑀 ∪ JΦ �Φ �ΦK𝑀 ∪⋯
JΦ+ΨK𝑀 = JΦK𝑀 ∪ JΨK𝑀
JΦ&ΨK𝑀 = JΦK𝑀 ∩ JΨK𝑀
JΦ−ΨK𝑀 = JΦK𝑀 ∖ JΨK𝑀
JΦ �ΨK𝑀 = {⟨𝑎1,… , 𝑎𝑛−1, 𝑏2,… , 𝑏𝑚⟩ ∣ ⟨𝑎1,… , 𝑎𝑛⟩ ∈ JΦK𝑀 ∧ ⟨𝑏1,… , 𝑏𝑚⟩ ∈ JΨK𝑀 ∧ 𝑎𝑛 = 𝑏1}
JΦ→ΨK𝑀 = {⟨𝑎1,… , 𝑎𝑛, 𝑏1,… , 𝑏𝑚⟩ ∣ ⟨𝑎1,… , 𝑎𝑛⟩ ∈ JΦK𝑀 ∧ ⟨𝑏1,… , 𝑏𝑚⟩ ∈ JΨK𝑀}
J{𝑥 ∶ Φ|𝜙}K𝑀 = {⟨𝑎⟩ ∣ ⟨𝑎⟩ ∈ JΦK𝑀 ∧𝑀 ⊕ 𝑥 ↦ ⟨𝑎⟩ ⊧ 𝜙}

Figure 9: Semantics of relational operators.

2.2.3 Type Inference

As we have seen in Section 2.1.3, the type system of Alloy supports subtyping, through signature extension,

and overloading of relation names. Alloy includes a type inference mechanism to detect type errors. The goal

of this mechanism, first proposed by Edwards et al. (2004), is to detect irrelevant expressions, expressions

that can be replaced by an empty relation without affecting the value of its enclosing constraint. This notion

of type error is quite different from the one in programming languages, but arguably more adequate for

a formal modelling language. An example of a trivial irrelevant expression is Product � format in our

running example. This expression is always empty in any possible valid instance, since products never

appear as first atoms in the tuples contained in binary relation format. To clarify the difference between

Alloy’s type errors and those of a typical object-oriented programming language, let’s assume that our

running example had the following additional signature, capturing products sold in bundles.

sig Bundle extends Product {

products: some Product

}

Likewise in a programming language, in Alloy we can access a field from any atom in a subtype. For

example, given a bundle b we can determine its images as b � images. However, unlike in a programming

27

2.2. Formal Presentation of the Language

language, in Alloy we can also access a field from any atom in a supertype. For example, expression

Product � products does not raise a type error, since it is not irrelevant, as some products might be

bundles and thus this expression may denote a non-empty set.

In order to simplify the type-inference mechanism, the type of an expression in Alloy is defined in a

canonical form, which eliminates subtype comparisons from the type system. This is achieved by flattening

the type hierarchy, and expressing types in terms of the so-called atomic types, which includes all types

signatures that are not supertypes (those not extended by others) plus for each non abstract supertype, a

special atomic type known as its remainder type, with the same name prefixed with $, that contains all its

atoms that do not belong to any of its subtypes. For example, the remainder type of Product, denoted

by $Product, contains all products that are not bundles.

Following Alloy’s motto that “everything is a relation”, types in Alloy are relations defined with the atomic

types as atoms, i.e. sets of tuples of atomic types. The type 𝐴 of an expression Φ is in a sense an

upper-bound on its value: any tuple that appears in JΦK𝑀 must belong to the Cartesian product of the

atomic types in one of the tuples in its type. For example, in our running example, the type of Format is

{<Jpg>,<Png>}, the type of Product is {<Bundle>,<$Product>} and the type of images is

{<Bundle,Image>,<$Product,Image>}.

The type inference mechanism presented in (Edwards et al., 2004) works in two-phases: by proceeding

bottom-up in the abstract syntax tree a first approximation of the type, denoted bounding type, is computed;

then this type is refined in a second top-down phase in order to compute the so-called relevance type. The fact

that an expression Φ has bounding type 𝐴 is denoted by Γ ⊢ Φ ∶ 𝐴, being Γ a typing context containing

the types of all declared signatures and relations. The inference rules for bounding types are shown in

Fig. 10. After type inference any expression (except none) that has an empty type is reported as erroneous.

Notice how, due to the fact that types are relations, the same relational operators of the expressions being

typed are used to compute their types. To give some examples, expression Bundle � images is not

irrelevant since its type is {<Image>}. However Product � format is irrelevant because Product

has type {<Bundle>,<$Product>}, format has type {<Image,Jpg>,<Image,Png>}, and

composing both types yields an empty type.

The presentation of the inference rules for relevance types is omitted, since currently the Alloy Analyzer

seems to not implement them fully. The resolution of overloading is also based on this type inference

mechanism. An overloaded relation is represented as the union of all relations that share the same name.

After type inference only one of them should have a non-empty type (only one should be relevant), otherwise

an ambiguity error is reported. This type system is sound but not complete: expressions that reported

28

2.2. Formal Presentation of the Language

Γ[𝑥] = 𝐴
Γ ⊢ 𝑥 ∶ 𝐴 Γ ⊢ none ∶ ∅

Γ ⊢ Φ ∶ 𝐴
Γ ⊢ ∼Φ ∶ ∼𝐴

Γ ⊢ Φ ∶ 𝐴
Γ ⊢ ^Φ ∶ ^𝐴

Γ ⊢ Φ ∶ 𝐴 Γ ⊢ Ψ ∶ 𝐵
Γ ⊢ Φ+Ψ ∶ 𝐴+𝐵

Γ ⊢ Φ ∶ 𝐴 Γ ⊢ Ψ ∶ 𝐵
Γ ⊢ Φ&Ψ ∶ 𝐴&𝐵

Γ ⊢ Φ ∶ 𝐴 Γ ⊢ Ψ ∶ 𝐵
Γ ⊢ Φ−Ψ ∶ 𝐴−𝐵

Γ ⊢ Φ ∶ 𝐴 Γ ⊢ Ψ ∶ 𝐵
Γ ⊢ Φ �Ψ ∶ 𝐴 �𝐵

Γ ⊢ Φ ∶ 𝐴 Γ ⊢ Ψ ∶ 𝐵
Γ ⊢ Φ→Ψ ∶ 𝐴→𝐵

Γ ⊢ Φ ∶ 𝐴 Γ ⊕ 𝑥 ↦ 𝐴 ⊢ 𝜙
Γ ⊢ {𝑥 ∶ Φ|𝜙} ∶ 𝐴

Γ ⊢ Φ&Ψ ∶ 𝐴
Γ ⊢ Φ in Ψ

Γ ⊢ 𝜙
Γ ⊢ not 𝜙

Γ ⊢ 𝜙 Γ ⊢ 𝜓
Γ ⊢ 𝜙 and 𝜓

Γ ⊢ Φ ∶ 𝐴 Γ ⊕ 𝑥 ↦ 𝐴 ⊢ 𝜙
Γ ⊢ all 𝑥 ∶ Φ|𝜙

Figure 10: Inference rules for bounding types.

erroneous are indeed irrelevant, however, it is possible to write an irrelevant expression which is not

identified as an error.

2.2.4 Analysis

The Alloy Analyzer uses Kodkod (Torlak and Jackson, 2007), an efficient SAT-based relational model finder,

as its analysis engine. An Alloy model is automatically translated into a Kodkod problem and then solved

by an off-the-shelf SAT solver such as MiniSat1 or Glucose2. SAT abbreviates satisfiability, the problem of

determining whether there exists a model (an assignment of values to propositional variables) of a Boolean

formula that makes it true.

A Kodkod problem consists of a universe declaration, a set of relation declarations, and a relational logic

formula in which the declared relations are free variables. The universe declaration specifies the set of

atoms that can be used to build models. Each relation declaration specifies its arity and two bounds: a

lower bound, that contains tuples that must be present in the relation; and an upper bound that contains

tuples that may be presented in the relation.

The translation of an Alloy model to a Kodkod problem is for the most part relatively straightforward, as

the supported relational logic is the same. The problem formula is obtained by conjoining all facts (including

explicit fact paragraphs and implicit facts in declarations) with the constraints in the run command to be

analyzed (or with the negation of the constraints the command is an assertion). The interesting part is the

1 http://minisat.se

2 https://www.labri.fr/perso/lsimon/glucose/

29

http://minisat.se
https://www.labri.fr/perso/lsimon/glucose/

2.2. Formal Presentation of the Language

sig Product {

images: set Image

}

abstract sig Image {}

sig Jpg,Png extends Image {}

fact { all m : Image | m in Product � images }

run { some Product � images } for 2

Figure 11: Simplified e-commerce specification in Alloy.

{A1,A2,A3,A4}

Product :1 {} {<A1>,<A2>}

Jpg :1 {} {<A3>,<A4>}

Png :1 {} {<A3>,<A4>}

images :2 {} {<A1,A3>,<A1,A4>,<A2,A3>,<A2,A4>}

no Jpg & Png and

all p : Product | p � images in Jpg+Png and

images � univ in Product and

all m : Jpg+Png | m in Product � images and

some Product � images

Figure 12: Kodkod problem corresponding to the simplified e-commerce.

translation of the type hierarchy and scopes. We will illustrate this translation with a very simplified version

of our e-commerce example, presented in Fig. 11. The resulting Kodkod problem is presented in Fig. 12.

With a scope of 2, a valid instance of the Alloy model could have at most 2 products and 2 images, but

in some instances these could be all JPGs or all PNGs. If different atoms where declared for all atomic

types we would need a total of 6 atoms, even if a valid instance could have at most 4. With larger scopes

and larger type hierarchies this approach could lead to large inefficiencies. Instead, in the translation to

Kodkod only 2 atoms are created for each top-level signature. In the case of Image the 2 atoms will be

allowed in the upper-bound of both Jpg and Png, to allow all possible instances3. However, to respect

the Alloy semantics, an implicit constraint will be added to ensure that the two signatures are disjoint.

As such, the first of line of the Kodkod problem in Fig. 12 declares a universe of 4 elements. Then only

the 3 atomic type signatures are declared, all with arity 1 and empty lower bound. Two of the atoms are

chosen for the upper bound of Product and the other two for the upper bound of Jpg and Png. Then

the binary relation images is declared. The first constraint in the problem ensures that Jpg and Png

are disjoint. The second and third ensure that the range and domain of images are contained in Image

3 Note that the atom names in Kodkod are irrelevant and are renamed by the Alloy Analyzer when translating back to depict the

instance.

30

2.2. Formal Presentation of the Language

and Product, respectively. Note that the upper bound of image is not sufficient to ensure this, as the

final value of the signatures might be smaller then their upper bound. Finally we have the constraint in the

fact and the constraint in the run command. Since signature Image is not declared it is replaced by the

union of all its extensions.

The translation of a Kodkod problem to SAT starts by representing each relation 𝑟 of arity 𝑘 by a

𝑘-dimensional matrix |𝑛|𝑘

𝑟[𝑖1, ..., 𝑖𝑘] =

⎧{{{
⎨{{{⎩

⊤ 𝑖𝑓 ⟨𝐴𝑖1, ..., 𝐴𝑖𝑘⟩ ∈ 𝑟𝑙

𝑥𝑖1,...,𝑖𝑘 𝑖𝑓 ⟨𝐴𝑖1, ..., 𝐴𝑖𝑘⟩ ∈ 𝑟𝑢\𝑟𝑙

⊥ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where 𝑛 is the number of universe elements, 𝑟𝑙 and 𝑟𝑢 represent the lower and upper bound of 𝑟,

respectively, 𝑖1, ..., 𝑖𝑘 ∈ {0..𝑛 − 1}, and 𝑥𝑖1,...,𝑖𝑘 is a fresh Boolean variable. Each element of the matrix

represents a possible tuple in the relation: if the tuple is in the lower bound then it must be present, if

it is not in upper bound then it cannot be present, otherwise a variable is created whose value will be

determined by the SAT solver. Then, for each relational expression, the respective matrix is obtained by

performing matrix operations on its sub-relation matrices. The relational operators have counter-parts in

terms of matrix operations. For example, the union operator will translate to sum and the join operator is

translated as the product of matrices. Finally, for atomic formulas, an inclusion check will be translated

by the conjunction of element-wise implication, and a some multiplicity check by the disjunction of all

elements in the matrix. Finally all Boolean connectives are included, universal quantifiers are expanded to

conjunctions, and existential quantifiers are skolemized for efficiency reasons.

For example the matrix corresponding to the relational expression Product � images will be computed

as follows.

[𝑝1 𝑝2 ⊥ ⊥].

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⊥ ⊥ 𝑖1,3 𝑖1,4

⊥ ⊥ 𝑖2,3 𝑖2,4

⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

In the vector representing Product, variables 𝑝1 and 𝑝2 will decide if atoms A1 and A2 are included.

In the matrix representing images we have four variables to decide which of the possible 4 tuples are

present. The formula corresponding to constraint some Product � images would be

(𝑝1 ∧ 𝑖1,3) ∨ (𝑝2 ∧ 𝑖2,3) ∨ (𝑝1 ∧ 𝑖1,4) ∨ (𝑝2 ∧ 𝑖2,4)

31

2.3. Refactoring Alloy Models

The resulting Boolean formula is finally passed to a SAT solver. If the solver finds no solution, the

Analyzer will generate a message saying that no instance or counterexample is found, otherwise, the

solution will be mapped back to an instance, to be graphically depicted.

In order to decrease SAT complexity, Kodkod performs a variety of optimizations before sending a formula

to the SAT solver. The most significant one is symmetry breaking. Since atom names are meaningless,

many instances would in fact be isomorphic (modulo renaming). Kodkod detects which atoms can be

considered symmetric based on the declaration of bounds and generates a lex-leader symmetry breaking

predicate that is conjoined to the problem’s formula. This not only filters out isomorphic instances from

users, but also improves the efficiency of analysis by reducing the search space. In our example problem,

the universe can be partitioned into two sets of symmetric atoms, namely {A1,A2} and {A3,A4}. This

means that, for example, an instance with no images and a single product A1 can be generated, but the

isomorphic instance with the single product A2 will not.

2.3 Refactor ing Al loy Models

Refactoring, an essential activity in programming, is a technique that enables code quality improvements

(for example, improve readability or efficiency) without changing its external behaviour. Refactoring of

design models is also important and could provide similar benefits. For Alloy in particular, a catalogue

of refactoring bidirectional transformations has been proposed in (Gheyi and Borba, 2004; Gheyi, 2007).

To support more application scenarios, such as refining a model by introducing additional signatures or

relations, they use a more flexible notion of equivalence between the models (before and after applying

the refactoring), based on bidirectional refinement. The semantics of the models is only compared for a

relevant set of signatures and fields Σ. The value of entities not in this set is considered irrelevant and is

not compared. Moreover, for elements in Σ that are not present in both models, a view function 𝑣 must be

defined, stating how the value of an element in one model can be interpreted using elements of the other.

Each refactoring law consists of two templates (patterns) of equivalent Alloy models (according to the

above notion), on the left-hand and right-hand sides. A refactoring can be applied whenever one template

of the law is matched with a model and some pre-conditions are met. In the following laws, ps represents

a collection of paragraphs, frms stands for a set of formulas, ds denotes a set of relations, n refers to

identifiers, and exp denotes a relational expression. After each law some pre-conditions are provided

for its application to be possible. The symbol (→) indicates a pre-condition that is only required when

applying the law from left to right, while (→) indicates a pre-condition that is required when applying the

32

2.3. Refactoring Alloy Models

law in the opposite direction. A pre-condition marked with (↔) is necessary in both directions. All the

proposed laws were formalized and proved sound using the PVS theorem prover4.

We will now present some of the refactoring laws proposed by Gheyi (2007).

2.3.1 Laws for Signatures

Law 1 says that we can add or remove an empty signature that is not used elsewhere. The proviso in the

bottom of the law states that the name of the new signature can not be declared in the model. Notice that

in this case the equivalence between the two models does not consider the value of the new signature.

Law 1 (Introduce signature).

ps =Σ,𝑣
ps

sig n {}

provided

(↔) (1) n is not in Σ; (2) for all names in Σ that are not in the resulting model, 𝑣 must have exactly one

valid item for it;

(→) ps does not declare any signature named n;

(←) n does not appear in ps.

Law 2 allows us to remove the abstract quantifier, and replace it by a constraint. Notice that the number

of sub-signatures has no constraint and can be any number greater than zero. Moreover, it can be applied

when n extends another signature and there are no pre-conditions for its application.

Law 2 (Remove abstract qualifier).

ps

abstract sig n { ds }

sig n1 extends n { ds1 }

⋯

sig n𝑛 extends n { ds𝑛 }

=Σ,𝑣

ps

sig n { ds }

sig n1 extends n { ds1 }

⋯

sig n𝑛 extends n { ds𝑛 }

fact { n = n1 + ⋯ + n𝑛 }

Law 3 introduces a generalization between two or more signatures. We can always remove (add) a

parent signature that is not used in other places of the model by applying the law from right to left (left to

right). If the new signature is to be considered in the equivalence then it must be defined accordingly in

the view.

4 https://pvs.csl.sri.com

33

https://pvs.csl.sri.com

2.3. Refactoring Alloy Models

Law 3 (Introduce generalization).

ps

sig n1 { ds1 }

⋯

sig n𝑛 { ds𝑛 }

=Σ,𝑣

ps

sig n {}

sig n1 extends n { ds1 }

⋯

sig n𝑛 extends n { ds𝑛 }

fact { n = n1 + ⋯ + n𝑛 }

provided

(↔) If n belongs to Σ, 𝑣 must contain the view n ↦ n1 + ⋯ + n𝑛;

(→) ps does not declare any paragraph named n;

(←) n does not appear in ps, ds1, …, ds𝑛.

Law 4 allows us to remove (or add) multiplicity qualifiers for signatures (possibly extending other

signatures). No pre-conditions are required for this law. Note that this law together with Law 2 enables the

removal (or adding) of multiplicity qualifiers from abstract signatures.

Law 4 (Remove signature multiplicity qualifier).

ps

mlt sig n { ds }
=Σ,𝑣

ps

sig n { ds }

fact { mlt n }

where

mlt ∈ {one, lone, some}.

2.3.2 Laws for Fields

Law 5 enables the introduction of a new field named n0 whose value is determined to be exp. Similarly,

we can also remove fields that is not being used, by applying the law from right to left. The family of a

signature is the set of signatures that extend or are extended by it direct or indirectly. The first pre-condition

in (→) is necessary because Alloy does not allow two overloaded fields in the same family.

Law 5 (Introduce relation).

34

2.3. Refactoring Alloy Models

ps

sig n {

ds

}

=Σ,𝑣

ps

sig n {

ds,

n0 : set T

}

fact { n0 = exp}

provided

(↔) If n0 belongs to Σ then n0 does not appear in exp and 𝑣 contains the view n0 ↦ exp;

(→) The family of n in ps does not declare any field named n0; T is a signature name declared in ps or

is S; n0 does not appear in exp or exp is n0; exp is well-typed in the resulting model;

(←) n0 does not appear in ps.

Similarly to signatures, the multiciplicity qualifiers in a field can be removed, and replaced with a fact by

applying Law 6 from left to right.

Law 6 (Remove field multiplicity qualifier).

ps

sig n {

ds,

n0: mlt T

}

=Σ,𝑣

ps

sig n {

ds,

n0 : set T

}

fact { all x:n | mlt x � n0 }

where

mlt ∈ {one, lone, some}.

Fields declared together can always be separated with Law 7, by applying it from left to right.

Law 7 (Separate field declarations).

ps

sig n {

ds,

n0, ⋯, n𝑘 : set T

}

=Σ,𝑣

ps

sig n {

ds,

n0 : set T,

⋯

n𝑘 : set T

}

35

2.3. Refactoring Alloy Models

A final example of a refactoring law for relations is Law 8, which allows to replace an expression in a

field declaration by its type.

Law 8 (Replace field expression).

ps

sig n {

ds,

n0 : set exp

}

=Σ,𝑣

ps

sig n {

ds,

n0 : set T

}

fact { all x : n | x � n0 in exp’ }

provided

(↔) exp has the type T, which is a signature declared in ps or is n; exp′ replaces each reference to a

field relation r of n (whether declared or inherited) not prefixed by @ by x � r, and every occurrence of

this by x.

(←) n0 does not appear in exp.

2.3.3 Laws for Formulas

Besides laws for signatures and relations, there are also some rules proposed for refactoring formulas.

Law 9 states that we can add or remove a formula that can be deduced from other formula specified

in the fact of a specification. This law offers a way for remove redundant constraints in Alloy. Since the

condition of Law 9 is not syntactic, an extra mechanism must be used to guarantee the its satisfaction. For

example, we can use Alloy itself for checking this condition, using a check command to verify if the formula

f holds.

Law 9 (Introduce formula).

ps

fact n {

frms

}

=Σ,𝑣

ps

fact n {

frms

f

}

provided

(↔) f can be deduced from the facts in ps and frms.

36

2.4. Alloy Extensions

Figure 13: Transition system of a vending machine.

Law 10 allows the introduction of an empty fact provided there is no name conflicts. Since facts cannot

be referred to by other paragraphs, the elimination of an empty fact is always possible. A similar law can

be defined for introducing or removing empty signature facts.

Law 10 (Introduce empty fact).

ps =Σ,𝑣
ps

fact n {}

provided

(→) ps does not declare any paragraph named n.

2.4 Al loy Extensions

In order to achieve distinct goals such as verifying behavioral requirements when designing software systems

or improving scenario exploration, a number extensions to (or variants of) Alloy have been proposed. Among

them, the Electrum (Macedo et al., 2016; Brunel et al., 2018) extension was proposed for the analysis of

dynamic systems with rich configurations, and will soon be included in the official version 6 of the Alloy

language. In plain Alloy, the value of all signatures and field relations is immutable. If one wants to model

variable relations, it is necessary to introduce an explicit time signature, totally ordered to simulate an

execution trace, and all relations whose value might change must include this signature as an extra column

in their declaration.

As a simple example, let us consider a simple vending machine system adapted from the family of

vending machine systems used to introduce feature transition systems (FTSs) (Classen et al., 2010). A

basic vending machine system takes a coin, returns change, selects a soda, serves the soda, and eventually

opens a compartment for the customer to take their soda. Three additional features were added to the

37

2.4. Alloy Extensions

basic model: selling Tea; allowing buyers Cancel their purchase; offering Free drinks. Here we consider

one of the variants of this system, just with the feature cancel, and its behavior is depicted in Fig. 13 with a

transition system. After paying, the user can select one of the products in stock. Then if the selection is

not canceled, the product is served, and the door opens, so that the user can collect the selected product.

After collecting the product or canceling the selection, the change is returned to the user.

To model this vending machine in plain Alloy we need to declare singleton signatures for the possible

states of the machine, and a signature for the possible products.

abstract sig State {}

one sig Ready, Paid, Selected, Served, Done extends State {}

sig Product {}

As mentioned above, to model variable relations and sets, we can to introduce an explicit Time signature,

and inside it declare fields for all relations that are supposed to be mutable. By doing this, we allow

them to have different values in different Time instants. In this case we would like to have four mutable

relations: state, that captures the state the machine is in, stock, that contains the available products,

selection, that contains the selected product, and balance, the amount of coins collected by the

machine (assuming a price of one coin per product). A total ordering should also be imposed over Time,

so that time instants form a trace. For balance the standard library util/natural is used: this

library declares a signature Natural to represent natural numbers.

open util/ordering[Time] as time

open util/natural as nat

sig Time {

state : one State,

stock : set Product,

selection : lone Product,

balance : one Natural

}

Operations can be modeled with predicates that relate the value of mutable relations at a given Time

instant (parameter pre below) with their value at the next one (pos). For example, operation Select

can be specified as follows.

38

2.4. Alloy Extensions

pred Select [pre,pos : Time, p : Product] {

pre � state = Paid and p in pre � stock

pos � state = Selected

pos � selection = p

pos � stock = pre � stock

pos � balance = pre � balance

}

In the first line we have the pre-condition for this operation to occur: the machine should be in state Paid

and the selected product should be in stock. Then we have the effect of the operation: the state will

change to Selected and the product will be added to selection. Finally we have the frame-condition

that specifies what does not change, in this case the stock and balance.

Having specified the operations, it is necessary to axiomatize what are valid traces. In this case, a

valid trace should begin with state set to Ready, no selection, some stock, and zero balance.

Then all transitions between consecutive time instants should result from one of the specified operations.

This behaviour can be specified in the following fact.

fact Behaviour {

first � state = Ready

no first � selection

some first � stock

first � balance = Zero

all pre : Time, pos : pre � time/next {

Pay[pre,pos] or (some p : Product | Select[pre,pos,p]) or Cancel[

pre,pos] or

Serve[pre,pos] or Open[pre,pos] or Change[pre,pos]

}

}

Temporal properties can be specified by quantifying explicitly over the time signature. For example, to

specify that every time the machine is in the Served state the balance must be strictly positive we could

write the following assertion.

assert Balance {

all t : Time | t � state = Served implies gt[t � balance,Zero]

}

check Balance for 3 but 10 Time

39

2.4. Alloy Extensions

Figure 14: The pre- and post-state of the cancel operation.

This property is valid (here we are checking it with traces of size 10). As another example, to specify that

every time the machine is in the Done state previously it must have been in the Served state, we could

write the following assertion.

assert DoneImpliesServed {

all t : Time | t � state = Done

implies some u : t � *time/prev | u � state = Served

}

check DoneImpliesServed for 3 but 10 Time

Notice the use of t � *time/prev to compute all time instants that occurred up to instant t. Checking

this property yields an obvious counter-example, where the user cancels the selection and thus is not

served a product. To better understand trace counter-examples, we could use the projection feature of

the visualiser, that allows the user to focus on a particular atom of a signature at a time. In this case,

by projecting on the Time signature we can see one time instant at a time. Figure 14 shows the two

consecutive time instants corresponding to the Cancel operation (with the theme already configured to

hide irrelevant information).

Assertion DoneImpliesServed is an example of a safety property. Special care must be had to

properly perform bounded model checking of liveness properties, as counter-examples must be infinite

traces (Cunha, 2014). The need to explicitly model time and traces in plain Alloy ends up often being a

tedious, time-consuming, and error-prone task, in particular if we need to verify liveness properties, where

back loops must also be considered to represent infinite traces.

In contrast, Electrum offers an implicit notion of time and allows both signatures and fields to be declared

as mutable using the keyword var. Instances (traces) are infinite (looping) sequences of time instants.

The non-variable signatures and fields are still static, meaning that their value remains fixed during the

evolution of the system. Facts and assertions can be specified using Linear Temporal Logic operators

(including past ones), such as always or eventually, and expressions can be evaluated in the next

40

2.4. Alloy Extensions

state by marking them with '. The Electrum Analyzer supports both bounded-model checking with a

translation to Kodkod and complete model checking with a translation to SMV model checkers, such as

NuSMV5 or nuXmv6.

In the vending machine example, instead of declaring them inside the explicit Time signature, the

declaration of the three mutable sets could be done simply as follows.

var one sig state in State {}

var sig stock in Product {}

var lone sig selection in Product {}

var one sig balance in Natural {}

By using ', the specification of operations is also much simplified (and do not need to be explicitly

parametrized with the time instants). For example, the Select operation could be specified as follows.

pred Select [p : Product] {

state = Paid and p in stock

state' = Selected

selection' = p

stock' = stock

balance' = balance

}

The specification of the Behaviour fact is also much simpler, resorting to the always temporal operator

to restrict the valid transitions.

fact Behaviour {

state = Ready

no selection

some stock

balance = Zero

always {

Pay or (some p : Product | Select[p]) or Cancel or

Serve or Open or Change

}

}

5 https://nusmv.fbk.eu

6 https://nuxmv.fbk.eu

41

https://nusmv.fbk.eu
https://nuxmv.fbk.eu

2.4. Alloy Extensions

Likewise, the specification of the desired properties can be simplified, due to the use of the temporal logic

operators. In the case of the assertion DoneImpliesServed we could use both always and the

once past operator, that checks if previously some formula was valid.

assert Balance {

always (state = Served implies gt[balance,Zero])

}

check Balance for 3 but 10 steps

assert DoneImpliesServed {

always (state = Done implies once state = Served)

}

check DoneImpliesServed for 3 but 10 steps

The Electrum Analyzer also depicts traces and counter-examples graphically, allowing the user to focus

on any pair of consecutive states, which are depicted side by side, as show in Fig. 15. In this case the

property was checked with the bounded-model checking engine with the trace length limited to 10 steps.

This engine ensures the length of counter-examples to be minimal; these 4 steps suffice before the trace

repeats itself indefinably.

Several other Alloy extensions and variants have been proposed to simplify the specification and analysis

of dynamic systems. DynAlloy (Frias et al., 2005, 2007) is an Alloy variant that uses dynamic logic

(instead of temporal logic) to specify behaviour, limited to the specification of safety properties, but with a

strong emphasis on achieving an efficient verification mechanism. In (Near and Jackson, 2010) Alloy is

extended with standard imperative programming constructs like sequential composition or loops: imperative

specifications can be annotated with pre- and post-conditions, and analysis is limited to check if such an

annotated specification can hold for some execution path or holds in all possible execution paths. In (Chang

and Jackson, 2006) a model checking framework is proposed, where systems can also be modeled with

mutable relations and imperative programming constructs, but where expected properties are expressed

in CTL temporal logic and verified symbolically with a BDD-based technique. More recently, the DASH

language has been proposed to specify systems with state machines (Serna et al., 2017). It uses Alloy

syntax to declare and reason about system states, and to specify declarative transitions within a control

state hierarchy.

A key distinctive feature of Alloy is its good support for scenario exploration, by supporting iteration to

explore alternative instances and their graphical depiction for easier comprehension. Some techniques

have been proposed to provide more control on how iteration over instances works, instead of the random

iteration provided by standard Alloy. In particular, Aluminum (Nelson et al., 2013) is a tool built on top of

42

2.4. Alloy Extensions

Figure 15: The pre- and post-state of the cancel operation in the Electrum Analyzer.

Alloy focused on generating minimal scenarios, instances that contain no more atoms than those strictly

necessary (no atom can be removed without making the instance invalid). The work by Macedo et al.

(2015) extended this idea of controlling instance generation, but provides more instance generation and

iteration operations, for example, it provides an iteration operation that generates a new instance that is

as different as possible from the previous one. Several improvements to the Alloy instance visualization

mechanism have also been proposed. For example, Zaman et al. (2013) extended the visualizer with more

shapes that enable a better depiction of entities in the same type family (sub- or super-types), and also

with a new atom positioning mechanism that fixes their position in different projections, simplifying the

comprehension of instances of dynamic models. More recently, an extension of the visualizer has been

proposed that focus precisely on improving the visualization of instances from dynamic models (Couto

et al., 2018): this work allows the use of different layout and transition managers to, respectively, decide

how atoms are positioned and how transitions between states are depicted. Instead of just the standard

Alloy tree layout, atoms can positioned with a circular or grid layout, for example.

43

3

F E A T U R E - O R I E N T E D SO F TWA R E D E S I G N

An SPL (Pohl et al., 2005) aims at constructing a family of similar software systems that share common

functionalities. Instead of developing each system from scratch individually, an SPL represents the entire

system family in a single code base and each variant (usually called product) is instantiated by configuring

and assembling the different components. Feature-oriented software development (Apel and Kästner,

2009) is a paradigm proposed for the construction, customization, and synthesis of large-scale software

systems. It relies on the core concept of feature, a unit of functionality that implements some requirements,

represents some software decisions, or provides a potential configuration option. In this approach many

different software systems can be generated sharing a set of common features and differing in other

features, resulting in a popular paradigm for the development of SPLs.

The development of an SPL can usually be split in two stages: domain engineering, where commonalities

and variability points are identified and developed, and application engineering, where concrete products are

derived from the SPL. Domain engineering itself encompasses three different activities (Apel and Kästner,

2009): domain analysis, domain design, and domain implementation. In feature-oriented development the

focus is domain engineering, so that application engineering is mostly automated through the selection of

features. Feature-oriented domain analysis (Kang et al., 1990) is a key activity in this process, producing a

feature model (FM) encoding the available features and their dependencies. These are typically represented

as feature diagrams (FD), a graphical tree structure that describes features as atomic units of difference.

Both domain design and implementation then consider features as first-class artefacts. This explicit

introduction of features in the design and implementation of the SPL usually follows either a compositional

or an annotative approach. Several feature-oriented software design techniques have been proposed to

support domain design in feature-oriented development, including variability-aware specification languages

and validation and verification techniques, which are the main focus of this thesis.

The engineering of an SPL (Krueger, 2001) can be proactive, where feature-oriented development is

adopted from the start and features are an integral part of the system from the early stages of development.

44

3.1. Feature Modeling

More commonly, however, development starts without variability concerns, resulting in the development of

multiple software variants through clone-and-own. As the cost of maintaining and synchronizing the clones

increases, developers often find benefits in merging the clones into a single SPL. A common challenge in

feature-oriented development is thus the migration of legacy systems into an SPL – including the extraction

of FMs, and feature-oriented designs and implementations –, an extractive approach to SPL engineering. In

fact, even after migration, development may not be fully compliant with feature-oriented development, and

new clones may need to be integrated back into an existing SPL – a reactive approach to SPL engineering.

This chapter presents an overview of existing work on feature-oriented software design. Section 3.1

starts with a brief overview about feature modeling during domain analysis, including the automatic analysis

of FMs. Section 3.2 then shows how systems can be modelled in feature-oriented design, including and

a list of languages classified into three approaches to handling features: annotative, compositional, or

ad-hoc. Section 3.3 describes the related analysis techniques for these modelling approaches, particularly

the model checking of designs with variability. Lastly, Section 3.4 presents existing approaches to the

migration of design clones into a feature-oriented SPL.

3.1 Feature Model ing

One of the main activities of feature-oriented domain analysis is feature modeling, the identification of the

available features and their dependencies. The result of this analysis is an FM, an artefact that is central in

feature-oriented development and in the related variability-aware analyses.

The section starts in Section 3.1.1 by presenting the standard FM formalism, and some popular

extensions, as well as languages for their specification. It then provides an overview of existing techniques

for their analysis in Section 3.1.2.

3.1.1 Specifying Feature Models

An FM is commonly specified with an FD (Kang et al., 1990; Czarnecki and Eisenecker, 2000), basically a

tree that captures the set of valid products in a system family. Each node of the tree represents a feature,

and the edges represent the hierarchical relations (or dependencies) between features. A child feature can

only be selected if its parent is also selected. Different relationships between a parent feature and its child

features impose additional restrictions, which can be categorized as mandatory or optional features, or xor-

or or-groups of features. The typical graphical representation of these relationships is shown in Fig. 16.

45

3.1. Feature Modeling

Figure 16: Feature diagram typical notation.

A mandatory relationship specifies that a feature must be selected in a product instance if its parent also

is. An optional relationship indicates that a feature may be selected in a product instance if its parent also

is. The xor- and or-group relationships restrict groups of child features of the same parent. A xor-group (also

known as an alternative group), represented symbolically with an arc drawn through all the child options,

stresses that exactly one child feature from that group must be included in a product. This means, only one

child feature must be selected when its parent feature is included. An or-group allows one or more than one

child features from the group to be selected in a product instance simultaneously. Note that any non-empty

child feature may be included in the product instance if their parent features are included. To consider the

whole relationship between a parent and its child features, different relations can be combined. These

relationships are considered only when the parent feature is included in the description of a particular

product. Otherwise, none of them has an effect on the selection of a product instance.

(a) feature A requires feature B. (b) feature A excludes feature B.

Figure 17: Cross-tree constraints.

In order to have a more accurate description of the relationships between child features, support for

cross-tree constraints has been added to the basic FMs, most commonly the Requires and Excludes

relationships (Kang et al., 1990). This are often represented with dashed arrows. As shown in Fig. 17a:

“feature 𝐴 requires feature 𝐵” means that feature 𝐵 must be part of the product instance if feature 𝐴 is

selected. Conversely, the constraint “feature 𝐴 excludes 𝐵”, shown in Fig. 17b, restricts the inclusion of

features 𝐴 and 𝐵, that is, features 𝐴 and 𝐵 cannot be in the same product instance.

Figure 18 shows an FD for a possible FM of the e-commerce platform running example, adapted

from (Czarnecki and Pietroszek, 2006). The root feature Catalog denotes the concept being designed,

the structure of an electronic catalog. Feature Image is mandatory – every catalog must have images

46

3.1. Feature Modeling

Figure 18: Feature diagram of the e-commerce platform.

representing each product. Different formats may be supported for these images, either as PNG, JPEG, or

both: this is represented by an or-group below Image. An optional feature Thumbnails allows catalogs to

be associated with a set of images selected from their products. Catalogs may additionally be structured

in categories, denoted by optional feature Categories on the right-hand side. Two additional features for

categories are supported as already discussed in Section 2.1: optional feature Hierarchical allows categories

to be nested, while Multiple allows a product to be stored in multiple categories. Lastly, catalogues may

also support products on sale, represented by the optional feature OnSale. The FD formally describes the

set of products of this e-commerce system family. In this particular case, we have sixty valid configurations

in total.

Besides these basic elements of an FM, several extensions have been proposed to include more

information and to support different requirements that often arise in realistic software development

scenarios.

Some authors (Czarnecki and Wasowski, 2007) allow FMs to be annotated with arbitrary propositional

formulas over the presence of features, allowing more general cross-tree constraints not expressible in

the basic FMs. To ease this specification of these constraints, besides the general operators, such as

∧, ∨, ¬, →, Batory (2005) additionally introduces a choose operator that may also be included in the

expression. Specifically, 𝑐ℎ𝑜𝑜𝑠𝑒𝑚𝑛(𝑒1 ⋯𝑒𝑘) means that at least 𝑚 and at most 𝑛 of the expressions

𝑒1 ⋯𝑒𝑘 are true. The support of reference features has also been proposed to promote the reusage or

modularization of FMs (Bednasch, 2002; Czarnecki et al., 2005). A reference allows to refer to other FMs

directly or indirectly.

Other popular extensions introduce cardinalities in FMs. For instance, (Czarnecki et al., 2005) extend

standard FMs with UML-like multiplicities (referred as cardinalities), namely feature cardinalities (Czarnecki

et al., 2002) and group cardinalities (Riebisch et al., 2002). A feature cardinality describes the relationship

47

3.1. Feature Modeling

between a child feature and its parent with a sequence of intervals [𝑛..𝑚], where 𝑛 is the lower bound and

𝑚 is the upper bound. These intervals determine the number of instances of a feature that may be part of

a family member. A specification of a feature can have more than one interval. For example, [0..2][6..6]

shows that one can take 0, 1, 2 or 6 times of the corresponding feature. In particular, the mandatory

and optional relationships can be generalized as [1, 1] and [0, 1] respectively. A group cardinality is an

interval ⟨𝑛,𝑚⟩, with the lower bound 𝑛 and the upper bound 𝑚, which represents the number of sub

features that can be selected from a parent feature. Therefore, a xor-group can be changed to ⟨1, 1⟩

group cardinality, and an or-group to ⟨1..𝑛⟩, where 𝑛 is the number of features in the group. For example,

the or-group with PNG and JPEG in Fig. 18 can be labeled with group cardinality ⟨1, 2⟩, meaning that a

product has to select at least one and at most two features in the group Thumbnails. The optional features

Hierarchical and Multiple would be annotated with feature cardinalities [0..1].

Another typical extension is the ability to introduce feature attributes (Czarnecki et al., 2002, 2005),

so that a diagram can be more succinctly represented and have improved readability. The attributes of a

feature can be introduced by associating it with a type which can either be a primitive data type, such as

integer, float, Boolean, string, or a reference type that allows the user to model graph-like connections

between features. A feature can have several attributes each of which can be modeled by a distinct

subfeature of the given feature, in which case the hierarchy in the diagram increases rapidly and quickly

leads to a very large diagram. With feature attributes, the developers can reorganize the tree structure to a

more concise and intuitive diagram.

Since FMs are ubiquitous in all activities of feature-oriented software development, considerable efforts

have been made to develop interchangeable formats for FMs (Sepúlveda et al., 2012; Eichelberger and

Schmid, 2013). Some of these have have been developed mostly with tool support in mind, so that they

are managed through a graphical interface and are not expected to be human-readable, such as XML

formats provided by FeaturePlugin (Antkiewicz and Czarnecki, 2004), FAMA (Benavides et al., 2007) or

FeatureIDE (Thüm et al., 2014). However, graphic representations have poor scalability due to cluttering

in large systems. Thus, various human-readable text-based languages have been proposed for feature

modeling, including FDL (Van Deursen and Klint, 2002), GUIDSL (Batory, 2005), SXFM (Mendonça et al.,

2009a), VSL (Abele et al., 2010), and TVL (Classen et al., 2011a) (see, for instance, (Eichelberger and

Schmid, 2013) for a detailed comparison).

As an example, we briefly present TVL (Text-based Variability Language), which supports most extensions

of FMs and is used as an input language for FMs for some of the analyses that will be presented in

Section 3.1.2. TVL is a light and comprehensive feature modelling language. It is a text-based human-

48

3.1. Feature Modeling

root Catalog group allOf {

Image group someOf {

PNG,

JPG

},

opt Thumbnails,

opt Categories group allOf {

opt Hierarchical,

opt Multiple

},

opt OnSale

}

Figure 19: E-commerce FM encoded in TVL.

readable feature modelling language with comprehensive constructs that is usually used as an auxiliary

language for the variability modelling languages to specify the differences and common features during the

verification process. It has a C-like syntax and a formal semantics which allows the engineer to model FMs

intuitively and easily without concerns about ambiguities.

The root feature of an FM is specified by the keyword root followed by the name of the root feature.

The decomposition relation is introduced by the group keyword, which is followed by the decomposition

type. The 𝑎𝑛𝑑, 𝑜𝑟, and 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 decomposition types were renamed to allOf, someOf, and oneOf

respectively. The and-decomposition type can also specify cardinality. The cardinalities can be constants,

natural numbers, or the asterisk character. If a feature is an optional feature, its name is preceded by the

opt keyword. Each feature can declare its own children.

Figure 19 shows an example of the FM of the catalog structure of the e-commerce platform from Fig. 18

encoded in TVL. Cardinality-based decomposition relations and attributes can be easily modeled in the

body of a feature in TVL Language. Furthermore, a feature can be extended easily since its just a name

showing below the decomposition operator.

3.1.2 Analyzing Feature Models

The analysis of system families concerned to the verification and specification of family members has been

paid a lot of attention in the research and practical fields. Extracting information from FMs manually is really

time-consuming and error-prone. Hence, effective methods to provide automated analysis mechanisms

have led to wide research interest since FMs were proposed. A set of operations, techniques, and tools has

49

3.1. Feature Modeling

been proposed in the literature. In this section, we give an overview of some of the most useful operations

as well as the approaches for their automatic analysis.

Analysis Operations

Since the introduction of FMs, a number of operations have been proposed in the literature and play a

significant role in the domain analysis step. Here, a brief review of some widely used operations will be

given. To get more acquainted with the operations please see (Benavides et al., 2010). Analyses of FMs

are categorized as correctness checking and configuration support (Mendonça et al., 2009b). Examples

of correctness checking include the consistency checking and dead or common features finding, while

examples of configuration support include finding optimal products or multi-step configuration.

V o i d F e a t u r e M o d e l The void feature model operation is used to validate whether an FM is void

or not. An FM is void if it represents no product instance. Usually, the major causes of a void FM are the

wrong usage of cross-tree constrains. This operation is widely used in the debugging process especially

in large-scale FMs (Benavides et al., 2010). In such models, the detection of this kind of problem is an

error-prone and time-consuming task.

N um b e r o f P r o d u c t s This operation returns the number of valid product instances modelled by

an FM. Obviously, the return number of a void FM is zero. The result of this operation shows the flexibility

and complexity of a system family and may also help the developers to detect potential product instances.

V a l i d a t i n g P r o d u c t s Most of the time, it is useful to check whether a product (also called

specification in the literature) is valid or not when analyzing and managing system families. The validate

operation, also referred as product checking or product specification completeness, determines whether a

product belongs to the system family.

F i n d i n g D e a d a n d C ommo n F e a t u r e s A dead feature is a feature that does not belong to

any of the valid products in a system family. Generally, dead features are caused by the wrong usage of

cross-tree constraints between features. Notably, all features depicted in a void FM are dead features. A

common feature is a feature that is shared by all product instances.

50

3.1. Feature Modeling

I d e n t i f y i n g A t om i c S e t s An atomic set is a group of features that can be treated as a unit

when analyzing an FM. The complexity of an FM is reduced since features of an atomic set always appear

together. Obviously, features related by mandatory relations are always part of the same atomic set.

F i n d i n g a l l F am i l y M em b e r s In an FM, a product represents a unique set of feature selection.

Sometimes, the developer would like to find all valid products for the system family in order to identify new

members that are not considered in the initial design step. The result of this operation is a set containing

all valid products described in the FM.

S e l e c t i n g O p t i m a l P r o d u c t s This operation is used to find a product instance that fulfills

a criterion decided by the user. The criterion is a function that determines how good a solution is for a

particular product instance. In general, this operation is used in FMs extended with attributes with the

parameters of the function constrained in the attribute field. This operation is well suited for CSP-based

analysis approaches, as described later in this section.

M u l t i - s t e p C o n f i g u r a t i o n Multi-step configuration is a process to find a series of intermediate

configurations that satisfy a series of configuration constraints and edge constraints. The set of edge

constraints may include numerous types of constraints on the transition from one configuration to another.

Configuration constraints must be satisfied at each step, such as the FM rules. This operation requires the

initial configurations, desired final configurations, a number of steps for the configuration, and a function

determining the cost to transition configurations through the steps. The result of this operation is an

ordered list of configurations.

Automated Analysis Support

There is extensive work on supporting such FM analysis operations (see for instance (Benavides et al.,

2010) for a survey). Most of the analyses concern the operations just described. Here we divide them

into three groups according to the underlying logic paradigm. Particularly, we present SAT-based analysis

approaches, CSP-based approaches, and other paradigms. The main idea of SAT and CSP approaches

is to translate an FM to a property in the respective logic, and then automatically analyze that property

using an off-the-shelf solver. Besides the binary decision operations, CSP-based methods can deal with

operations yielding integer or set values, which cannot be handled natively by SAT-based approaches.

51

3.1. Feature Modeling

Table 2: Rules for translating FMs to propositional formulas.

Relationship Graphical notation Mapping to a formula

root 𝑟

mandatory 𝑝 ↔ 𝑐

optional 𝑐 → 𝑝

or-group 𝑝 ↔ (𝑐1 ∨ 𝑐2 ∨ ... ∨ 𝑐𝑛)

xor-group (𝑐1 ↔ (𝑝 ∧ ¬ 𝑐2 ∧ ... ∧ ¬ 𝑐𝑛))∨
(𝑐2 ↔ (𝑝 ∧ ¬ 𝑐1 ∧¬𝑐3 ∧ ... ∧ ¬ 𝑐𝑛)) ∨ ...∨
(𝑐𝑛 ↔ (𝑝 ∧ ¬ 𝑐1 ∧¬ 𝑐2... ∨ ¬ ∧ 𝑐𝑛−1))

S A T - b a s e d A n a l y s i s SAT-based approaches have attracted considerable attention especially

after Batory (2005) proposed the rules for translating FMs to propositional logic formulas. In particular, the

features in the model are encoded as Boolean variables, while the relationships as well as the additional

constraints, are translated to formulas expressed over these variables. Table 2 shows the translation of

relations between a parent and its child features. Feature 𝑟 represents the root feature of an FM and will

be translated to a simple formula 𝑟 that forces the respective variable to be true. The relationship between

a parent feature and its child features are represented by the implication operator. More specifically, there

is an implication from every child feature 𝑐 to its parent 𝑝. However, only the mandatory child features are

implied by its parent. An or-group is represented by an implication from the parent feature 𝑝 to at least

one of its child features 𝑐1, 𝑐2, ..., 𝑐𝑛, while in a xor-group the parent implicates exactly one of its child

features. To obtain the semantics of an FM, all formulas for its individual relations are conjoined together,

and then some of the operations described above can be implemented trivially by invoking a SAT solver

(for example, determining if the FM is void or validating a product).

Some works use higher level modelling languages instead of SAT directly. For example, considerable

work has been performed on analyzing FMs using Alloy (Sree-Kumar et al., 2016). The implementation

of FMs needs to be made manually since there is no standard format to represent FMs in Alloy. In

general, the possible features are described as a collection of singleton signatures and the relation and the

cross-tree constraints among features are encoded using predicates following the semantics described

52

3.1. Feature Modeling

above. Regarding the automatic analysis, assert commands can be used for operations such as product

validation or checking common features, while run commands can be used for operations such as finding

all family members. This approach was followed, for example, in one of the Alloy encodings proposed

in (Gheyi et al., 2006), the so-called R-theory of FMs. In this encoding, an FM is just a collection of feature

names (to be instantiated with singleton signatures).

sig FM {

features: set Name

}

sig Name {}

The semantics of the FM can then be encoded with predicates that enforce a particular restriction over a

configuration (a set of feature names), for example:

pred mandatory(A,B:Name, config:set Name) {

A in config ⇔ B in config

}

In this work another encoding was proposed, the so-called G-theory, where an FM includes an explicit

representation of its relations and cross-tree constraints. For example, for capturing relations we have the

following signature.

sig Relation {

parent: Name,

child: set Name,

type: Type

}

abstract sig Type {}

one sig Optional, Mandatory, OrFeature, Alternative extends Type {}

Many operations, namely checking valid/invalid configurations, detecting dead and common features, or

checking if a transformation is a refactoring, can be implemented with both encodings, but some can only

be implemented with the G-Theory. However, the R-Theory is more efficient due to the much reduced

number of signatures to encode a particular FM. Another work that used an encoding of FMs in Alloy very

similar to the G-theory is (Ripon et al., 2012).

53

3.1. Feature Modeling

C S P - b a s e d A n a l y s i s A Constraint Satisfaction Problem (CSP) is a mathematical problem that

consists of a set of variables, a domain for each variable, and a set of constraints restricting the values of

the variables. The aim of a CSP is to choose a value for each variable so that all constraints are satisfied.

Constraint programming is a powerful and flexible technique for dealing with CSPs, in particular those with

lots of constraints.

In the research literature, there are some works (Benavides et al., 2005a,b, 2010) that propose

the use of constraint programming for the automated analysis of FMs. When translating an FM to

a CSP, the features are mapped to variables with {True,False} or {0,1} domain, depending

on the solver that will be selected. The relations between features are translated to different kinds of

constraints over feature variables. Let us suppose 𝑝 is the parent of child features 𝑐1, ..., 𝑐𝑛, and the

domain of the feature variables is {0,1}. The mandatory relation between 𝑝 and 𝑐1 will be encoded

as 𝑐1 = 𝑝, while the optional relation between 𝑐1 and 𝑝 will be mapped to the conditional expression

if (𝑝 = 0) then (𝑐1 = 0). An or-group relation in the children will be transformed into expression

if (𝑝 > 0) then (1 ≤ 𝑐1 + ... + 𝑐𝑛 ≤ 𝑛) else 𝑐1 = ... = 𝑐𝑛 = 0, and a xor-group relation would be

encoded with constraint if (𝑝 > 0) then (𝑐1 + ... + 𝑐𝑛 = 1) else 𝑐1 = ... = 𝑐𝑛 = 0. In many real-life

development scenarios, we do not want to find any solution but a good solution. Constraint programming

is more effective that SAT for finding an optimal solution for a particular requirement. The criterion to

assess the quality of a solution can be modeled as an objective function based on the variables described

in the feature and attributes. As such, this approach is better fitted for dealing with FMs extended with

attributes. After the transformation, an off-the-shelf CSP solver, such as IBM’s CPLEX Optimizer1, can be

used to conduct an automatic analysis.

Most of the analysis operations for FMs can be performed by constraint programming (Benavides et al.,

2007). A detailed presentation of such analyses, for example computing the number of products, validation

of an FM, or finding valid products can be found in (Benavides et al., 2005b). The result for the same

operation can be different if different solvers are chosen. The performance may be improved if several

solvers are working together (Benavides et al., 2007). In this context, a multi-platform and extensible

framework, FAMA (Benavides et al., 2007) was proposed. It allows the integration of different solvers

(including SAT solvers) to optimize the analysis process. FAMA can be configured to use the most efficient

available solver for each operation during execution time. The configuration parameters are set based on

the priority between each operation for the available solver. Usually, the performance of analysis using SAT

1 https://www.ibm.com/analytics/cplex-optimizer

54

https://www.ibm.com/analytics/cplex-optimizer

3.2. Modeling in Feature-oriented Design

solvers is slightly better than of CSP, but, as mentioned above, the latter can handle FMs extended with

attributes and finding optimal solutions according to criteria that maximize or minimize attribute values.

O t h e r K i n d s o f A n a l y s i s There are some works that use neither SAT nor CSP to perform

automatic analysis of FM. For example, in (Segura, 2008) an algorithm is proposed to simplify FMs by

calculating atomic sets. The idea is reduce the number of variables that are needed for its analysis, by

replacing each feature variable by a new variable that identifies the atomic set it belongs to. This algorithm

proceeds by recursively checking all the child features of the FMs. A child feature is added to the current

atomic set if it is mandatory. Otherwise, a new atomic set including the child feature is created and

added to the collection of atomic sets. A set of atomic sets is returned when all the features are checked.

In (Wang et al., 2007) a method is proposed that uses description logics to analyse FMs. Description logics

are a family of knowledge representation languages enabling the reasoning within knowledge domains

by using specific logic reasoners. It consists of a set of concepts, a set of roles, and set of individuals

(or instances). The problem is solved by a solver providing facilities for consistency and correctness

checking. In this method, Web Ontology Language (OWL) ontologies were used to capture the relationships

among the features. The analysis of an FM can then performed with off-the-shelf OWL reasoning engines,

which can for example be used to check for inconsistencies of feature configurations. As a final example,

in (Hemakumar, 2008) a method is described to statically detect conditional dead features in a system

family. A contradiction in an FM is a specification error. Finding such errors is important, both for designers

and customers. An FM is 𝑘-contradiction-free where 0 < 𝑘 ≤ 𝑛, if every selection of 𝑘 features does not

expose a contradiction (i.e. they are compatible). The FM is proven to be contradiction-free if 𝑛 is the

number of selectable features for the user.

3.2 Model ing in Feature-or iented Design

Specification languages are textual computer languages that define the system models as well as the

system properties by a systematic set of rules and frameworks, and are used to model the system under

development during design. General-purpose specification languages are often sufficiently rich to support

the explicit encoding of features and variability points. However, as the complexity of the system increases,

managing variability may become impractical, and languages have been developed or adapted to natively

support feature-oriented design when developing a family of similar systems. This also applies to formal

specification languages if designs are expected to be validated and verified (see, for instance, the survey by

55

3.2. Modeling in Feature-oriented Design

Composition

Base Model

𝐹1

⋮

𝐹𝑁

Combined

Model

(a) Composition-based approach

#include <stdio.h>

#define 𝐹1
#define ...

#define 𝐹𝑁
int main(){

#ifdef 𝐹1
printf("Feature 1 is selected!");

#endif

...

#ifdef 𝐹𝑁
printf("Feature N is selected!");

#endif

return 0;

}

(b) Annotation-based approach

Figure 20: Language categorization based on variability representation.

Benduhn et al. (2015)). Likewise SPL implementation, feature-oriented design approaches also typically fall

in two groups depending on how variability is represented: composition- and annotation-based approaches.

Composition-based approaches model a system with a base model and a set of delta models describing

distinct feature units and specifying the additional variants of the system. As show in Fig. 20a, a variant

modeled in such kind of language is derived by compositing the base model with a set of valid features

(𝐹1,⋯ , 𝐹𝑛) one by one using a composition tool. Hence, the order in which these features are composed

matters for generating the final model, since the behaviour specified by one feature maybe rewritten

by another that appears later in the composition list. This approach allows the modular development

of features and provides a clear mapping from the features to their implementations promoting feature

traceability. Therefore, when a developer wants to debug errors that occur in a particular feature, they only

needs to work with the code associated with that feature, rather than walk through the entire code. This

kind of approach is best suited for coarse granularity variability, such as changing the entire method of a

class. Fine grained variability, such as small changes in the body of a method, are often very difficult or

impossible to achieve due to the conceptual limitations (Kästner et al., 2008).

In annotation-based approaches all variants are superimposed in a single code unit and variability

implemented by annotating certain parts of the code with the variant they belong to. During variant

derivation, all code that belongs to deselected features or invalid feature combinations is removed from the

source code. A typical example of this kind of approaches is the explicit usage of #ifdef and #endif

annotations of the C/C++ preprocessors which surrounds related feature code fragments as shown in

Fig. 20b (code belonging to distinct features is presented in different colors). In contrast to composition-

based approaches, annotation-based approaches add feature annotations in the actual lines of the source

56

3.2. Modeling in Feature-oriented Design

code, which naturally supports fine-grained variability. However, it poorly supports feature traceability,

since a feature is not encapsulated in a single code unit but scattered in the code as feature annotations,

which can lead to maintainability issues. Although tools such as CIDE (Kästner et al., 2008) provide virtual

views and navigation support of feature traceability at the tool level, feature traceability in such approaches

is still a matter of tool support (Kästner and Apel, 2008). Although the composition-based approach offers

an explicit mapping between features and their implementations, which brings a straight forward trace

and easy maintenance of the features, in practice the annotative approaches are more popular (Le et al.,

2013). The industry is very careful when adopting a composition-based approach because it will have too

much impact on the existing code base and the development process. Annotative approaches, by contrast,

can be adopted more quickly because they require only lightweight tools which do not change much of the

code or development process (Kästner and Apel, 2008).

This section reviews existing work on feature-oriented modelling of SPLs. The focus is on formal high-level

specification languages, although we also explore some graphical conceptual modelling languages. We

briefly explore how general-purpose modelling languages can be used to model multiple variants in an ad

hoc manner in Section 3.2.1. Then we explore composition- and annotation-based modelling languages for

feature-oriented design in Section 3.2.3 and Section 3.2.2, respectively.

3.2.1 Ad-hoc Approaches

Some general-purpose modelling languages are sufficiently expressive to support some kind of feature-

oriented design. The main advantage of such approaches is that they inherit all existing support for a

well-established language, including subsequent analyses using existing model checkers or theorem provers.

The caveat is that the implementation of the FM must be performed manually, which is cumbersome and

error-prone for realistic SPLs. Moreover, it also limits the ability to perform more advanced feature-aware

analyses since features are not first-class entities in this context.

Some authors explore the decomposition capabilities of general-purpose modelling languages to simulate

the implementation of a composition-based approach. For structural modelling, (Shiraishi, 2010) proposed

a variability modeling approach for the Architecture Analysis and Design Language (AADL), a language for

modeling system architectures. AADL supports the specification of several types of components, such as

process or threads, as well as their communication through ports. The interface of a component is given

by a type definition, and its internal specification by an implementation. Components can be extended or

refined, and the authors explore how these mechanisms can be used to model variability. Considering

57

3.2. Modeling in Feature-oriented Design

approaches focused on modeling behavior, Gondal et al. (2010) proposed using a feature configurator tool

for Event-B to compose features selected by the user. Here, each feature is mapped directly to a plain

Event-B machine. For ASM, Batory and Börger (2008) proposed to use its own mathematical transition

rules in the form of If Condition then Updates to describe new behaviour and states of the machine. Such

extensions can be composed in several ways, such as conservative extensions that introduce new behavior

in a module by increments (for example, add exception handling), parallel additions that add extra behavior

with the same guard (condition) of the original, or introductions that add new elements.

Alternatively the whole SPL can be represented in a superimposed model and somehow relate elements

of the model – either structural or behavioural – to presence conditions. These presence conditions may

not be explicitly present in the model but rather implicit in supporting tools. This is the case of the approach

proposed by Calder and Miller (2006), where Promela is used to model a system with variability to analyse

feature interactions, using an ad hoc tool to project transitions/variables of specific variants. Another

approach is to encode the FM in the general-purpose modelling language alongside the superimposed

system model and explicitly implement the presence conditions based on the valuation of the FM, a

technique known as lifting (Post and Sinz, 2008). This is followed, for instance, in (ter Beek and de Vink,

2014a,b), where the authors explore whether the mCRL2 model checker can be used to model and verify

SPLs. Here, encoding of an SPL involves two state machines, one encoding the initial feature selection,

and another the behavior of the family whose transitions depend on the initially selected product.

This is also the approach followed by Clafer (CLAss, FEature, Reference) (Bak et al., 2016), firstly

proposed as a class modeling language and then refined to include behaviour modeling (Juodisius et al.,

2018). Clafer unifies basic modeling constructs - such as classes or features - into a single construct

named clafer. The format of the model, especially the nesting space, is very important in Clafer, since

it represents inheritance. For example, if clafers represent features, the fact that clafer B is nested in A

means that B is a subfeature of A. A multiplicity annotation follows the declaration of a clafer, for instance

1..1 meaning exactly one (the default by omission), 0..* (or *) meaning zero or more, or 0..1 (or ?)

zero or one. Group cardinalities can also be assigned to restrict the number of child instances, for instance

0..* (or opt, the default), or 1..1 (or xor) representing a xor-group. A clafer can be defined as a subset

of another clafer by either arrow notation ->, denoting a subset, or by a colon :, denoting a partition.

Constraints to express dependencies among clafers or restrict numerical and textual values are modeled

in square brackets in the context of the clafer being restricted. Assertions can be defined with the same

constraint language, if marked with the keyword assert. Clafer uses plain Alloy as its verification backend

58

3.2. Modeling in Feature-oriented Design

(although the supported expression language is more restricted), supporting bounded analysis over the

defined models.

As an example, consider a simplified version of the e-commerce catalog SPL already presented, assuming

the FM from Fig. 18 but without feature Hierarchical. A possible specification in Clafer is depicted in Fig. 21.

The first clafer Catalog represents the FM, and by default will have exactly one instance. Clafer Image is

marked with group cardinality xor to denote a xor-group, while the other children features are marked as

optional with multiplicity ?. The remainder clafers denote the structure of the system, with a clafer declared

for each element type with multiplicity *, allowing any number of instances (except for Format, which

encodes some kind of enumeration type). To model structural variability points, the presence of elements

is controlled by associating restrictions over features, such as no Categories => no category that

forces category to be empty when there is no Categories instance (i.e., the Categories feature is not

selected). Features are simply treated as any other element of the model, and as the model becomes

more complex it may not be easy to identify variability points. The Thumbnails restriction – that all

images from a catalog are present in one of its products – is added as a top-level constraint. Note that the

constraint language is a restricted version of Alloy, e.g., you cannot navigate backwards, hence the more

verbose encoding of this constraint. Transitive closures are also not supported, so it is unclear how the

feature Hierarchical would be implemented. Lastly, the AllCataloged assertion is encoded, which

specification depends on whether we have a configuration with Categories.

Although the initial proposal was purely structural, an extension has been proposed to support modeling

behavioural models with variability (Juodisius et al., 2018). They introduce a temporal operator --> to

constraint state transitions, namely that if the condition on the left of --> holds in one state, then the

condition on the right must hold in the next state. Likewise structural constraints, variability in behaviour

is controlled by presence conditions in the constraints. Lastly, assertions can also be written using LTL

operators such as always, never, sometime or always.

A similar approach can be employed with Alloy and Electrum, as shown in (Macedo et al., 2016) for

the latter. One possible approach is to encode each feature as a singleton signature, and then an extra

signature, here Configuration, contains a selection of features. Consider, as an example, the vending

machine SPL, for which Fig. 23 depicts a possible specification in Electrum. The corresponding FD is

shown in Fig. 22. The base variant allows the selection and serving of a single product. The base model is

extensible by introducing three independent features: Cancel, allowing to cancel the selection before serving

products; MultiSelection, allowing the selection of several products in one interaction; and Free, allowing

free drinks. What’s more, feature MultiSelection is only allowed when free drinks are not allowed and a

59

3.2. Modeling in Feature-oriented Design

Catalog

xor Images

JPG

PNG

Thumbnails ?

OnSale ?

Categories ?

Multiple ?

Product *

catalog -> Catalog *

[Categories => no catalog]

category -> Category *

[no Categories => no category]

[no Multiple => lone category]

images -> Image *

onSale ?

[no OnSale => no onSale]

assert [if Categories then some catalog else some category.

inside]

Image *

format -> Format

abstract Format

Jpg : Format ?

[JPG <=> one Jpg]

Png : Format ?

[PNG <=> one Png]

Category *

inside -> Catalog

[no Categories => no Category]

Catalog *

thumbnails -> Image *

products -> Product *

[no Thumbnails => no thumbnails]

[Thumbnails => (all c : Catalog | all i : Image | i in c.

thumbnails => (some p : Product | i in p.images && (if

Categories then c in p.category.inside else c in p.catalog)))

]

Figure 21: E-commerce catalog SPL encoded in Clafer.

60

3.2. Modeling in Feature-oriented Design

Figure 22: Feature diagram of the vending machine example.

restriction can be imposed over signature Configuration to forbid Free and MultiSelection

from being selected simultaneously. Features can then be tested to be in Configuration and the

structural and behavioural properties adapted accordingly. For instance, when MultiSelection is

not selected, there can be at most one product selected at anytime. Regarding behaviour, one can, for

instance, forbid the application of certain predicates with pre-conditions over configurations, as in Cancel

when feature Cancel is not selected. Moreover, the behaviour of the predicate can itself depend on the

selected configuration, as in Cancel where the succeeding state depends on whether MultiSelection is

selected or not. Lastly, assertions themselves can also be conditioned by the configuration.

3.2.2 Composition-based Languages

In composition-based specification languages, the base model and FMs are specified separately and later

integrated using an automatic tool. Most composition-based approaches extend existing languages with

some support for feature modules that can then be combined in a single product after configuration. For

formal approaches, such is the case of fSMV (Plath and Ryan, 2001; Classen et al., 2014) for the SMV input

language of symbolic model checkers, FeatureAlloy (Apel et al., 2010) for the Alloy lightweight specification

language, or ProFeat (Chrszon et al., 2018) for the Prism language for probabilistic model checking,

supported by TVL-inspired FMs. Approaches for conceptual modelling include FORML (Shaker et al., 2012),

where each feature module encodes a state-machine, and the approach proposed by Greenyer et al. (2012)

where each feature module encodes a modal sequence diagram (a variant of live sequence charts).

Some compositional approaches explore concepts of delta modelling for feature-oriented design, which

allows for finer granularity modifications. One of the first applications of delta modelling was in the

context of model-driven development with UML (Schaefer, 2010). Lochau et al. (2014) propose DeltaCCS,

whose implementation extends a Maude implementation of CCS. Sabouri and Khosravi (2013) propose an

extension for the actor-based Rebeca language. Haber et al. (2011) proposed Δ-MontiArc, an extension for

61

3.2. Modeling in Feature-oriented Design

open util/natural

abstract sig Feature {}

one sig Cancel, MultiSelection, Free extends Feature {}

sig Configuration in Feature {}

fact FeatureModel {

Free+MultiSelection not in Configuration

}

abstract sig State {}

one sig Ready, Paid, Selected, Served, Done extends State {}

var one sig state in State {}

sig Product {}

var sig stock, selection in Product {}

var one sig balance in Natural {}

fact {

MultiSelection not in Configuration implies always lone selection

}

pred Select [p : Product] {

state in (Free in Configuration implies Ready else Paid)+

(MultiSelection in Configuration implies Selected else none)

p in stock − selection

state' = Selected

stock' = stock

selection' = selection + p

balance' = balance

}

pred Cancel [] {

Cancel in Configuration

state = Selected

state' = Free in Configuration implies Ready else Done

stock' = stock

selection' = none

balance' = balance

}

…
fact Behaviour {

state = Ready

no selection

some stock

balance = Zero

always {

(some p : Product | Select[p]) or Pay or Cancel or

Serve or Open or Change or Nop

}

}

assert DoneImpliesServed {

always (state = Done implies once state = Served)

}

assert PaidImplesServed {

Free not in Configuration implies

always (state = Paid implies eventually state = Served)

}

Figure 23: Vending machine SPL encoded in Electrum.

62

3.2. Modeling in Feature-oriented Design

the MontiArc ADL. Clarke et al. (2010) propose an extension to the ABS language, with FMs provided in a

language inspired by TVL. Others have explored aspect-oriented modelling in the context of feature-oriented

design. In the approach proposed by Noda and Kishi (2008), each aspect represents a feature and is

comprised by a class diagram and a state diagram, restricted by rules between them to enforce the FM.

In the remainder of this section we present in more detail three composition-based approaches that we

feel are most relevant to the work developed in this thesis, namely fSMV for dynamic modelling, FeatureAlloy

for structural modelling, and Δ-modelling for conceptual modelling.

fSMV

The fSMV language, initially proposed by Plath and Ryan (2001) and later adapted by Classen et al. (2014),

is a composition-based feature extension of the symbolic modeling language SMV (McMillan, 1993). In

fSMV, a complex system can be considered as a base system plus a number of feature modules. The base

system and its features are modeled as different textual units. Specifically, the base system is modeled

in pure SMV, while a feature is described in a new structure named feature construct that overwrites the

existing behavior when superimposed over another SMV module. In the initial proposal (Plath and Ryan,

2001), the features are integrated automatically by means of a tool, called SFI (SMV Feature Integrator),

that compiles into pure SMV so that verification can be performed by the plain SMV model checkers.

In (Classen et al., 2014), it is translated into a dedicated model checking algorithm (see Section 3.3).

Ideally, this superimposition process should be restricted by an FM, but this has not been fully implemented

for fSMV (Classen et al., 2014).

Essentially, an SMV model consists of a section VAR with set of variable declarations defining the state

space and a set of assignments that specify the evolution of the variables. For each variable, in section

ASSIGN there can be an init assignment that defines its initial value and a next function constraining

the value in the next state based on its current value or the value of other variables. Initial states and

transitions can also be restricted by constraints with INIT and TRANS sections. Like other modeling

languages, modules (labeled with keyword MODULE) are used to encapsulate elements. Specifications to

be model checked are then encoded as LTL or CTL in constructs LTLSPEC or CTLSPEC, respectively.

As an example, we encode a simplified version of the vending machine SPL in fSMV (with a single type

of product, with infinite stock, so the current selection amounts to a count of items). The base model,

shown in Fig. 24, contains a variable State with the valid states of the vending machine as an enumerated

type. The init assignment defines the system’s initial value (initially, the system is Ready). The next

63

3.2. Modeling in Feature-oriented Design

MODULE Main

VAR

State : {Ready, Paid, Selected, Served, Done};

ASSIGN

init(State) := Ready;

next(State) := case

State = Ready : Paid;

State = Paid : Selected;

State = Selected : Served;

State = Served : Done;

State = Done : Ready;

esac;

Figure 24: Base vending machine model in fSMV.

assignment defines the transition relation between, defining how the next state depends on the current

state.

A feature in fSMV is declared with the keyword FEATURE. There are three main sections of the feature

construct, defined by the keywords REQUIRE, INTRODUCE and CHANGE. The REQUIRE section describes

what entities are required to be present in the base model in order to encode the specific feature. A

collection of modules and variables may be involved in this section, and all preexisting modules and

variables that are used in the INTRODUCE and CHANGE sections must be described in the REQUIRE

section. The INTRODUCE section introduces new modules, variables, assignment clauses or specifications

that will be used in the feature. These are directly added to the SMV code when conducting the integration.

The CHANGE section specifies the changes of the system behavior in terms of features. It includes a

number of TREAT or IMPOSE clauses, associated with an application condition. TREAT replaces all variable

occurrences with a different expression when a certain condition holds, otherwise it remains the same.

IMPOSE statements deal with assignments of variables, changing the update of a variable when a certain

condition holds, otherwise preserving the original behaviour.

Let us consider feature Cancel which adds a transition from state Selected back to Done, representing

the cancellation of the selection and the return of the inserted change. A feature in fSMV can only update

existing assignments by introducing a new guarded expression, which can override existing ones if the

guard overlaps. A possible encoding of Cancel as an fSMV feature is shown in Fig. 25. The CHANGE section

introduces a new non-deterministic transition when the system is in state Selected, either to Served,

as originally, or to Done when cancelled. In the merged model next(State) is changed so that state

Selected always enters that assignment, leaving the original transition to only Served unreachable. A

64

3.2. Modeling in Feature-oriented Design

FEATURE Cancel

REQUIRE

MODULE Main

VAR State : {Ready, Paid, Selected, Served, Done};

INTRODUCE

CTLSPEC EF !(State = Served)

CHANGE

MODULE Main

IF State = Selected THEN

IMPOSE next(State) := {Done,Served};

Figure 25: Feature Cancel of the vending machine in fSMV.

new specification only relevant for products where Cancel is selected – checking if there are paths where

the drink is never served – is also added in the INTRODUCE section.

As another example, feature MultiSelection in fSMV is depicted in Fig. 26. This feature introduces a new

variable cnt – counting the number of selected items – as well as assignments for its initial state and

transitions. In this case, the increment of cnt occurs in a transition from Selected to itself when the

user requests an additional item, is reset when leaving state Served, and is left unchanged otherwise.

The transition of State when in Selected is also updated accordingly, allowing the non-deterministic

transition either to Served or back to Selected.

The main advantage of fSMV – as other composition-based approaches – is that features are developed

independently, promoting the separation of concerns, modularity and maintainability. Unfortunately, such

approaches also have some drawbacks. Some are related to the granularity and nature of the refinement

operations usually provided by such approaches. In fSMV, for instance, existing expressions in assignments

cannot be updated (e.g., by adding a new possible state as in our example), meaning that the user must

always fully specify the update for the intended guard. Another limitation is that the provided operations

are mostly incremental, so that existing sections (such as variable declarations) cannot be removed.

Another issue is related to the feature interaction problem, which arises when features interfere with

each other in ways that are not easy to predict. In particular, transitions affected by several features are

hard to model in fSMV’s composition-based design. In fact, this is patent in our example: both Cancel and

MultiSelection changes introduce a new assignment when State is in Selected, so in products with

both features selected, depending on the order of composition, it will either end with the non-deterministic

choice between Served and Selected or Served and Done, although the expected behaviour would be

the choice between those 3 states. In composition-based approaches with the level of granularity of fSMV,

65

3.2. Modeling in Feature-oriented Design

FEATURE MultiSelection

REQUIRE

MODULE Main

VAR State : {Ready, Paid, Selected, Served, Done};

INTRODUCE

VAR cnt : [0..5]

ASSIGN

init(cnt) := 1;

next(cnt) :=

case

State = Selected & next(State) = Selected & cnt<5 : cnt+1;

State = Served : 1;

true : cnt;

esac;

CHANGE

MODULE Main

IF State = Selected THEN

IMPOSE next(State) := {Selected,Served};

Figure 26: Feature MultiSelection of the vending machine in fSMV.

this problem must be addressed through the creation of a new derivative feature that must be additionally

merged when both other features are selected. This is depicted in Fig. 27, fixing the State transition.

This approach will undermine the reusability characteristic of composition-based approaches and as the

number of feature interactions grows, it may become unmanageable.

FeatureAlloy

FeatureAlloy is a feature extension of the lightweight modelling language Alloy proposed by Apel et al.

(2010). Like fSMV, FeatureAlloy is a composition-based approach that takes advantage of the distinguishing

characteristics of feature-oriented software development and establishes a clear mapping between features

and their design. It separates the features of a complex system, making them explicit in the design phase.

The elements that are to be introduced or changed by a feature (signatures, predicates, functions, or

assertions) are encapsulated and modeled separately from the base system. These features combine with

the base model or other features by means of a tool, called FeatureHouse, in order to produce a final

model in plain Alloy. Assertions can then be checked using the standard Alloy Analyzer. The composition is

achieved by recursively superimposing and merging the features selected by a user. FMs are not explicitly

considered during superimposition, and the authors argue that such assertions capture depedences that

would not have been present in FM regardless.

66

3.2. Modeling in Feature-oriented Design

FEATURE CancelMultiSelection

REQUIRE

MODULE Main

VAR State : {Ready, Paid, Selected, Served, Done};

cnt : [0..5];

CHANGE

MODULE Main

IF State = Selected THEN

IMPOSE next(State) := {Served,Done,Selected};

Figure 27: Derivative feature for Cancel and MultiSelection of the vending machine in fSMV.

module ecommerce

sig Product {

catalog : some Catalog,

images : set Image

}

sig Image {}

sig Catalog {}

Figure 28: Base model of the e-commerce catalog in FeatureAlloy.

FeatureAlloy combines new features by means of refinement. Elements in the refining module are

added to the base module or overwrite the existing elements. Specifically, signatures are refined by adding

new fields (or overriding existing ones) while paragraphs (except assertions) are refined by overriding. All

matches are determined by the elements’ names. Assertions are not allowed to be replaced by subsequent

features since the authors advocate their use to detect semantic dependences and feature interactions. We

will explain in detail FeatureAlloy by encoding some features of the e-commerce catalog running example.

The base model, shown in Fig. 28, organizes the system in catalogs, images, and products assigned to

some catalogs and with possibly images associated.

Figure 29 depicts a module that refines the base model by introducing feature Thumbnails. Signature

Catalog has a new field thumbnails which will be added to the Catalog signature from the base

model. Fact Thumbnails did not exist in the base model, and is simply added as a new fact in the

superimposed model.

Figure 30 shows instead the module for feature Categories, where catalogs are now comprised by

categories rather than individual products. A new signature Category is introduced, as well as a new

field category associating each product with some category. However, in this feature products are

67

3.2. Modeling in Feature-oriented Design

refines module ecommerce

sig Catalog {

thumbnails : set Image

}

fact Thumbnails {

all c:Catalog | c � thumbnails in (catalog � c) � images
}

Figure 29: Feature Thumbnails of the e-commerce catalog in FeatureAlloy.

refines module ecommerce

sig Product {

catalog : set Catalog,

category : some Category

}

fact NoCatalogs {

no catalog

}

sig Category {

inside : one Catalog

}

Figure 30: Feature Categories of the e-commerce catalog in FeatureAlloy.

no longer associated directly to catalogs, which would ideally result in the removal of field catalog of

Product. This is however impossible in FeatureAlloy, where refinements do not allow the removal of

fields. A workaround is to override the existing field with another with a looser multiplicity set, and then

add an extra fact NoCatalogs saying that there is no catalog in the model. Note however, that this

does not actually remove the field from the model but only forces it to be empty. In fact, although this is

not the case in our example, the user would have to override every element of the base model where field

catalog was called, as they would still be considered with a permanently empty catalog.

As already pointed out when presenting fSMV, feature interaction in composition-based approaches

often requires additional derivative features to solve conflicts. The two features we just presented in fact

interfere with each other: fact Thumbnails retrieves thumbnails from all products associated with a

catalog, which is no longer valid when categories are considered, since images must be indirectly retrieved

through categories. Figure 31 denotes such a derivative feature, that should be considered when both

Thumbnails and Categories are selected, overriding the original Thumbnails fact with one considering

categories.

68

3.2. Modeling in Feature-oriented Design

refines module ecommerce

fact Thumbnails {

all c:Catalog | c � thumbnails in (category � inside � c) � images
}

Figure 31: Derivative feature for Categories and Thumbnails of the e-commerce catalog in FeatureAlloy.

Likewise fSMV, the cons and pros of FeatureAlloy are those typically shared by composition-based

approaches. Features can be developed in a modular and step-wise fashion. However, the final model

is obtained by recursively applying refinement for the models selected by a user, so if features interact

the result depends on the order of feature selection. As shown, refinements are incremental and code

deletion is not supported. The workaround we implemented pollutes the code and is not manageable

in more complex features. Moreover, solving feature interactions usually requires developing additional

features to be merged after the interacting ones.

Δ-modelling

The Unified Modelling Language (UML) is a large and popular modeling language in software development

for specifying, constructing, visualizing, and documenting products. However, the standard UML does

not support the modelling of variability in system families because it was proposed to model a single

system. Although we can use mechanisms such as specification and redefinition to model variability, it is

not sufficient for the systems with large variability. Therefore, researchers have drawn their attention to

feature-oriented extensions to UML both using compositional and annotative techniques. Here we present

one such composition-based approach proposed for model-driven development, which can be applied to

UML models.

Δ-modelling (Schaefer, 2010) is an approach proposed for step-wise refinement of models with variability.

At each level of abstraction there is a core model and a set of Δ-models. Each Δ-model specifies a set

of changes to the core model (additions, modifications, and removals of elements and relations) and is

associated with a logic constraint to determine for which feature configurations this fragment is to be

applied. In order to obtain a specific product configuration, the changes specified by the Δ-models are

applied to the core model. Feature interactions may cause conflicts, for instance if the same element is

removed and modified by different Δ-models occurring in the same feature configuration. Although we are

not addressing this scenario, the authors show that when considering multiple abstraction layers, refining

69

3.2. Modeling in Feature-oriented Design

Figure 32: Core class diagram for e-commerce.

Figure 33: Class diagram Δ-Model for Categories. Figure 34: Class diagram Δ-Model for Multiple.

the core model and Δ-models and then configuring a product, commutes with first configuring a product

and then refining it.

As an example, we present a possible specification of the class diagram of the e-commerce catalog

example, along with a few features. This amounts essentially to the signature and field declarations of the

Alloy model, since the approach does not consider additional constraints, e.g. in OCL. Figure 32 shows

the core class diagram of the base system, declaring products, catalogs and images, as well as their

associations. Two Δ-models are then presented in the graphical style proposed in (Schaefer, 2010), one for

feature Categories in Fig. 33 and another for feature Multiple in Fig. 34. The logic conditions on the top-right

corner of the diagram determine the application condition of the Δ-model. The Δ-model for Category

adds the Category class (denoted by the + annotation) and modifies Product and Catalog (∗

annotation) by removing the catalog association (− annotation) and adding the category one. The

Δ-model for Multiple modifies the association between products and categories, allowing many-to-many

relationships.

The level of granularity of approaches for conceptual models is often finer than those for models with

additional constraints, such as fSMV or FeatureAlloy. For instance, recall that we were not able to remove

the field catalog in FeatureAlloy, while Δ-models may remove arbitrary elements. Another difference

from those approaches is the relaxation of the one-to-one mapping between models and features, which

in Δ-modelling is determined by feature presence conditions, which enables, for instance, the solving of

feature interactions without explicitly creating a derivative feature.

70

3.2. Modeling in Feature-oriented Design

3.2.3 Annotation-based Languages

Annotative approaches directly mark parts of the code with constraints over the features, for example,

feature expressions. This is more practical than the composition-based approach for coding. For instance,

#ifdef and #endif statements of C/C++ style preprocessors are traditionally used to encode variability

in an ad hoc manner. These directives are used to control the inclusion of the code that belongs to the

selected features or the exclusion of the code from the deselected ones. However, such annotation style

obfuscates the code and makes it hard to understand and maintain.

Likewise composition-based approaches, many annotation-based approaches extend existing languages,

in this case with feature annotations. fPromela (Cordy et al., 2013) extends Promela by introducing

a feature variable over which transitions can be guarded; FMs, provided in TVL, are also integrated in

subsequent analysis. Cordy et al. (2012) proposed feature timed automata – timed automata annotated

with feature constraints – accompanied by an input language that extends HyTEC; FMs are also provided

in TVL. Besides the composition-based extension already mentioned, Sabouri and Khosravi (2013) also

proposed an annotative extension for the actor-based Rebeca language, where entities are annotated

with application conditions. CL4SPL (Gnesi and Petrocchi, 2012) and FLan (ter Beek et al., 2013) are

annotation-based approaches proposed in the context of process algebras and implemented in Maude.

There is considerable work on supporting variability modelling in conceptual modelling, namely focusing

on UML-like models (see, for instance, (Jézéquel, 2012; Reinhartz-Berger and Sturm, 2014)). Approaches

mostly propose lightweight extensions to UML using profiles – sets of stereotypes, tags and constraints

– rather than actually extending the UML meta-model. A stereotype extends the vocabulary of a profile,

defining how existing UML metaclasses can be extended. Tags are the specific properties defined for each

stereotype, which are assigned values for stereotyped elements. An advantage of the use of standard

extension mechanisms is the usage of the UML meta-model and its corresponding tools without any

adaptation. Several of these approaches, however, do not view features as first-class artefacts, rather just

annotating certain elements as variable and enforcing restrictions on their selection. For instance, Gomaa

(2000) proposed a method to use predefined UML stereotypes to model variability in class diagrams. The

«Kernel» and «Optional» stereotypes are used to represent commonality and variability in system

families. Features are interpreted as optional elements that always appear together.

Nonetheless, there are still several approaches that explicitly consider FMs in the process. Fea-

tuRSEB (Griss et al., 1998) includes a method to implement FD notation. Each feature node is imple-

mented as a class with a stereotype «feature» and a feature name. An optional attribute is used to

71

3.2. Modeling in Feature-oriented Design

indicate the kind of features, rationale, and notes. Use case diagrams are then merged into a single

model with variation points denoting alternatives and «trace» abstractions used to map back to the

FM. Clauß (2001) proposed to use the «variationPoint» and «variant» stereotypes in classes,

components, packages, collaborations, and association elements. The «variationPoint» is used

to describe the UML elements containing the variability and the «variant» specifies the alternatives

to bind those variation points. The dependencies between variants are described by the «mutex» or

«require» stereotypes. The FM follows the approach from (Griss et al., 1998), and variation points

are connected to features using the «trace» abstraction. In (Robak et al., 2002) variable features in

component and activity diagrams are specified by a new stereotype «variable» and with a tagged

value named feature that maps back to a feature in the FM. In addition, variables can be annotated

with further information to support choosing variants. Czarnecki and Antkiewicz (2005) propose fmp2rsm,

connecting FMs specified in FeaturePlugin (Antkiewicz and Czarnecki, 2004) with UML models. Here,

elements from class diagrams and activity diagrams can be annotated stereotypes representing presence

conditions (propositional formulas over features) or meta-expressions (to compute feature-dependant

values). In SMarty (Junior et al., 2010), besides «variationPoint» and «variant» stereotypes

(the latter specialized into variants with additional restrictions imposed), a «variability» stereotype

for comments is also introduced, which contains information regarding a feature. Use case, class and

component diagrams are annotated with variability annotations, and the traceability between variation

points and features registered. In COVAMOF (Sun et al., 2010) class, activity, sequence, and deployment

diagrams are also annotated with «variationPoint» and «variant» stereotypes, and a Variation

point Interaction Diagram (an extended UML class diagram) relates variation elements with features, here

provided in an FM encoded in XVL. Devroey et al. (2012) propose SDVA, UML-like state diagrams annotated

with feature constraints.

In the remainder of this section we present in more detail two annotation-based approaches that we

feel are most relevant to the work developed in this thesis, namely fPromela for dynamic modelling and

fmp2rsm for conceptual modelling.

fPromela

The fPromela language (Cordy et al., 2013) is a feature-oriented extension of Promela (Holzmann, 2003),

a well-known formal modeling language used by the model checker SPIN. The syntax of fPromela is almost

the same as Promela specification language. The key elements in fPromela are processes that describe

behaviours of single units in the design. Such processes are specified with the proctype keyword. A

72

3.2. Modeling in Feature-oriented Design

process is either declared active from the start or activated by another process. If several processes are

active, their executions are interleaved, and communication performed through shared variables or explicit

channels. Like Promela, fPromela supports five basic data types declared with keywords int, short, bit,

byte, and bool. A collection of variables can also be declared using an array. The keyword mtype allows

the introduction of symbolic values, that is, enumerated types. Control flow can be introduced, for instance,

by do loops (which are only interrupted by break statements) or if statements. Their bodies contain

several options, declared by a double colon (::). During execution, an option is non-deterministically

chosen from those evaluating to true.

fPromela extends Promela by allowing the user explicitly declare features and then introduce guards

over them to control the behaviour of processes. All features must be declared with a new special type

features, which generally contains a Boolean field for each possible feature (although multi-features

and numeric features are also supported). A feature variable is then declared with this type, which can be

called in feature expressions. These expressions are used to guard statements using gd blocks. Feature

expressions may only use feature variables or the else keyword, and this is the only place where features

may occur. A product can execute a statement if and only if it satisfies the expression that guards it. FMs

in TVL are provided to the analysis tool, SNIP, restricting which values can be assigned to the feature

variables. Analysis itself is performed by FTS model checking (see Section 3.3) or by projecting and model

checking each product individually. Assertions to be checked are written in feature LTL (see Section 3.3).

As an example, consider the specification of the vending machine example in fPromela in Fig. 35. Three

features are declared in the features type, Cancel, Free and MultiSelection. A feature variable f is

declared with this type. The valid states of the state machine are declared as an mtype. The behaviour

of the state machine is then encoded in the process vending, which starts by initializing the variables

and then entering a do loop. Each option of the loop tests the current State and assigns it a succeeding

value. When these transitions depend on the selected features, guarded conditions are introduced in gd

blocks depending on the value of feature variable f. Recall that if more than one of the options is true, e.g.,

when state is Selected, the choice will be non-deterministic. Since only transitions may be annotated

with feature expressions, other elements, such as variable cnt for MultiSelection, must exist in every

configuration. Assertions are not integrated in the model but rather passed as parameters of the model

checking tool. For our example, we could check whether every time the machine is in the selected state it

will eventually reach the ready state as follows.

$./snip -check -fm fm.tvl -filter 'Cancel' \

-ltl '[] (State == Selected -> <> State == Ready)' -vending.pml

73

3.2. Modeling in Feature-oriented Design

typedef features {

bool Free;

bool Cancel;

bool MultiSelection;

};

features f;

mtype = {Ready, Paid, Selected, Served, Done}

active proctype vending() {

int cnt = 1;

mtype State = Ready;

do :: State == Ready;

gd :: f.Free;

State = Selected;

:: !f.Free;

State = Paid;

dg;

:: State == Paid;

State = Selected;

:: State == Selected;

gd :: f.Cancel && f.Free:

State = Ready;

:: f.Cancel & !f.Free;

State = Done;

:: f.MultiSelection;

State = Selected;

cnt = cnt+1;

:: State = Served;

dg;

:: State == Served;

gd :: f.Free;

State = Ready;

:: !f.Free;

State = Done;

dg;

gd :: f.MultiSelection;

cnt = 1;

dg;

:: State == Done;

State = Ready;

od;

}

Figure 35: Vending machine in fPromela with Free, Cancel and MultiSelection features.

In this example the trade-off between annotation- and composition-based approaches becomes clear.

On the one hand, since the user directly specifies the superimposed model, it is easier to control the

interactions between the features. For instance, the interaction between Free and Cancel is solved by

introducing a guard f.Cancel && f.Free. On the other hand, there is no separation of concerns nor

modular development, which may hinder the development process. Another issue is maintainability: as

74

3.2. Modeling in Feature-oriented Design

Figure 36: Annotated class diagram for the e-commerce catalog.

the number of features grow, the superimposed model may become cluttered with annotations, making it

difficult to identify the effect of each feature.

fmp2rsm

One of the annotation-based approaches for model-based development that better fits our purpose is the

one proposed by Czarnecki and Antkiewicz (2005), focusing on class and activity diagrams. A model family

is comprised by an FM and annotated models – dubbed model templates in this approach. Annotations

are either presence conditions (typically formulas over features) attached to model elements, or meta-

expressions used to calculate attribute values. Some implicit presence conditions are inferred from the

relationships between the elements (e.g., an association can only exist if the classifiers at its ends are also

present, so their presence conditions are implicitly added to the association). The technique is realized in

fmp2rsm, an Eclipse plug-in for feature-oriented modelling using UML. Annotations are realized as UML

stereotypes and model templates colored according to their presence condition. Feature modelling is

performed graphically and integrated in the plug-in.

As an example, consider the class diagram for the e-commerce catalog example, depicted in Fig. 36 in

an abstract representation similar to that of (Czarnecki and Antkiewicz, 2005). The class diagram presents

the superimposition of all possible elements, annotated with presence conditions. Elements in black are

those present in every product, and in color we have elements that are associated with (different) conditions.

Note that conditions may test the presence or absence of features, which may affect the readability of the

diagram. For instance, the base model is not actually represented by the black elements, since association

catalog of products, with presence condition Categories, is also present there.

As another example, consider the activity diagram for the vending machine example, depicted in Fig. 37.

In this case, every state is present in every product, with only the transitions being affected by presence

conditions. Again, this annotation-based approach allows a finer control over feature interactions, with the

caveat of reduced readability as different presence conditions are created (recall that each color denotes

75

3.3. Analysis in Feature-oriented Design

Figure 37: Annotated activity diagram for the vending machine.

a distinct presence condition and not a distinct feature). Notice that, again, approaches for conceptual

modelling provide a finer level of granularity than those for richer languages.

3.3 Analysis in Feature-or iented Design

Most of the languages presented in the previous section support analysis via a naïve enumerative or product-

based technique, that analyses each product separately. In this technique, a specification of a single

product is first projected, and since it is specified in a standard general-purpose specification language, it

can be analyzed with the tools available for the respective language. For example, in FeatureAlloy the final

model obtained after composing features is written in plain Alloy and can be analyzed with the standard

Alloy Analyzer. The main drawback of this approach is that it can be unfeasible for systems with many

features, as the number of products grows exponentially with the number of features.

However, some research has been done on developing so-called family-based or amalgamated analysis

techniques that check some property on all the product family at once, returning the violating products

if the property does not hold for the all family. The key example of this approach is the model-checking

technique initially developed for fSMV and fPromela, based on the so-called feature transition systems,

which we will detail next. Other amalgamated approaches include those based on process algebras (Gnesi

and Petrocchi, 2012; ter Beek et al., 2013), which expand input models into a transition system analyzable

by Maude.

76

3.3. Analysis in Feature-oriented Design

F e a t u r e T r a n s i t i o n S y s t em s FTSs, first introduced by Classen et al. (2010), are a well known

low level formalism for modeling the behavior of SPLs. Essentially, FTSs extend classical labeled transition

systems with feature annotations on transitions. Here we will present the definition of FTSs introduced

in (Classen et al., 2011b), that generalized the initial definition by allowing transitions to be annotated with

feature expressions (Boolean functions over features), rather than just single features.

Definition 3.3.1. An FTS is a tuple (𝑆, 𝐴𝑐𝑡, 𝑡𝑟𝑎𝑛𝑠, 𝐼, 𝐴𝑃, 𝐿, 𝑑, 𝛾), where

• 𝑆 is a set of states,

• Act is a set of actions,

• trans ⊆ 𝑆 × Act × 𝑆 is a set of transitions,

• 𝐼 ⊆ 𝑆 is a set of initial states,

• AP is a set of atomic propositions,

• 𝐿 ∶ 𝑆 → 2AP is a labeling function,

• 𝑑 is a feature model with features drawn from a set 𝑁,

• 𝛾 ∶ trans → ({0, 1}|𝑁| → {0, 1}) is a total function that labels transitions with feature expressions.

The concrete notation used to describe FMs is abstracted in this definition: if 𝑑 is a feature diagram

its semantics J𝑑KFD ⊆ 𝑃(𝑁) captures the set of products in the SPL. Feature expressions are Boolean

functions over the set of features 𝑁 and allow greater expressiveness than a single feature. For example,

transitions that are only included when feature 𝑎 is present but not feature 𝑏 can be labeled with expression

𝑎 ∧ ¬𝑏. In order to obtain the behavior of a particular product, one needs to remove all transitions whose

feature expression is not valid in that product. This process is called projection. The projection of an FTS

fts to a product 𝑝 is denoted by fts|𝑝. All feature expressions are removed when projecting and fts|𝑝 is thus

a normal transition system, whose semantics – the set of all valid paths – is denoted by Jfts|𝑝KTS. The

semantics of an FTS describes the behavior of a system with several products: the semantics of an FTS is

the union of the behaviours of all the projections on all valid products.

Definition 3.3.2. The semantics of an FTS fts, denoted as JftsKFTS, is defined as follows.

JftsKFTS = ⋃
𝑝∈J𝑑KFD

Jfts|𝑝KTS

77

3.3. Analysis in Feature-oriented Design

Figure 38: FTS of a vending machine.

Figure 38 presents an example of an FTS of a vending machine with two optional features: free drinks

and cancel selection, abbreviated by 𝑓 and 𝑐, respectively. A transition action and the respective feature

expression are separated by a slash operator. Notice how feature expressions are used to control which

actions are available at each state, and the result of a particular action. For example, in the initial state

Ready if feature 𝑓 is not present only Pay is possible, otherwise Select is immediately available. In state

Selected, when feature 𝑐 is present action Cancel, that cancels a selection, has a different outcome

depending on feature 𝑓 also being present or not – if products are free it causes a transition back to the

initial state, otherwise if transitions to state Done where change still has to be returned to the client.

S p e c i f y i n g P r o p e r t i e s w i t h f L T L a n d f C T L The semantics of an FTS fts is a set of paths,

being each path 𝜋 ∈ JftsKFTS an infinite sequence of states. Features are not present in paths, so standard

temporal logics such as the Linear Temporal Logic (LTL) or the Computation Tree Logic (CTL) could be

used to specify properties over FTSs. However, in (Classen et al., 2013) an extension of LTL has been

proposed, denoted feature LTL (fLTL), that allows properties to be parameterized with a feature expression

that captures the products for which they should hold. This parameter limits the range of products over

which properties should be checked.

Definition 3.3.3. An fLTL property 𝜑 is an expression 𝜑 ∶= [𝜒]𝜙 where 𝜒 is a feature expression and

𝜙 is an LTL formula, i.e.,

𝜙 ∶∶= ⊤ ∣ 𝑎 ∈ AP ∣ 𝜙1 ∧ 𝜙2 ∣ ¬𝜙 ∣ X 𝜙 ∣ 𝜙1 U 𝜙2

with the usual derived operators, for example, F 𝜙 ≡ ⊤ U 𝜙 or G 𝜙 ≡ ¬F ¬𝜙.

78

3.3. Analysis in Feature-oriented Design

An FTS fts satisfies 𝜑, denoted fts ⊧ 𝜑, iff all projections to valid products satisfy 𝜙, that is ∀𝑝 ∈

J𝑑KFD ∩ J𝜒K ⋅ fts|𝑝 ⊧ 𝜙. For example, in our example FTS of the vending machine, the fLTL formula

[⊤] G (Selected → F Ready), specifies that, in all products, every time a product is selected the machine

will eventually be ready again. To specify that, in all products without feature 𝑓, every time the product

is paid it will eventually be served, we would use formula [¬𝑓] G (Paid → F Served). Notice that this

formula is not true, namely in products where feature 𝑐 is present, because a selected product can be

canceled and will not be served.

Similarly, feature CTL (fCTL) (Classen et al., 2014) extends CTL with feature expressions.

Definition 3.3.4. An fCTL property 𝜑 is an expression 𝜑 ∶= [𝜒]𝜙 ∣ 𝜑1 ∧ 𝜑2 where 𝜒 is a feature

expression, 𝜑1 and 𝜑2 are fCTL formulae, and 𝜙 is a CTL property, i.e.,

𝜙 ∶∶= ⊤ ∣ 𝑎 ∈ AP ∣ 𝜙1 ∧ 𝜙2 ∣ ¬𝜙 ∣ EX 𝜙 ∣ 𝜙1 EU 𝜙2 ∣ EG 𝜙

again with the usual derived operators.

Note that fCTL allows different top-level CTL formulas to be annotated with different feature expressions.

When fCTL was initially introduced in (Classen et al., 2011b), feature expressions were allowed in all

temporal operators, but that nesting of product quantification was later abandoned in (Classen et al., 2014)

as it was seldom used in practice. The semantics of fCTL is defined similarly to that of fLTL by projecting

on all valid products. As an example of an fCTL formula consider [𝑐] EG¬Served that states that in every

product with feature 𝑐 it is possible to never be served.

M o d e l C h e c k i n g f L T L a n d f C T L Model checking (Baier and Katoen, 2008) is a well-known

automatic technique for verifying that a given temporal logic formula 𝜙 holds in a transition system ts

that models the behaviour of a system, that is, to check that ts ⊧ 𝜙. The model checking of SPLs differs

from the classical model checking algorithms since it must consider all the behaviors of all variants of the

family. In fact, given a set of 𝑁 features it may have to consider up to 2|𝑁| variants. An SPL model checker

to verify that an FTS fts satisfies formula 𝜑, that is, to check if fts ⊧ 𝜑, should return true only when all

the product instances satisfy the desired property. If that is not the case, a counterexample (𝜋, ps) is

returned, with a path 𝜋 and a list of violating products ps ⊆ J𝑑KFD where that path is possible. In (Classen

et al., 2010) an alternative model checking problem particularly relevant to SPLs is also defined, where the

goal is to return a set of counter-example pairs such that every product where the property is violated is

contained in at least one of the counter-examples.

79

3.3. Analysis in Feature-oriented Design

As mentioned above, a simple and commonly used approach to SPL model checking is the enumerative

method that verifies each variant individually. In this case, all products are projected to obtain normal

transition systems and enable the application of standard model checking algorithms. This method does

not take advantage of the commonality between different variants and is in principle highly inefficient due

to the potential exponential number of variants. Consider, for example, the fLTL property [¬𝑓] G (Paid →

F Served). To apply the enumerative approach to model check this formula one would first project the FTS

to all products that satisfy feature expression ¬𝑓, and then apply a standard LTL model checking algorithm

to verify if formula G (Paid → F Served) is true in all the obtained transition systems. In this case we

have two variants that satisfy the feature expression, namely the products without or with the possibility of

cancelling a selection. The respective projected transition systems are presented in Figs. 39a and 39b,

respectively. In this case the formula does not hold in the second transition system, being the violating

product {𝑐} with a counter-example path that cycles indefinitely through states Ready, Paid, Selected,

and Done.

(a) (b)

Figure 39: Projected transition systems for the vending machine.

In (Classen et al., 2010, 2012) a semi-symbolic model checking algorithm was introduced to perform

amalgamated analysis of FTSs (for both the simple model checking problem and the extended one that

returns counter-examples for all violating products). The algorithm relied on a generalization of the explicit-

state Depth-First Search used in model-checking normal transition systems, but where visited states are

marked with feature expressions instead of Boolean flags. This algorithm was implemented in the model

checking tool SNIP to verify fPromela models. This algorithm was shown to speed up considerably the

model checking of properties when compared with the enumerative approach. For example, for an FTS

with 9 features and 64 products it achieved average speedups of 3.5 Classen et al. (2010).

Unfortunately, like all explicit-state model checking algorithms, this technique is prone to the state

explosion problem. To mitigate this problem, an amalgamated symbolic model checking algorithm was

later proposed for fCTL (Classen et al., 2011b, 2014), and used to verify fSMV specifications. Essentially,

this algorithm reduces SPL model checking to classic model checking and enables the usage of the standard

symbolic model checker NuSMV. The idea is to enrich the state definition with Boolean variables to encode

80

3.4. Supporting Clone-and-own

all the possible features, a technique denoted as feature lifting. The value of these feature variables is kept

constant in all transitions, and the feature expressions associated with transitions in the FTS become guards

defined over them. If a counter-example is obtained, the initial state of the feature variables is inspected

to obtain a violating product. For our example, the verification of fCTL property [𝑐] EG ¬Served could

be done by model checking the amalgamated SMV model of Fig. 40. This symbolic SPL model checking

technique can achieve order-of-magnitude speedups over the enumerative approach: in an fSMV model of

an elevator system with 9 independent features (that is, 29 variants) the verification of some properties

has only marginally faster then the enumerative approach, but for other properties it achieved speedups

greater than 250 and up to 1000 (Classen et al., 2011b). As expected, the higher speedups occurred in

true properties, for which all the variants had to be checked. However, the enumerative approach was

competitive in some false properties, most likely in cases where most products yield a counter-example.

MODULE main

VAR

f : boolean;

c : boolean;

State : Ready, Paid, Selected, Served, Done;

ASSIGN

init(State) := false;

next(State) := case State = Ready & !f: Paid;

State = Ready & f : Selected;

State = Paid : Selected;

State = Selected & c & f : {Ready,Served};

State = Selected & c & !f : {Done,Served};

State = Selected & !c : Served;

State = Served & !f : Done;

State = Served & f : Ready;

State = Done : Ready;

esac;

CTLSPEC c -> EF !(State = Served)

Figure 40: SMV model for the amalgamated verification of the vending machine example.

3.4 Support ing Clone-and-own

A code clone is a piece of code fragment that occurs in multiple locations with the same or similar form.

Usually, a clone appears when a developer copies a piece of code from one location to another and

afterwards customizes the copy to address new requirements. This phenomenon, which is called clone-

and-own occurs commonly in the software development process. Clones can be classified into 4 types

according to their similarity, namely Type-1 to Type-4 clones (Bellon et al., 2007). The Type-1 clones are

81

3.4. Supporting Clone-and-own

exact copies of each other. Everything is exactly the same in the two clones. The Type-2 clones subsume all

Type-1 clones, but also allow slight modification, such as variable renaming. The Type-3 clones subsume

all Type-2 clones but include bigger changes, such as adding or removing statements, to implement

some product-specific requirements. The Type-4 clones, also called functional clones, implement similar

functionality but have few or no code similarity. The clone-and-own technique is well-supported by version-

control systems, such as Git, via operations like forking, merging, and pull requests. Since clone-and-own

offers a simple, intuitive, and time and cost-saving technique to develop new software variants, it is well

accepted by industry as a way to develop SPLs (Dubinsky et al., 2013).

However, clone-and-own leads to ad hoc product portfolios with multiple, yet similar, variants, with no

explicit connections, which brings significant increase in the cost and effort of maintenance. In particular,

changes such as bug fixes must be carefully synchronized in all variants. Unfortunately, reuse tracking in

clone-and-own is typically embodied in the personal knowledge of the developer (Dubinsky et al., 2013),

which further difficults change propagation between clones.

In feature-oriented software design, the clone-and-own approach is also a simple way to create a new

variant of a model in an SPL, and to explore the impact of different features while exploring the design of a

software system. The basic idea is again to derive a new variant of a design by copying from an existing

one and then adapting to accommodate the new requirements. Likewise to code, anecdotal evidence

seems to indicate that clone-and-own is also common when developing software models (Störrle, 2013).

In particular, in Alloy this is a common approach, for example, in several of the case-studies that come

pre-packaged in the Analyzer there are multiple variants that share a great percentage of code. Some of

these case-studies will be used in the Chapter 6 to evaluate the proposed clone migration technique.

3.4.1 Migrating Clones into an SPL

Maintenance of SPLs developed with clone-and-own is a big challenge. As the number of clones grows

and differences between their implementations increases, it becomes harder to perform many of the tasks

needed in SPL engineering, for example, keeping track of changes made to each variant and of which

features are shared between specific clones, reconcile changes, or derive new variants. A good way to

solve this maintainability problem is to migrate (by merging) all variants into a single SPL model, where

the common parts of the variants are factored out and implemented only once. This is also known as an

extractive approach to SPL engineering. With this single model, changes of the systems only need to be

82

3.4. Supporting Clone-and-own

implemented once, which provides significant benefits for management and synchronization, with minimal

workload in the subsequent maintenance and evolution of the design.

Many techniques have been proposed to migrate product variants into managed SPLs, as detailed in

the survey conducted by Assunção et al. (2017). Most of these techniques work at the code level, and

only a few have been proposed specifically for design models (although many techniques developed for

object-oriented programs could in principle be adapted for models such as UML class diagrams). In this

section we review a couple of techniques that have been specifically developed or applied to design models.

Rubin et al. (2015) proposed a high-level approach based on seven conceptual operators that can

be composed to implement several complex development activities related to SPL engineering, namely

migrating clones into an SPL, in this work denoted as merge-refactoring. These operators can be applied

to all possible artifacts such as requirements documents, design models, source code, and so on, and the

authors illustrate the technique by applying it to transition systems, merge-refactored to a single model

akin to an FTS. The seven proposed operators are:

findFeatures that identifies a set of features in a given variant;

findFeatureImplementation that locates the implementation artifacts of a given feature in a variant,

thus establishing a trace between features and their artifacts;

dependsOn? that checks if one feature requires another in a given variant;

same? that determines whether the functionality described by one feature in one variant is consistent

with the functionality described by another feature in a possibly different variant;

interact? that checks whether the combining functionalities described by a set of features would alter the

behavior of one or more of those functionalities;

merge that combines several input variants into a single system; this operator has two parameters:

matches, that specifies which artifacts are considered similar and should be combined in the

resulting system, and resolution that indicates how to resolve disagreements and interactions

between the input features (for example, keep both implementations as separate functionalities or

override one feature implementation by the other);

reorganize that improves the structure of a system (either a single variant or a combined SPL after merge)

by refactoring, without modifying its behaviour.

83

3.4. Supporting Clone-and-own

sig Product {

catalog : some Catalog,

images : set Image

}

sig Image {}

sig Catalog {

thumbnails : set Image

}

fact Thumbnails {

all c:Catalog | c � thumbnails in (catalog � c) � image
}

pred Scenario {

some Product � images
}

run Scenario for 2

Figure 41: Clone Alloy model of an e-commerce platform with thumbnails.

These operators can be implemented and composed in many ways to achieve different SPL engineering

tasks. The implementation of the operators is left open and is highly dependent on the kind of targeted

artifacts and systems. Next we will illustrate this technique using an Alloy implementation of the e-commerce

example, possibly obtained by clone-and-own, with the goal of merging it into a single ad hoc SPL Alloy

model. One of the clones will be the base model of e-commerce presented in Fig. 28. Suppose this

model was cloned and adapted to implement a variant that also supports thumbnails, originating the clone

presented in Fig. 41.

As proposed in (Rubin et al., 2015), to migrate these clones into a single model, we can start

by identifying the features and the respective implementation in each variant with findFeatures and

findFeatureImplementation. In our case we could, for example, assume that each signature corre-

sponds to a possible feature, with the respective declaration as implementation artifact. Then, for each

pair of features in a variant, dependsOn? should be used to identify require relationships. In our example,

we could assume that one feature requires another if the fields declared in the former signature mention

the latter. Then for each pair of features in different variants operator same? should be used to identify if

two features are similar, for example, we could consider they are similar only if the respective signature

declaration is literally identical. Then, possible interactions are detected with interact?. To implement this

operator we could consider the existence of any additional facts, such as Thumbnails, to possibly cause

interactions between the implementation of two variants. The witnesses collected by these two operators

are then fed to the merge operator, namely the features identified by same? will be passed on to the

matches parameter, leaving only one implementation of the respective signature in the merged model,

and for those that disagree or interact the respective implementation could be kept separate, for example

84

3.4. Supporting Clone-and-own

abstract sig Feature {}

lone sig ProductImages, CatalogEcommerce, CatalogThumbnails extends

Feature {}

fact dependsOn {

some CatalogEcommerce implies some ProductImages

some CatalogThumbnails implies some ProductImages

}

sig Product {

catalog : some CatalogA+CatalogB,

images : set Image

}

sig Image {}

sig CatalogA {}

sig CatalogB {

thumbnails : set Image

}

fact Disagreements {

some CatalogEcommerce iff no CatalogThumbnails

no CatalogEcommerce implies no CatalogA

no CatalogThumbnails implies no CatalogB

}

fact Thumbnails {

some CatalogThumbnails implies

all c:CatalogB | c � thumbnails in (catalog � c) � image
}

pred Scenario {

some Product � images
}

run Scenario for 2

Figure 42: Possible result of merging clones with the approach proposed by (Rubin et al., 2015).

declaring additional signatures to distinguish the implementations in different variants, and making their

existence conditional to the presence of atoms identifying the respective features. Finally, the reorganize

operator could run an algorithm to detect atomic sets of features, to simplify the encoding of the FM. A

possible resulting Alloy model is presented in Fig. 42.

Rubin and Chechik (2012) proposed a step-wise merge-refactoring operation, denoted merge-in, that

can be used for migrating cloned models to an annotative SPL model. In this work, models are trees of

typed elements, each with an id and a role that defines the relationship with its parent. For example, in an

UML statechart, possible types for model elements are state, transition, or a reference to a state. As for

roles, for example, elements of the latter type can either be the source or target of the parent transition.

Each model element can further be annotated with the features where it is present.

Central to this technique is the operation of model merging, which is divided into three steps: compare,

match and compose. The compare operation is used to determine the similarity degree between pairs

of model elements. The similarity degree is a number between 0 and 1, with 1 representing identical

85

3.4. Supporting Clone-and-own

elements and 0 meaning the two elements have no similarity. The match operation detects pair of elements

that should be later considered similar in the merge step. The merge function puts the information in two

models together, keeping a single copy for for matched elements.

The compare operation between two model elements should take into consideration their types and roles

in the model, as well as a weighted sum of the similarity of their sub-elements. Elements with different

types or roles should always have similarity 0, and different weights can be chosen by the user for the

different roles. The implementation of the match operation is based on thresholds: for each type a different

threshold can be defined and pairs of elements whose comparison yields a value equal or higher than that

threshold are considered similar. The merge function returns a model that contains all elements of the

input models, with matched elements unified and appearing in the resulting model only once.

The merge-in operation merges a product model with an annotative SPL model. The idea is to iterate this

operation once per clone product, starting with an empty SPL model, and adding clones one by one until

the final merged SPL model is obtained. As for the features of the SPL, different products are considered as

distinct features. Hence, the merge-in operation will just add a new alternative feature to all existing features

already in its FM. Then, the input product model is merged with the existing SPL model, and its elements

are annotated with the respective feature. The authors proved that this technique is a behavior-preserving

product line migration strategy and that only the original model clones can be projected from the merged

SPL.

However, by varying the compare and match parameters, as well as the order in which input models

are combined, the resulting SPL model can be quite different. Although all possible results are correct and

semantically equivalent, not all may be equally desirable. As such, Rubin and Chechik (2013) extended this

technique to allow the user to specify a desired quality metric for the outcome, which is then used as an

objective function to automatically explore different alternatives (until a specific desired quality is reached or

a maximum number of alternatives is explored, after which the best alternative is return). Possible quality

metrics are, for example, model size or the percentage of common elements in the resulting model.

The ModelVars2SPL technique (Assunção et al., 2020) was proposed for automatically extracting an FM

and an annotative SPL model, denoted Product Line Architecture (PLA), from existing UML class diagram

variants. The input of ModelVars2SPL is a set of variants, each of which consists of a UML class diagram

describing the structure of the variant and a feature set represent the configuration of features provided by

the variant. The extraction proceeds in four steps:

1. Identify feature traceability, i.e. which elements implement each feature. This is done by analyzing

the overlaps between the model elements and feature sets of different variants. This step outputs

86

3.4. Supporting Clone-and-own

the traceability links between model elements and features and a dependency graph that represents

the relationship between features.

2. Apply reverse engineering, using a multi-objective search-based technique, to obtain an FM that best

represents the feature sets and that respects the dependency graph obtained in the previous step.

3. Apply a search-based technique for model merging the various UML diagrams into a single model

that contains all possible model elements present in the variants.

4. Graft variability annotations in the merged class diagram obtained in the previous step in order to

produce a PLA. Variability annotation is done by adding a UML comment to each model element.

All these techniques focus only on structural elements of the design, for example classes or relationships,

and none addresses additional constraints, where variability can occur with finer granularity. When

illustrating the technique proposed by Rubin et al. (2015) with our running Alloy example, we considered

fact Thumbnails as a whole unit: it is not clear how to apply that technique (or the others) to merge, for

example, the two distinct versions of that fact that would exist in the clones implementing variants with and

without feature Categories (merging in a way that highlights the commonalities between them).

87

4

CO LO R F U L A L L O Y

In this chapter we propose an extension of the popular Alloy specification language and its Analyzer to

support feature-oriented software design. As we have seen in the previous chapter, most techniques for

feature-oriented software development fall into one of two categories: compositional approaches, that

implement features as distinct modules and use some sort of module composition technique to generate a

specific software variant; and annotative approaches, that implement features with explicit (or sometimes

implicit) annotations in the source code, that dictate which code fragments will be present in a specific

variant. The former are well suited to support coarse-grained extensions, for example adding a complete

new class to implement a particular feature, but not to support fine-grained extensions, for example adding

a sentence to a method or change the expression in a conditional, to affect the way a code fragment works

with different features (Kästner et al., 2008). Annotative approaches are much better suited for such

fine-grained variability points.

Unfortunately, as we have also seen, explicit support for feature-oriented design in formal methods,

providing a uniform formalism for feature, architectural, and behavioral modeling as advocated for SPL

engineering (Schaefer and Hähnle, 2011), is still scarce. Support for features in model checking has

been proposed, namely fSMV (Plath and Ryan, 2001) and fPromela (Classen et al., 2012). For structural

design, a compositional approach has been proposed to explicit support features in Alloy (Apel et al., 2010).

Typically, modeling and specifying in Alloy is done at high levels of abstraction, and adding a feature can

require only minimal and very precise changes (e.g., adding one new relation to the model or changing part

of the specification of a desired property). Compositional approaches such as the one proposed by Apel

et al. (2010) are not well suited for these fine-grained extensions. Our Alloy extension addresses precisely

this problem, proposing an annotative approach to add explicit support for features to Alloy and its Analyzer.

A classic annotative approach for source code is the use of #ifdef and #endif C/C++ compiler

preprocessor directives to delimit code fragments that implement a specific feature. Unfortunately, such

annotation style obfuscates the code and makes it hard to understand and maintain, leading to the well-

88

4.1. The Background Color Approach

known #ifdef hell (Feigenspan et al., 2013). To alleviate this problem, while retaining the advantages

of annotative approaches, Kästner et al. (2008) proposed to annotate code fragments associated with

different features with different background colors, which was later shown to clearly improve SPL code

comprehension and be favored by developers (Feigenspan et al., 2013). Given these results, we propose

to use such annotative technique to support features in Alloy. Our Colorful Alloy extension allows users to

annotate model and specification fragments with different background colors denoting different features1,

and run analysis commands to verify either a particular variant of the design, or several variants at once,

simplifying the detection of feature combinations that may fail to satisfy the desired specification. To the

best of our knowledge, this is the first annotative approach for feature support in a formal method geared

towards structural design.

The next section gives a detailed description of the color background approach, first proposed by Kästner

et al. (2008), and which inspired the development of Colorful Alloy. Section 4.2 formally presents the

syntax of the new language extension, and Section 4.3 presents an example of proactively designing an

SPL with Colorful Alloy. Section 4.4 presents its typing rules, and Section 4.5 its semantics. Finally,

Section 4.6 presents a technique to perform multi-variant analysis, inspired by the feature lifting technique

used proposed by Classen et al. (2011b, 2014) to model check fCTL.

4.1 The Background Color Approach

The background color approach was proposed by Kästner et al. (2008), as a mechanism to improve SPL

code comprehension. The idea is to annotate the code fragments belonging to different features with

different background colors. In case a code fragment is associated with multiple features (for example code

within nested preprocessor #ifdef statements), the background colors associated with the respective

features are mixed. The code snippet presented in Fig. 43 illustrates how background colors can be used

to highlight feature code. This is an example where #ifdef preprocessor directives are used to annotate

the code of different features. The code associated with feature HAVE_QUEUE (l. 5–16) is annotated with

the yellow background color, while the code associated with feature DIAGNOSTIC (l. 12–14) is annotated

with orange. The latter code is nested inside feature HAVE_QUEUE, so orange is the result of mixing the

color yellow from feature HAVE_QUEUE with the red color that would be used to annotate code belonging

only to feature DIAGNOSTIC. Notice also, that the same color is used to annotate code in the #ifndef

and #else branches of feature HAVE_QUEUE, because both pieces of code are relevant for that feature:

1 Unlike the technique proposed by Czarnecki and Antkiewicz (2005), where different colors represent different presence conditions.

89

4.1. The Background Color Approach

1 static int __rep_queue_filedone(dbenv,rep,rfp)

2 DB_ENV *dbenv;

3 REP *rep

4 __re_fileinfo_args *rfp;{

5 #ifndef HAVE_QUEUE

6 COMPQUIET(rep,NULL);

7 return (__db_no_queue_am(dbenv));

8 #else

9 db_pgno_t first,last;

10 u_int32_t flags;

11 int empty,ret,t_ret;

12 #ifdef DIAGNOSTIC

13 DB_MSGBUF mb;

14 #endif

15 ... //over 100 lines of additional code

16 #endif

17 }

Figure 43: Excerpt of Berkeley DB with background colors (Feigenspan et al., 2013).

the former is included when the feature is not selected, while the latter is included when it is selected. This

example shows how colors, in principle, help the developers distinguish code associated with different

features at first sight, rather than requiring a search for the beginning and end annotations, which can be

difficult, especially in a large code base.

A tool to support the background color approach, named Colored Integrated Development Environment

(CIDE), was proposed by Kästner et al. (2008) to help users decompose large legacy application into

features. CIDE is an Eclipse-based prototype tool, that besides supporting background colors, provides

code folding of feature code (hiding the source code of selected features), and provides different views

on the source code. Unlike most code annotation-based approaches it associates code fragments from

different features with distinct background colors, rather than relying on #ifdef preprocessor directives.

A screenshot of CIDE is shown in Fig. 44. As with typical annotative approaches, in this approach a system

is implemented with the code of all features together in a single code base. Instead of associating the

code fragments with features using markers or delimiters, it does so by associating the background color

with the representation layer of the editor. In the case of a code fragment from multiple features, which is

traditionally done with nested preprocessor statements as shown in Fig. 43, a mix of the corresponding

background colors is chosen. It may not be possible to recognize the features of a code fragment only by

background colors in CIDE, in particular when many features overlap, which is common in SPL. However,

colors make it easier for developers to quickly identify the beginning and the end of a code fragment

associated with a set of features, which can then be confirmed by inspection using tool-tips.

Unlike code annotated with #ifdef directives, CIDE does not allow to assign features to arbitrary code

fragments, avoiding the problem of feature annotation errors, such as a pair of corresponding opening and

90

4.1. The Background Color Approach

Figure 44: CIDE screenshot (Kästner et al., 2008).

ending braces annotated with different features. Tracking such kind of errors directly at source code is

difficult since both brackets are visible. Instead, CIDE assigns features to structural code elements in an

Abstract Syntax Tree (AST) representation of the source code. For example, a feature can be assigned to a

class node (making that class optional) or to a statement node. Children nodes are annotated automatically

if the parent node is also annotated with a particular feature. This simplifies detecting annotation errors and

removing code when projecting to obtain the implementation of a particular variant. Also, by annotating

structural elements, the developers do not need to deal with syntactical elements that are abstracted away

in the AST, like commas separating the parameters of a method, which significantly reduces the size of

the final code. For example, suppose we have a method with two parameters annotated with two distinct

features using #ifdef directives. In order to make sure there are no syntactic errors for every projected

variant, we have to annotate the separating comma with a nested annotation, to make sure it is included

only when both features are selected. However, annotating only structural elements in the AST also has

some limitations: in principle only optional elements of the AST can be annotated with features, which

for example does not allow to specify two alternative return statements for a method. There are some

exceptions to the general rules that children are automatically annotated with their parent’s features, and

that only optional AST nodes can be annotated. Concerning the former, it is possible to annotate a control

flow statement without annotating its inner code (for example, to introduce an if statement to guard the

execution of some code in a variant). As for the latter, children of binary operators can be individually

annotated even if they are not optional. If only one child is annotated the operator will be removed when

the feature is not selected.

91

4.1. The Background Color Approach

Annotations in CIDE are just feature sets, and not arbitrary presence conditions involving those features.

In particular, negative features are not supported. CIDE does not deal directly with consistency constraints

nor uses a FM to restrict the set of possible variants, but can check the feature association of all AST

elements to ensure that every possible projected variant can be correctly parsed and compiled.

Later, some of the authors of CIDE and others conducted a study to evaluate whether and how

background colors improve program comprehension of code annotated with #ifdef preprocessor direc-

tives (Feigenspan et al., 2013). This study involved three controlled experiments with a total of 77 subjects.

The first experiment aimed to understand if colors improve program comprehension in a medium sized

software system with four optional features, and asked the users to perform a series of tasks, such as

locating bugs that were only present in some features. The second experiment aimed to understand if

users prefer to use the background color or the preprocessor directives when given the choice, using the

same tasks as the first experiment. Finally, the third experiment aimed to understand if the background

color approach scales to large software systems, namely systems with more than 100k lines of source code

and hundreds of features. Since color mixing does not scale to this number of features, in this experiment

a nested feature was annotated with just its color. The main conclusions of these experiments were that:

• Carefully chosen colors can improve program comprehension, independently of code size and

programming language of the underlying SPL, as a performance increase was observed in the

assigned tasks when the background color approach was used.

• Choosing colors with a high saturation can slow down the comprehension process, probably due to

visual fatigue.

• In general, subjects liked and preferred the background color approach.

Based on the insights collected in this study, a new tool was developed to support the comprehension of

SPL code devolved with preprocessor directives, named FeatureCommander2. This tool already supports

FMs, and allows users to choose which colors and opacity to assign to each feature (to avoid high saturation

colors). Since it is intended to be applied to large code bases, if a code fragment is annotated with multiple

features, only the background color of the innermost feature is shown, being the set of all features visualized

in side bars. Also, to allow the user to focus only on a particular set of features, the remaining ones can

just be assigned shades of gray to not pollute the visualization. A screenshot of this tool can be seen on

Fig. 45.

2 https://www.tu-chemnitz.de/informatik/ST/research/material/xenomai/

92

https://www.tu-chemnitz.de/informatik/ST/research/material/xenomai/

4.2. Colorful Alloy Syntax

Figure 45: FeatureCommander screenshot (Kästner et al., 2008)

4.2 Colorful Al loy Syntax

One of the reasons behind the initial proposal of color annotations in CIDE was to avoid obfuscating the

code with additional constructs (Kästner et al., 2008). There, colors are internally handled by an IDE

developed specifically for that purpose, which hinders saving, sharing and editing models, particularly when

dealing with simple, single-file, models as is typical in Alloy. Our approach aims at a middle ground, using

minimal annotations that are colored when using the Analyzer, but that can still be saved and interpreted as

a pure text file. Additionally, unlike in CIDE, our language allows elements to be marked with the absence

of features. Thus, although not allowing full propositional formulas, elements can be assigned a present

condition consisting of a conjunction of positive or negative features.

The Colorful Alloy language is thus a minimal extension to regular Alloy mainly by allowing, first, elements

to be associated with the presence or absence of features; and second, analysis commands to focus on

particular sets of features. Features are identified by circled symbols, 𝑐 and 𝑐 , denoting the presence

and absence of a feature, respectively, for 1 ≤ 𝑐 ≤ 9 (throughout the thesis, symbol 𝑐 will denote either

𝑐 or 𝑐 , but it is not itself an acceptable annotation). To ease understanding, the Colorful Alloy extension

to the Alloy Analyzer employs background colors (for positive annotations) and colored strike-through lines

93

4.2. Colorful Alloy Syntax

spec ⋅⋅⋅⋅= [moduleDecl] import∗ paragraph∗

moduleDecl ⋅⋅⋅⋅= module qualName [[name,+]]

import ⋅⋅⋅⋅= 𝑐 open qualName [[qualName,+]] [as name] 𝑐
paragraph ⋅⋅⋅⋅= colPara | cmdDecl

colPara ⋅⋅⋅⋅= 𝑐 colPara 𝑐 | sigDecl | factDecl | funDecl | predDecl | assertDecl

sigDecl ⋅⋅⋅⋅= [abstract] [mult] sig name,+ [sigExt] { colDecl,∗ } [block]

sigExt ⋅⋅⋅⋅= extends qualName | in qualName [+ qualName]∗

mult ⋅⋅⋅⋅= lone | some | one

decl ⋅⋅⋅⋅= [disj] name,+ : [disj] expr

colDecl ⋅⋅⋅⋅= 𝑐 colDecl 𝑐 | decl

factDecl ⋅⋅⋅⋅= fact [name] block

assertDecl ⋅⋅⋅⋅= assert [name] block

funDecl ⋅⋅⋅⋅= fun name [[decl,∗]] : expr block

predDecl ⋅⋅⋅⋅= pred name [[decl,∗]] block

expr ⋅⋅⋅⋅= const | qualName | @name | this | unOp expr | expr binOp expr

| colExpr colBinOp colExpr | expr arrowOp expr | expr [expr,∗]

| expr [! | not] compareOp expr | expr (⇒ | implies) expr else expr

| quant decl,+ blockOrBar | (expr) | block | { decl,+ blockOrBar }

colExpr ⋅⋅⋅⋅= 𝑐 colExpr 𝑐 | expr

const ⋅⋅⋅⋅= none | univ | iden

unOp ⋅⋅⋅⋅= ! | not | no | mult | set | ∼ | * | ^

binOp ⋅⋅⋅⋅= ⇔ | iff | ⇒ | implies | − | ++ | <: | :> | �
colBinOp ⋅⋅⋅⋅= || | or | && | and | + | &

arrowOp ⋅⋅⋅⋅= [mult | set] → [mult | set]

compareOp ⋅⋅⋅⋅= in | =

letDecl ⋅⋅⋅⋅= name = expr

block ⋅⋅⋅⋅= { colExpr∗ }

blockOrBar ⋅⋅⋅⋅= block | | expr

quant ⋅⋅⋅⋅= all | no | mult

cmdDecl ⋅⋅⋅⋅= [check | run] [qualName] (qualName | block) [colScope] [typeScopes]

typeScopes ⋅⋅⋅⋅= for number [but typeScope,+] | for typeScope,+

typeScope ⋅⋅⋅⋅= [exactly] number qualName

colScope ⋅⋅⋅⋅= with [exactly] [0 | 𝑐],+

qualName ⋅⋅⋅⋅= [this/] (name/)∗ name

Figure 46: Concrete syntax of the Colorful Alloy language (additions w.r.t. the Alloy syntax are colored

red).

(for negative features) to highlight annotated elements. This allows models with at most 9 distinct features,

which we believe to be adequate for Alloy, where models are typically small and defined at a high-level

of abstraction. Also, the full coloring approach, where all feature code is background colored and code

associated with multiple features has blended colors, is known to not scale up well to models with a large

number of features (Feigenspan et al., 2013). This problem would be exacerbated with negative features.

To support that scenario, as in FeatureCommander, we would have to allow the user to select which

features to color at any time, which would require a more complex extension to the Alloy Analyzer. Also, as

mentioned above, one of our goals was to, unlike CIDE, allow users to save models in pure text files, and

this restriction allows us to use the respective UTF characters with circled numbers to represent feature

annotations, meaning the annotated models can still be inspected and reasonably understood in a normal

text editor that does not provide feature color highlighting. Figure 46 presents the syntax of Colorful Alloy,

highlighting changes with regard to the regular Alloy language.

Features are associated to model elements by using feature marks as delimiters surrounding those

elements. An element within a positive delimiter 𝑐 will only exist in variants where 𝑐 is selected, while

94

4.3. An Example of Proactive SPL Design

those within a negative delimiter 𝑐 only exist if 𝑐 is absent from the variant. Color annotations can be

nested, denoting the conjunction of presence conditions. For example, with 2 1 𝜙 1 2 , formula 𝜙 will

be present in any variant with feature 2 selected but not feature 1. Likewise (Kästner et al., 2008), in

general only optional elements of the Alloy AST can be annotated. In general, any node whose removal

does not invalidate the AST can be marked with features, including all global declarations (i.e., signatures,

fields, facts, predicates, functions and asserts) and individual formulas within blocks. Currently, only

non-annotated modules can be imported, such as the libraries packaged with the standard Analyzer. The

marking of local declarations (i.e., predicate and function arguments, and quantified variables) is left as

future work. One exception to the AST validity rule is allowed for binary expressions with a neutral element,

in which case the sub-expressions can be annotated even if the whole binary expression is not. For instance,

2 Φ 2 + 2 Ψ 2 is interpreted just as Φ in variants where feature 2 is not selected.

Like in Alloy, run commands can be declared to animate the model under certain properties and check

commands to verify assertions, both within a certain universe of atoms specified by a scope. In Colorful

Alloy, a scope on features may also be provided to restrict the variants that should be considered by a

command. Run and check commands can be instructed to focus, possibly exactly, on certain features

using a with feature scope: if not exact, commands will consider every variant where the positive/negative

features specified in this scope are present/absent; otherwise, exactly the variant with the presence features

will be considered (negative features are spurious in that case). For instance, run {} with 1 , 2 will

consider every variant with feature 1 selected but not feature 2, while run {} with exactly 1 , 2

will only consider the variant with exactly feature 1 selected. An additional feature mark 0 denotes the

empty variant (no features selected), and can be used to analyze every possible variant (if the feature scope

is not exact), the default behavior if a feature scope is not provided, or solely the base variant (if the feature

scope is exact), in this case being equivalent to having all negative features in the scope.

4.3 An Example of Proact ive SPL Design

To illustrate Colorful Alloy we will use it to formalize the design of multiple variants of the e-commerce

example, that was used to illustrate Alloy in Chapter 2. The FD of the full e-commerce SPL was depicted in

Fig. 18. Here we will consider a simpler version of this SPL with just three optional features: 1 allowing

products to be classified in categories; 2 allowing hierarchical categories; and 3 allowing products to

belong to multiple categories. Thumbnails exist on all variants and image formats will not be considered,

nor on sale products. Not all combinations of these three features are valid, namely both hierarchical

95

4.3. An Example of Proactive SPL Design

Figure 47: Feature diagram of the colorful e-commerce specification.

categories and multiple categories require the existence of categories. The FD of this reduced e-commerce

SPL is depicted in Fig. 47, already depicting the feature numbers and the respective background colors.

The Colorful Alloy specification of this example is shown in Fig. 48. To avoid deviating a lot from the

standard Alloy syntax, Colorful Alloy does not explicitly support FMs, but the user can still restrict valid

variants using normal facts. In Fig. 48 fact FeatureModel (l. 1–6) encodes the FD of Fig. 47, forcing

feature 1 to be selected in a variant whenever either 2 or 3 are. This is achieved by introducing

an inconsistency in the model if either feature 2 or 3 is selected together with 1 . Alloy does not

have a keyword to denote False, but there are several expressions that can be used instead, for example

some none. In line 3, this formula is annotated both with 2 and 1 , meaning that whenever feature

Hierarchical is selected without feature Categories, that expression would be introduced in the model, thus

creating an inconsistency. A similar technique is used in line 5 for forcing feature Categories to be selected

when feature Multiple is as well.

When proactively specifying a design with Colorful Alloy, we usually start by defining the base model,

and incrementally add or remove elements (with the respective annotations) to support optional features.

In this case, the base model declares signatures Product (l. 8–13), Image (l. 14), and Catalog

(l. 15–17). It also declares fields images (l. 9), to relate products with their images, catalog (l. 10), to

relate products with their catalog, and thumbnails (l. 16), to relate catalogs with the images that will

illustrate them. This base model also includes a fact to force the thumbnails of a catalog to be images of

one of its products (l. 19), and a command to search for a scenario where there are some products with

images (l. 33–36).

After specifying this base model, we proceed by specifying the changes introduced by feature 1 , allowing

products to be classified in categories, instead of being directly placed in a catalog. This introduces two

main changes: field catalog should be replaced by category, to relate products with one category,

and a new signature Category should be declared. To remove catalog when feature 1 is selected

it suffices to annotate it with 1 . On the other hand, the new field category should be annotated with

96

4.3. An Example of Proactive SPL Design

1 fact FeatureModel {

2 -- 2 Hierarchical requires 1 Categories

3 2 1 some none 1 2

4 -- 3 Multiple requires 1 Categories

5 3 1 some none 1 3

6 }

7

8 sig Product {

9 images: set Image,

10 1 catalog: one Catalog 1 ,

11 1 3 category: one Category 3 1 ,

12 1 3 category: some Category 3 1

13 }

14 sig Image {}

15 sig Catalog {

16 thumbnails: set Image

17 }

18 fact Thumbnails {

19 1 all c:Catalog | c.thumbnails in (catalog.c).images 1

20 1 all c:Catalog | c.thumbnails in (category.(2 inside 2 + 2 ^inside 2).c).images 1

21 }

22

23 1 2 sig Category {

24 inside: one Catalog

25 } 2 1

26 1 2 sig Category {

27 inside: one Catalog+Category

28 } 2 1

29 1 2 fact Acyclic {

30 all c:Category | c not in c.^inside

31 } 2 1

32

33 pred Scenario {

34 some Product.images and 1 all c:Category | lone category.c 1

35 }

36 run Scenario for 10

37

38 assert AllCataloged {

39 2 all p:Product | some (p.category.^inside & Catalog) 2

40 }

41 check AllCataloged with 1 , 2 for 10

Figure 48: E-commerce specification in Colorful Alloy.

1 to force its inclusion with this feature. Similarly, the new signature Category declaration should be

annotated with 1 . Inside this signature we should also declare the new field inside, that relates it to

the respective catalog. After this changes, the declaration of these signatures would look as follows.

sig Product {

images: set Image,

1 catalog: one Catalog 1 ,

1 category: one Category 1

}

97

4.3. An Example of Proactive SPL Design

1 sig Category {

inside: one Catalog

} 1

Fact Thumbnails also needs to be adapted with the introduction of this feature, so that products are

retrieved indirectly from the categories of the catalog. To fetch the products inside a category c, instead of

expression catalog � c we should use category � inside � c. As such, we could adapt this fact by

annotating the initial constraint with 1 and adding the new variant annotated with 1 , as follows.

fact Thumbnails {

1 all c:Catalog | c.thumbnails in (catalog.c).images 1

1 all c:Catalog | c.thumbnails in (category.inside.c).images 1

}

Notice that we could alternatively have used finer grained annotations, to pinpoint more precisely where

the changes need to be made. For operators with a clear neutral element, their branches can also be

annotated by features in Colorful Alloy, so we could have specified the above fact as follows.

fact Thumbnails {

all c:Catalog | c.thumbnails in (1 catalog.c 1 + 1 category.inside.c 1).images

}

As for our example scenario, we might want to add a extra restriction to variants where categories

are present, for example forcing all products to have different categories, by annotating the respective

expression with 1 (Fig. 48, l. 34).

Having specified the changes introduced by feature 1 , we can specify the adaptions needed for the

other features. Colorful Alloy allows two signatures or fields with the same identifier to be declared, as long

as they have disjoint feature annotations. For example, the multiplicity of field category should change

when feature 3 is selected, to allow a product to belong to multiple categories. To do so, in Fig. 48, two

alternative declarations of this field are present which, depending on whether 3 is selected, assign exactly

one (l. 11) or multiple (l. 12) categories to a product. Also, depending on whether 2 is selected or not,

the signature Category should declare a different field inside: without hierarchical categories, each

category is inside exactly one catalog (l. 24), while with hierarchical categories each category is inside one

catalog or another category, determined by the union Catalog+Category (l. 27). Of course, we could

also have opted to have a single declaration for Category with the two alternative field declarations inside,

as we did for Product and field category, but opted for this formulation to illustrate the possibility

98

4.4. Type Checking Rules

of declaring multiple versions of the same signature. Hierarchical categories require an additional fact

Acyclic (l. 29–31) that forbids cyclic inside fields by calculating its transitive closure. Also, fact

Thumbnails must be adapted when hierarchical categories are introduced (l. 20), so that all categories

directly or indirectly contained in a catalog are considered: this can be done with a very precise annotation

that replaces inside by ^inside when feature 2 is selected.

Notice that the run command on Fig. 48 has no feature scope imposed, meaning that the scenario

can be run for any of the 5 valid variants (although with a slightly different behavior for variants with

feature 1 selected). To verify the correctness of the design for hierarchical categories, an assertion

AllCatalogued can be specified (l. 38–40) to check whether every product is contained inside at least

one catalog. The formula inside this assertion only makes sense when feature 2 is selected. Note that

due to the restrictions on the FeatureModel fact, feature 1 will also be present, so also annotating

this formula with 1 will not change its presence condition. The feature scope of the respective check

command (l. 41) is restricted to consider only the two relevant variants with 1 and 2 selected (namely,

with or without feature 3 , corresponding to multiple categories).

4.4 Type Checking Rules

The grammar of the language restricts which elements can be annotated, but additional type checking rules

must be employed to guarantee consistent and analyzable colorful models. The Alloy type inference rules

presented in Section 2.2.3 aim at discovering irrelevant expressions. These typically represent specification

errors, but actually do not affect the semantics or prevent a model from being analyzed. In fact, the

Analyzer allows the user to opt to consider these type errors as mere warnings, and proceed with the

analysis even when they occur. There are however some type errors that cannot be treated as warnings

and that are caught by a simpler type checking mechanism, not described in Section 2.2.3, namely arity

errors, that can occur, for example, when a user tries to compute the union of two relational expressions of

different arity. The type checking system we describe in this section aims at catching such kind of errors.

In particular, for completeness, we also included arity type checking in the system.

The Colorful Alloy type checking rules aim mainly at detecting three kinds of coloring issues. First, calls

to identifiers (for example, signature or predicate names) must occur in a color context that guarantees

its existence. For instance, signature Category of our running example, which is declared only when

feature 1 is selected, cannot be called in a context where 1 is not guaranteed to be selected. For

example, fact { some Category } should raise an error, since such paragraph would be included

99

4.4. Type Checking Rules

decls(c, p1,… , p𝑖) = decls(c, p1) ∪ …∪ decls(c, p𝑖)
decls(c, 𝑐 p 𝑐) = decls(c ∪ { 𝑐 }, p)
decls(c, module n [n1,…,n𝑘]) = n1 ↦ (∅, 1) ∪ … ∪ n𝑘 ↦ (∅, 1)
decls(c, open n [n1,…,n𝑘]) = decls(c, p1,… , p𝑖),where p1,… , p𝑖 are the paragraphs of n

decls(c, [abstract] [m] sig n [extends n1] { d1,…,d𝑖 } [{ e }]) =
n ↦ (c, 1) ∪ decls(c, d1) ∪ …∪ decls(c, d𝑖)

decls(c, [m] sig n in n1+…+n𝑘 { d1,…,d𝑖 } [{ e }]) =
n ↦ (c, 1) ∪ decls(c, d1) ∪ …∪ decls(c, d𝑖)

decls(c, 𝑐 d 𝑐) = decls(c ∪ { 𝑐 }, d)
decls(c, n : e) = n ↦ (c, arity(e))
decls(c, fact { e }) = ∅
decls(c, pred n [d1,…,d𝑖] { e }) = n ↦ (c, 𝑖)
decls(c, fun n [d1,…,d𝑖] : e1 { e2 }) = n ↦ (c, 𝑖 + arity(e1))
decls(c, run { e } [with [exactly] c0] [for s]) = ∅
decls(c, check { e } [with [exactly] c0] [for s]) = ∅

Figure 49: Collecting a typing context from declarations.

in all possible variants and Category is not declared in all of them. This applies to calls in expressions,

the class hierarchy (the parent signature must exist in every variant that the children do), and calls to

predicates/asserts in run/check commands. Second, when multiple declarations of the same identifier

exist, they must be guaranteed to have disjoint color contexts, so that only one such declaration exists

in a particular variant. Thus, both declarations of Category are valid since contexts 1 2 and 1 2

refer to distinct variants, but it would not be the case if, for instance, one of them was just annotated with

1 . Third, the nesting of negative and positive annotations of the same feature should be forbidden, since

this conjunction of conditions is necessarily inconsistent (i.e., under 1 1 e 1 1 , e will never exist). This

also applies to feature scopes of commands, where the presence and absence of a feature would allow no

variant.

The context of the type rules will be a mapping Γ from identifiers to the color annotation (a set of positive

and negative feature marks) and arity of their declaration, and a color annotation c under which it is being

evaluated. Since the same entity can be declared multiple times, as long as their color annotations are

disjoint, Γ is actually a relation that associates declared identifiers with a set of pairs with color annotations

and arities. We denote a singleton mapping as n ↦ (c, 𝑘), for an identifier n, color annotation c, and arity

𝑘. The union of mappings can be done with ∪, while denotes overriding. This context can be collected

from a Colorful model using function decls defined in Fig. 49. For simplicity, this definition considers

100

4.4. Type Checking Rules

only a kernel of paragraphs, namely commands that call predicates or assertions are not considered.

Also, function arity used here is an oversimplification, since calculating the arity of an expression requires

prior knowledge of the arity of other declared signatures and fields. In this definition (and in the typing

rules presented later), p denotes a paragraph (or an open statement), d a declaration, n an identifier, m

a multiplicity keyword, e an arbitrary expression (either a formula or a relational expression), c a color

annotation (a set of feature marks), and 𝑖, 𝑗, 𝑘 arities.

A context Γ collected by decls is valid iff the color annotations of all declarations with the same identifiers

are disjoint and agree on arity, that is

∀n0 ↦ (c0, 𝑖), n1 ↦ (c1, 𝑗) ⋅ 𝑛0 = 𝑛1 → ⌈c0⌉ ∩ ⌈c1⌉ = ∅ ∧ 𝑖 = 𝑗

where ⌈c⌉ is a function that computes the set of all concrete variants that are valid according to c, taking

into consideration only the features that used in the specification. For example, in the e-commerce example

⌈{ 1 , 2 }⌉ = {{ 1 , 2 , 3 }, { 1 , 2 , 3 }}, and the context collected from the model declarations would

be

{Product ↦ ({}, 1), images ↦ ({}, 2), catalog ↦ ({ 1 }, 2),

category ↦ ({ 1 , 3 }, 2), category ↦ ({ 1 , 3 }, 2),…}

The typing rules for paragraphs are presented in Fig. 50. The fact that a paragraph p is well typed in

context Γ with color annotation c is denoted by Γ, c ⊢ p. The fact that a colorful model comprised by

paragraphs p1 … p𝑖 is well-typed is denoted by ⊢ p1 … p𝑖. Imported modules must also be well-typed

according to the same rules. The typing rules for paragraphs are mainly responsible for aggregating color

annotations as we traverse the model, to be later used when type checking expressions, as well as detecting

the third kind of issue described above, color annotations with the same feature occurring positively and

negatively. For an arbitrary feature mark 𝑐 , ¬ 𝑐 converts between the positive and negative version. In

Colorful Alloy commands are not annotated, their color context being instead defined by the feature scope.

This scope is used to type check the expression inside the command. When the feature scope is exact, the

respective color annotation must be expanded with the negation of all marks not present in it, which is

done by function ⌊c⌋. For example, in the e-commerce example ⌊{ 1 , 2 }⌋ = { 1 , 2 , 3 }.

The typing rules for expressions is presented in Fig. 51 for a kernel of operators. The fact that an

expression e of arity 𝑘 is well-typed is denoted by Γ, c ⊢𝑘 e (arity 0 denotes formulas). Again most rules

just aggregate feature marks as the expression is traversed, detecting contradictory marks and checking

101

4.4. Type Checking Rules

Γ = decls(∅, p1,… , p𝑖) Γ, ∅ ⊢ p1 … Γ,∅ ⊢ p𝑖
⊢ p1 … p𝑖

Γ, c ∪ { 𝑐 } ⊢ p ⊢ 𝑐 , c
Γ, c ⊢ 𝑐 p 𝑐

⊢ c ¬ 𝑐 ∉ c

⊢ 𝑐 , c

Γ, ∅ ⊢ module n [n1,…,n𝑖]

Γ, c ⊢1 n1 … Γ, c ⊢1 n𝑖
Γ, c ⊢ open n [n1,…,n𝑖]

Γ, c ⊢𝑘1
d1 … Γ, c ⊢𝑘𝑖

d𝑖 Γ, c ⊢0 e Γ, c ⊢1 n2 𝑘1 …𝑘𝑖 > 0
Γ, c ⊢ [abstract] [m] sig n1 [extends n2] { d1,…,d𝑖 } [{ e }]

Γ, c ⊢𝑘1
d1 … Γ, c ⊢𝑘𝑖

d𝑖 Γ, c ⊢0 e Γ, c ⊢1 n1 … Γ, c ⊢1 n𝑗 𝑘1 …𝑘𝑖 > 0
Γ, c ⊢ [m] sig n in n1 + ... + n𝑗 { d1,…,d𝑖 } [{ e }]

Γ, c ∪ { 𝑐 } ⊢𝑘 d ⊢ 𝑐 , c
Γ, c ⊢𝑘 𝑐 d 𝑐

Γ, c ⊢𝑘 e 𝑘 > 0
Γ, c ⊢𝑘 n : e

Γ, c ⊢0 e

Γ, c ⊢ fact { e }

Γ, c ⊢1 d1 … Γ, c ⊢1 d𝑖 Γ, c ⊢0 e

Γ, c ⊢ pred n [d1,…,d𝑖] { e }

Γ, c ⊢1 d1 … Γ, c ⊢1 d𝑖 Γ, c ⊢𝑘 e1 Γ, c ⊢𝑘 e2 𝑘 > 0
Γ, c ⊢ fun n [d1,…,d𝑖] : e1 { e2 }

Γ, c ⊢0 e ⊢ c

Γ, ∅ ⊢ run { e } [with c] [for s]
Γ, ⌊c⌋ ⊢0 e ⊢ c

Γ, ∅ ⊢ run { e } [with exactly c] [for s]

Γ, c ⊢0 e ⊢ c

Γ, ∅ ⊢ check { e } [with c] [for s]
Γ, ⌊c⌋ ⊢0 e ⊢ c

Γ, ∅ ⊢ check { e } [with exactly c] [for s]

Figure 50: Type rules for kernel paragraphs.

102

4.4. Type Checking Rules

Γ, c ⊢1 none Γ, c ⊢1 univ Γ, c ⊢2 iden

∀c0 ∈ ⌈c⌉ ⋅ ∃n ↦ (c1, 𝑘) ∈ Γ ⋅ c1 ⊆ c0
Γ, c ⊢𝑘 n

Γ, c ⊢2 e

Γ, c ⊢2 ^e

Γ, c ⊢2 e

Γ, c ⊢2 ∼e

Γ, c ⊢0 e

Γ, c ⊢0 not e

Γ, c ⊢0 e1 Γ, c ⊢0 e2
Γ, c ⊢0 e1 and e2

Γ, c ⊢𝑘 e1 Γ, c ⊢𝑘 e2 𝑘 > 0
Γ, c ⊢0 e1 in e2

Γ, c ⊢𝑘 e1 Γ, c ⊢𝑘 e2 𝑘 > 0 � ∈ {&, +,−}
Γ, c ⊢𝑘 e1 � e2

Γ, c ⊢𝑖 e1 Γ, c ⊢𝑗 e2 𝑘 = 𝑖 + 𝑗 − 2 𝑖, 𝑗, 𝑘 > 0
Γ, c ⊢𝑘 e1 � e2

Γ, c ⊢𝑖 e1 Γ, c ⊢𝑗 e2 𝑘 = 𝑖 + 𝑗 𝑖, 𝑗 > 0
Γ, c ⊢𝑘 e1→ e2

Γ, c ⊢1 e1 Γ n ↦ (∅, 1), c ⊢0 e2
Γ, c ⊢0 all n : e1 | e2

Γ, c ∪ { 𝑐 } ⊢𝑘 e ⊢ 𝑐 , c
Γ, c ⊢𝑘 𝑐 e 𝑐

Figure 51: Type rules for kernel expressions.

the arity. The most interesting rule is the one for identifiers, in the upper right corner. A reference to

an identifier n is well typed in a context Γ and color annotation c if in all possible variants c0 ∈ ⌈c⌉

that identifier is declared. For example, in the e-commerce example, expression 1 some Category 1

is well-typed because either 1 2 Category 2 1 or 1 2 Category 2 1 is declared in all variants

where 1 is selected. Unfortunately, this rule is too restrictive when the FM actually restricts the possible set

of variants. For example, expression 2 some Category 2 would not be considered well-typed because

in some variants where 2 is selected Category is not declared, for example, in variant { 1 , 2 , 3 }.

However, this variant is not allowed by the FM of this example, since fact FeatureModel requires 1

to be selected when 2 is also selected. Thus, the rule implemented in the Colorful Alloy typing system

is a bit more general, so that less spurious errors are returned. In particular, the model is first scanned

to detect FM constraints with the shape c some none c, where c denotes a feature combination that

will be considered forbidden. From these, the set 𝐹 containing all possible valid variants in the model is

computed (five, in the case of our running example), and the typing rule for identifiers is adapted as follows.

∀c0 ∈ ⌈c⌉ ∩ 𝐹 ⋅ ∃n ↦ (c1, 𝑘) ∈ Γ ⋅ c1 ⊆ c0

Γ, c ⊢𝑘 n

103

4.5. Semantics

⟨p1 … p𝑖⟩c ≡ ⟨p1⟩c … ⟨p𝑖⟩c

⟨ 𝑐 p 𝑐 ⟩c ≡ { ⟨p⟩c if 𝑐 ∈ ⌊c⌋
𝜖 otherwise

⟨module n [n1,…,n𝑖]⟩c ≡ module n [n1,…,n𝑖]

⟨open n [n1,…,n𝑖]⟩c ≡ open n [n1,…,n𝑖]

⟨[abstract] [m] sig n1 [extends n2] { d1,… , d𝑖 }[{ e }]⟩c ≡
[abstract] [m] sig n1 [extends n2] {⟨d1⟩c ,… , ⟨d𝑖⟩c }[{⟨𝑒⟩c}]

⟨[m] sig n in n1 + ... + n𝑗 { d1,… , d𝑖 }[{ e }]⟩c ≡
[m] sig n in n1 + ... + n𝑗 {⟨d1⟩c ,… , ⟨d𝑖⟩c }[{⟨𝑒⟩c}]

⟨ 𝑐 d 𝑐 ⟩c ≡ { ⟨d⟩c if 𝑐 ∈ ⌊c⌋
𝜖 otherwise

⟨n : e⟩c ≡ n : ⟨e⟩c
⟨fact { e }⟩c ≡ fact { ⟨e⟩c}
⟨pred n [d1,…,d𝑖] { e }⟩c ≡ pred n [⟨d1⟩c,…,⟨d𝑖⟩c] {⟨e⟩c}
⟨fun n [d1,…,d𝑖] : e1 { e2 }⟩c ≡ fun n [⟨d1⟩c,…,⟨d𝑖⟩c] : ⟨e1⟩c {⟨e2⟩c}
⟨run { e } [for s]⟩c ≡ run { ⟨e⟩c }[for s]

⟨run { e } with c0 [for s]⟩c ≡ { run { ⟨e⟩c } [for s] if c0 ⊆ ⌊c⌋
𝜖 otherwise

⟨run { e } with exactly c0 [for s]⟩c ≡ { run { ⟨e⟩c } [for s] if ⌊c0⌋ = ⌊c⌋
𝜖 otherwise

⟨check { e } [for s]⟩c ≡ check { ⟨e⟩c }[for s]

⟨check { e } with c0 [for s]⟩c ≡ { check { ⟨e⟩c } [for s] if c0 ⊆ ⌊c⌋
𝜖 otherwise

⟨check { e } with exactly c0 [for s]⟩c ≡ { check { ⟨e⟩c } [for s] if ⌊c0⌋ = ⌊c⌋
𝜖 otherwise

Figure 52: Paragraph projection.

4.5 Semantics

The semantics of Colorful Alloy can be defined in terms of a projection operator, that extracts from a colorful

model a plain Alloy model representing a concrete variant. Assuming that a colorful model is well-typed

according to the rules presented in the previous section, and that all unique feature marks c that are

used in it have been collected in a color annotation c during that process (i.e., the features relevant for the

specified family of models), an instance 𝑀 is valid in a colorful model 𝑚 iff there exists a variant c0 ⊆ c

such that 𝑀 is valid in ⟨𝑚⟩c0
, the projection of 𝑚 for variant c0, according to the plain Alloy semantics

defined in Section 2.2.2.

104

4.5. Semantics

⟨none⟩c ≡ none

⟨univ⟩c ≡ univ

⟨iden⟩c ≡ iden

⟨n⟩c ≡ n

⟨� e⟩c ≡ � ⟨e⟩c
⟨e1 � e2⟩c ≡ ⟨e1⟩c � ⟨e2⟩c if � ∉ {+, &, or, and}

⟨c1e1c1 � c2e2c2⟩c ≡

⎧{{
⎨{{⎩

⟨e1⟩c � ⟨e2⟩c if c1 ⊆ ⌊c⌋ and c2 ⊆ ⌊c⌋
⟨e1⟩c if c1 ⊆ ⌊c⌋ and c2 ⊈ ⌊c⌋
⟨e2⟩c if c1 ⊈ ⌊c⌋ and c2 ⊆ ⌊c⌋
neutral(�, arity(e1)) otherwise

if � ∈ {+, &, or, and}

⟨all n : e1 | e2⟩c ≡ all n : ⟨e1⟩c | ⟨e2⟩c

Figure 53: Expression projection.

The projection of a model to a concrete variant c is defined in Fig. 52 and is rather straight-forward:

basically it projects away paragraphs and declarations not relevant in that variant, namely those enclosed

in an annotation 𝑐 that is not selected in c. The projection of expressions is also straight-forward and is

defined in Fig. 53. Recall that only direct sub-expressions of binary operators with a neutral element can

be annotated in Colorful Alloy. In this case, if both sub-expressions are to be projected out, the parent

expression will be replaced by the respective neutral element, defined as follows.

neutral(+, 𝑎) = none → … → none⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑎

neutral(&, 𝑎) = univ → … → univ⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑎

neutral(or, 𝑎) = some none

neutral(and, 𝑎) = no none

An example of this process can be seen in the projected Alloy model of the e-commerce colorful

specification for the variant where only 1 and 2 are selected (the variant with hierarchical categories),

that is presented in Fig. 54. In the colorful specification the FeatureModel fact consists of a conjunction

of two annotated formulas, that encode the restrictions of the respective FM. None of these formulas should

be included in the projected model, because their annotations are not part of the variant. As such, the

(implicit) conjunction inside FeatureModel is replaced by no none, the respective neutral element,

and will thus have no effect on the analysis. If instead we asked for the projection to the variant where only

105

4.6. Analysis

fact FeatureModel {

no none

}

sig Product{

images: one catalog,

category: one Category

}

sig Image {}

sig Catalog {

thumbnails: set Image

}

fact Thumbnails {

all c : catalog | c � thumbnails in (category � ^inside � c � image)
}

sig Category{

inside: one Catalog + Category

}

fact Acyclic {

all c: category | c not in c � ^inside
}

pred Scenario {

some Product � images and all c: Category | lone category � c
}

run Scenario for 10

assert AllCataloged {

all p:Product | some (p � category � ^inside & Catalog)

}

check AllCataloged for 10

Figure 54: E-commerce example projection to variant 1 , 2 .

2 is selected, this fact would contain formula some none, which would imply this variant would have

no valid instances, as expected.

4.6 Analysis

Analysis of Colorful Alloy models is achieved through translation into regular Alloy. We defined two alternative

ways to do this: i) through the generation and analysis, for every feature combination, of a projected

version of the model; ii) through the generation of a single ‘amalgamated’ Alloy model through feature

lifting, which encompasses all the alternative behaviors of the model family. Concerning the former

iterative analysis, since Colorful Alloy does not natively support FMs, all the 2#c0 projected models must

be generated and analyzed (although the process can be stopped once one of those models is found to be

satisfiable). However, the codification of FMs proposed in Section 4.2, actually renders invalid variants

106

4.6. Analysis

trivially unsatisfiable and instantaneously discharged: the projection of the model for such variants will end

up with a fact enforcing some none, which is detected during the translation into SAT before the solving

process is even launched.

Figures 55 and 56 present the translation of the colorful model into the amalgamated version for

paragraphs and expressions, respectively. It is assumed that the colorful model is well-typed at this stage,

and that all unique colorful marks c0 that occur in it have been collected during that process (i.e., the

features relevant for this family of models). For a model p1 … p𝑖, the translation ⟨⟨p1 … p𝑖⟩⟩c0
starts by

introducing an abstract signature Feature, that is extended exactly by singleton signatures that represent

each of the relevant features in c0. Signature Variant, a sub-set of Feature, represents particular

feature combinations under consideration.3 Variability points are introduced by tests over the valuation of

Variant, here abstracted by a macro isPresent(c) that for a given color context c generates a formula

that tests whether Variant holds for c, defined as:

isPresent(c) =

⎧{{{{{
⎨{{{{{⎩

Fp1 in Variant and … and Fpi in Variant⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
p1 ,…, pi ∈c

and

Fn1 not in Variant and … and Fnj not in Variant⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
n1 ,…, ni ∈c

When c is empty this degenerates to true, so the element will be present in every variant, as expected.

To control the existence of structural elements (signatures and fields), additional facts force them to be

empty whenever the presence conditions do not hold. Even though these elements are always declared, the

colorful type checking rules guarantee that they are not referenced in invalid variants. For this mechanism

to hold, multiplicities of declarations are relaxed in the general case, and additional facts only enforce them

in variants where the elements are present. In the kernel language, only sub-expressions of binary operators

may be associated with features (blocks of formulas have been converted into binary conjunctions). If

a branch is present in a variant, its original expression is returned, otherwise the neutral element of the

operation is. Lastly, commands are also expanded so that behavior depends on their feature scope, so

that only relevant variants are considered in the analyses.

Besides variability points, there is an additional issue that must be addressed during this translation, the

potential existence of non-unique identifiers which cannot exist in plain Alloy after expansion. In (global)

declarations, each identifier n is renamed with a label that uniquely identifies the color context c of that

3 To avoid collisions with the identifiers of the colorful model, the implemented translation actually uses obfuscated identifiers for

these signatures.

107

4.6. Analysis

declaration, abstracted by procedure id(n, c). Since the color context of non-unique identifiers is always

disjoint, such labels will be unique. Then, whenever an identifier is called, it is expanded into the union of

all available renamed identifiers that are available in that context. For that purpose, we rely on the context

Γ to find all alternative declarations of the same identifier m. Being disjoint, in each variant at most one of

those references will be non-empty. This approach has, however, some limitations, namely when the call to

an element cannot be replaced by a union of identifiers. In particular, this occurs in signature extensions,

import statements, and assertions and predicates invoked in non-block commands. In these situations,

to use amalagamated analysis a stronger type rule must be imposed over identifiers, so that exactly one

exists in the given context, namely:

∃1n ↦ (c1, 𝑘) ∈ Γ ⋅ ∀c0 ∈ ⌈c⌉ ∩ 𝐹 ⋅ c1 ⊆ c0

Γ, c ⊢𝑘 n

Figures 57 and 58 presents the automatically created amalgamated Alloy model for the e-commerce

colorful model, with some minor simplifications for readability (such as merging facts enforcing multiplicities,

not translating presence conditions for empty annotations). Note also that, although not present in the

kernel, blocks are simply treated as conjunctions. Notice how duplicated identifiers in the colorful model

are renamed (here, function id(n, c) is implemented as n_f1…fi for f1 ,… , fi ∈ c), and then calls to

that identifier are translated into the union of all renamed declarations. Since they are necessarily disjoint

due to the colorful type rules, only one of them will exist in each variant. Notice also how the assert (not

part of the kernel) is converted to a predicate so that the a precondition corresponding to the feature scope

can be introduced in the check command.

To show that the amalgamated version preserves the semantics of the colorful model, we must show

that for each concrete variant, the amalgamated model will behave as the corresponding projected model.

Note that an instance 𝑀 for an amalgamated model belongs to a particular variant c0 (the valuation of

Variant), and all signatures/fields that do not belong to that variant are necessarily empty. Let 𝑀|c0

represent instance 𝑀 with those signatures/fields and feature signatures removed, and with id(n, c)

identifiers renamed to their original name (possible since only one unique a identifier may exist per variant,

and thus per instance). Then, for a colorful model 𝑚, for each variant c0 ⊆ c, an instance 𝑀 must be

valid in ⟨⟨𝑚⟩⟩c and fact { isPresent(⌊c0⌋) } iff 𝑀|c0
is valid in ⟨𝑚⟩c0

, both according to the plain

Alloy semantics. It is easy to see that is the case. For signatures and fields, if they are absent they are

assigned multiplicity no, if present they are kept the same except for their multiplicity, which is moved

to a fact (a semantics-preserving refactoring, see Chapter 5). For expressions, if a branch is absent it is

108

4.6. Analysis

⟨⟨p1 … p𝑖⟩⟩{ k ,…, l } ≡

abstract sig Feature {}

one sig Fk, …, Fl extends Feature {}

sig Variant in Feature {}

⟨⟨p1⟩⟩∅ … ⟨⟨p𝑖⟩⟩∅

⟨⟨ 𝑐 p 𝑐 ⟩⟩c ≡ ⟨⟨p⟩⟩
c∪{ 𝑐 }

⟨⟨module n [n1,…,n𝑖]⟩⟩c ≡ module n [⟨⟨n1⟩⟩c ,… , ⟨⟨n𝑖⟩⟩c]
⟨⟨open n [n1,…,n𝑖]⟩⟩c ≡ open n [n1,…,n𝑖]

⟨⟨[abstract] [m] sig n [extends n1] { d1,… , d𝑖 } { e }⟩⟩c ≡
[abstract] sig id(n, c) [extends ⟨⟨n1⟩⟩c] { ⟨⟨d1⟩⟩c ,… , ⟨⟨d𝑖⟩⟩c } { ⟨⟨e⟩⟩c }

fact { not isPresent(c) implies no id(n, c) }
[fact { isPresent(c) implies m id(n, c) }]
fact { trans(d1, c) … trans(d𝑖) }

where

trans(𝑐 d 𝑐 , c1) = trans(d, c1 ∪ { 𝑐 })
trans(v : e, c1) = isPresent(c1) implies id(v, c1) in ⟨⟨n → e⟩⟩c else no id(v, c1)

⟨⟨[m] sig n in n1+…+n𝑗 { d1,… , d𝑖 } { e }⟩⟩c ≡
sig id(n, c) in⟨⟨n1⟩⟩c+…+⟨⟨n𝑗⟩⟩c { ⟨⟨d1⟩⟩c ,… , ⟨⟨d𝑖⟩⟩c } { ⟨⟨e⟩⟩c }

fact { not isPresent(c) implies no id(n, c) }
[fact { isPresent(c) implies m id(n, c) }]
fact { trans(d1, c) … trans(d𝑖) }

where

trans(𝑐 d 𝑐 , c1) = trans(d, c1 ∪ { 𝑐 })
trans(v : e, c1) = isPresent(c1) implies id(v, c1) in ⟨⟨n → e⟩⟩c else no id(v, c1)

⟨⟨ 𝑐 d 𝑐 ⟩⟩c ≡ ⟨⟨d⟩⟩
c∪{ 𝑐 }

⟨⟨v : m e⟩⟩c ≡ id(v, c) : set ⟨⟨e⟩⟩c
⟨⟨v : e1 m1 → m2 e2⟩⟩c ≡ id(v, c) : ⟨⟨e1⟩⟩c set → set ⟨⟨e2⟩⟩c
⟨⟨fact { e }⟩⟩c ≡ fact { ⟨⟨e⟩⟩c }

⟨⟨pred n [d1,… , d𝑖] { e }⟩⟩c ≡ pred id(n, c) [⟨⟨d1⟩⟩c ,… , ⟨⟨d𝑖⟩⟩c] { ⟨⟨e⟩⟩c }

⟨⟨fun n [d1,… , d𝑖] : e1 { e2 }⟩⟩c ≡ fun id(n, c) [⟨⟨d1⟩⟩c ,… , ⟨⟨d𝑖⟩⟩c] : ⟨⟨e1⟩⟩c { ⟨⟨e2⟩⟩c }

⟨⟨run { e } with c for s⟩⟩∅ ≡ run { isPresent(c) and ⟨⟨e⟩⟩c } for s

⟨⟨run { e } with exactly c for s⟩⟩∅ ≡ run { isPresent(⌊c⌋) and ⟨⟨e⟩⟩c } for s

⟨⟨check { e } with c for s⟩⟩∅ ≡ check { isPresent(c) implies ⟨⟨e⟩⟩c } for s

⟨⟨check { e } with exactly c for s⟩⟩∅ ≡ check { isPresent(⌊c⌋) implies ⟨⟨e⟩⟩c } for s

Figure 55: Paragraph translation into the amalgamated model with variability.

109

4.6. Analysis

⟨⟨none⟩⟩c ≡ none

⟨⟨univ⟩⟩c ≡ univ

⟨⟨iden⟩⟩c ≡ iden

⟨⟨n⟩⟩c ≡ id(n, c1) + … + id(n, c𝑖)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
c𝑗∈Γ(n)⋅c𝑗⊆c

⟨⟨�e⟩⟩c ≡ �⟨⟨e⟩⟩c

⟨⟨e1 � e2⟩⟩c ≡ { ⟨⟨e1⟩⟩c � ⟨⟨e2⟩⟩c if � ∉ {+, &, or, and}
trans(e1)� trans(e2) otherwise

where

trans(e) ≡ isPresent(⌊c⌋) implies ⟨⟨e⟩⟩c else neutral(�, arity(e))
⟨⟨all v : e1 | e2⟩⟩c ≡ all v : ⟨⟨e1⟩⟩c | ⟨⟨e2⟩⟩c
⟨⟨ 𝑐 e 𝑐 ⟩⟩c ≡ ⟨⟨e⟩⟩

c∪{ 𝑐 }

Figure 56: Expression translation into the amalgamated model with variability.

converted to the neutral element (the same as removing it), otherwise it is left unchanged. Lastly, run

and check commands are always unsatisfiable when absent in a variant, the former never producing an

instance (conjuncted with false) and the latter never producing a counter-example (pre-conditioned with

false).

110

4.6. Analysis

abstract sig Feature {}

one sig F1,F2,F3 extends Feature{}

sig Variant in Feature {}

fact FeatureModel {

(F1 not in Variant and F2 in Variant) implies some none else no none

(F1 not in Variant and F3 in Variant) implies some none else no none

}

sig Product {

images: set Image,

catalog: set Catalog,

category_0: set Category_0+Category_1,

category_1: set Category_0+Category_1

}

fact {

(F1 not in Variant) implies

catalog in Product → one Catalog else no catalog

(F1 in Variant and F3 not in Variant) implies

category_0 in Product → one (Category_0+Category_1) else no category_0

(F1 in Variant and F3 in Variant) implies

category_1 in Product → some (Category_0+Category_1) else no category_1

}

sig Image {}

sig Catalog {

thumbnails: set Image

}

fact Thumbnails {

(F1 not in Variant) implies

(all c:Catalog | c � thumbnails in (catalog � c) � images) else no none

(F1 in Variant) implies

(all c:catalog | c � thumbnails in ((category_0+category_1) � ((F2 not in Variant

implies inside else none→none)+(F2 in Variant implies ^inside else none→none))

� c � images)) else no none

}

sig Category_0 {

inside: one Catalog

}

sig Category_1 {

inside: one Catalog+Category_0+Category_1

}

fact {

not (F1 in Variant and F2 not in Variant) implies

no Category_0

not (F1 in Variant and F2 in Variant) implies

no Category_1

}

fact Acyclic {

(F1 in Variant and F2 in Variant) implies

(all c:Category_1+Category_1 | c not in c � ^inside) else no none

}

Figure 57: Amalgamated translation of the e-commerce model from Fig. 48 (except commands).

111

4.6. Analysis

pred Scenario {

some Product � images
(F1 in Variant) implies

(all c:Category_0+Category_1 | lone (category_0+category_1) � c)
else no none

}

run { Scenario } for 10

pred AllCataloged {

(F2 in Variant) implies

all p:Product | some (p � (category_0+category_1) � ^inside & Catalog)

}

check { (F1 in Variant and F2 in Variant) implies

AllCataloged } for 10

Figure 58: Amalgamated translation of the e-commerce model from Fig. 48 (commands).

112

5

MERG I N G C L ON ED A L L O Y MOD E L S W I T H CO LO R F U L R E F A C T O R I N G S

In this chapter we propose a refactoring approach for migrating a collection of plain Alloy models, possibly

developed with the clone-and-own approach, into a single Colorful Alloy model. As mentioned in Chapter 3,

modern software systems are often highly-configurable, effectively encoding a family of software products,

and feature-oriented software development is the most successful approach proposed to support the

development of such systems. In such a family-based development, maintenance is an important challenge,

and refactoring is one of the key activities used to improve the internal quality during software evolution. A

refactoring is a kind of transformation that changes the structure of the source code while preserving its

external behavior.

Variability annotations introduce an additional complexity layer in the development process, making

refactoring crucial to keep software maintainable and understandable. However, classical refactoring is

not well-suited for feature-oriented development, since it does not take into account the behavior of a SPL

as a whole. SPL refactoring must consider all variants, in particular, the set of possible variants and the

behavior of each variant must be preserved (Schulze et al., 2012). Furthermore, typical code refactoring

laws do not suffice for formal software design, since most refactoring laws are typically too coarse-grained,

focusing on constructs such as entire functions or classes. Given the high level of abstraction on which

design is performed, to improve the quality of a specification one might need also fine-grained refactoring

laws, for example, affecting just part of an assertion.

As discussed in Section 3.4, one of the standard ways to implement multiple variants in a SPL is through

the clone-and-own approach. However, as the cost to maintain the clones and synchronize changes

in replicas increases, developers may benefit from migrating (by merging) such variants into a single

feature-oriented artifact. In fact, even when feature-oriented development has been fully adopted, it is

useful in practice to switch between the two perspectives (Rubin et al., 2015). Fully-automated approaches

for clone merging (e.g., the technique proposed by Rubin and Chechik (2012), discussed in Section 3.4)

assume a quantifiable measure of quality to guide the process, but such measure is not easy to define

113

5.1. Migrating Code Clones into an SPL with Refactoring

when the goal is to merge code, and even less so when the goal is to merge formal abstract specifications.

Alternative techniques where the user still somehow controls the merging process have been proposed. In

particular, Fenske et al. (2017) have proposed a migration strategy where variant preserving refactorings

were defined to support the user in performing step-wise, semi-automated transformations, a technique

that inspired our own proposal for migrating plain Alloy clones into a single Colorful Alloy model.

In this chapter we start by reviewing the proposal of (Fenske et al., 2017) in Section 5.1. Then,

in Section 5.2 we propose a catalog of variability-aware refactoring laws for Colorful Alloy, covering all

model constructs – from structural declarations to axioms and assertions – and granularity levels – from

whole paragraphs to formulas and expressions. Then, in Section 5.3 we show how these refactorings can

be used to migrate a set of legacy Alloy clones into a colorful SPL using an approach similar to the one

of (Fenske et al., 2017). Fine-grained refactoring is particularly relevant in this context: design in Alloy is

done at high levels of abstraction and variants often introduce precise changes – refactoring only at the

paragraph level, likewise the refactorings proposed by Gheyi (2007) (and presented in Section 2.3), would

lead to unnecessary code replication and a difficulty to identify variability points. Finally, in Section 5.4 we

also introduce an automatic merging strategy that composes together several refactorings, and that can be

used to simplify the task of the user when migrating clones to a managed SPL design.

5.1 Migrat ing Code Clones into an SPL with Refactor ing

Fenske et al. (2017) propose a technique for migrating cloned product variants into an SPL that relies on

variant-preserving refactorings. This technique was applied to Java code clones, with the resulting SPL

encoded using Feature-Oriented Programming (FOP) (Prehofer, 1997), a composition-based technique

where all code artifacts that implement each feature are modularized in different units, called feature

modules. The composition technique used to derive a specific variant implementation allows feature

modules being composed later to refine definitions introduced previously, namely by adding fields or

methods, by adapting the behaviour of methods by calling the original implementation, or by completely

overriding the previous definition.

The process of the variant-preserving migration is shown in Fig. 59. Suppose we have 𝑛 product variants

𝑝1, 𝑝2,⋯ , 𝑝𝑛, possibly sharing a large amount of code, to be migrated into a single FOP SPL. In the

first step, the process creates a trivial initial SPL whose FM contains 𝑛 features 𝑝1, 𝑝2,⋯ , 𝑝𝑛 grouped

in a single alternative relation, each of which representing a product. Furthermore, the source code

of each variant becomes a separate feature module associated with the respective feature. This FOP

114

5.1. Migrating Code Clones into an SPL with Refactoring

Figure 59: Clone migration process of (Fenske et al., 2017)

implementation together with the FM entails 𝑛 different configurations 𝐶1, 𝐶2,… , 𝐶𝑛 each with exactly

one of the features, and we can easily recover the original variant 𝑝𝑖 through configuration 𝐶𝑖. This first

step does not yield any improvement in reuse, but rather provides the basis for the subsequent iterative

variant-preserving refactoring process.

Then a step-wise refinement process is applied and repeated as often as needed in order to improve

the quality of the SPL implementation. This process uses a combination of extractive and preparatory

variant-preserving refactorings: the goal of the former is to move identical code fragments (including

different elements, such as fields or methods) introduced by a set of features into a common one and

higher up in the feature hierarchy, while the latter focus on aligning implementations with Type-2 clones (for

example, identical methods with different names) so that extractive refactorings can be applied. Variant-

preserving refactorings (Schulze et al., 2012) extend the notion of behavior-preservation to SPLs, ensuring

that all potential products within an SPL remain compilable and keep their previous behavior, and that

all configurations that were valid before the refactoring must remain valid afterwards. This behavior-

preservation notion allows the introduction of new variants as long as they do not affect the behavior of the

existing ones.

The key extractive variant-preserving refactoring used in this work is Pull Up to Common Feature, an

extension to FOP of the Pull Up refactoring first introduced by Fowler (2018) for object-oriented code. The

goal of the Pull Up refactoring is to move equal definitions of class members (for example, methods or

fields) to a common super-class, thus reducing code clones. The goal of the Pull Up to Common Feature is

similar, but the idea is to move equal definitions of class members up in the feature hierarchy (instead of

up in the class hierarchy) from a set 𝐹𝑠 of source features {𝑓𝑠1
,… , 𝑓𝑠𝑛

} to a single target feature 𝑓𝑡. There

are several versions of this refactoring, but we will detail here the version applied to methods, the Pull Up

Method to Common Feature. Notice that this refactoring should be applied only to Type-1 clones, after the

115

5.1. Migrating Code Clones into an SPL with Refactoring

common code has been consolidated in the initial SPL. Given a method 𝑚 and a class 𝑐 the goal is to

create 𝑐 in 𝑓𝑡 (if it does not exist already) and define 𝑚 in that class, deleting all definitions of 𝑚 in the

source features 𝑓𝑠 ∈ 𝐹𝑠. To be variant-preserving, this refactoring has several preconditions:

1. Each source feature 𝑓𝑠 ∈ 𝐹𝑠 contains the class 𝑐 with method 𝑚.

2. All fields and methods referred by 𝑚 must be defined in the target feature 𝑓𝑡 or in one of the features

implied by it.

3. 𝑓𝑡 must be a concrete feature, that is, one containing code (instead of an abstract feature that is just

used in the FM to organize other features, for example the parent feature of an alternative relation

between concrete features).

4. If 𝑐 already exists in 𝑓𝑡 it must not declare 𝑚.

5. Any valid configuration that contains an 𝑓𝑠 ∈ 𝐹𝑠 must contain 𝑓𝑡 and vice-versa (the latter prevents

𝑚 from shadowing other definitions in features composed before 𝑓𝑡 in undesired configurations

containing 𝑓𝑡 but not one of the source features).

6. No valid configuration containing an 𝑓𝑠 ∈ 𝐹𝑠 may contain a 𝑓𝑑 ∈ 𝐹 − 𝐹𝑠 that contains a class 𝑐

with 𝑚 and that is composed after 𝑓𝑡 and before 𝑓𝑠 (to prevent 𝑚 from being overwritten or refined

before 𝑓𝑠 being composed).

The most important issue with this refactoring is identifying the appropriate target feature 𝑓𝑡, namely

one that obeys the above preconditions. If all source features have a common parent, then that parent

feature might be used as the target feature (if it satisfies all the preconditions), otherwise a new target

feature can be created. In the latter case, first an appropriate parent feature 𝑓𝑝 is selected (required to

satisfy only some of the pre-conditions but not all of them, for example it might not be concrete or not imply

one of the source features) and then 𝑓𝑡 is created as a concrete optional child of 𝑓𝑝. To fulfill precondition

5 a cross-tree constraint is created stating that 𝑓𝑡 is selected if and only if one of the source features is

selected. For example, in Fig. 59 feature 𝑓1 could be the target feature created by the Pull Up Method to

Common Feature to refactor a cloned method in features 𝑝1 and 𝑝3, hence the new cross tree constraint

𝑓1 ↔ (𝑝1 ∨ 𝑝3). The corresponding set of configurations also changes according to the new added

features during the refactoring. For instance, configuration 𝐶1 is now changed to include both feature 𝑓1
and feature 𝑝1.

As mentioned above, the Pull Up to Common Feature refactoring only applies to identical codes fragments

from source code (Type-1 clones). For dealing with Type-2 clones, for example methods with the same

116

5.2. Refactoring Rules for Colorful Alloy

implementation but distinct names, the preparatory Rename refactoring should used first, to enable the

later application of Pull Up to Common Feature. One important thing in this refactoring step is to update

all the references to the new name. Otherwise, compilation errors would shown up in variants that contain

the feature of the element that was renamed.

This clone migration process was implemented in Eclipse on top of other tools, namely FeatureIDE (Thüm

et al., 2014), the Eclipse refactoring framework, and copy and paste detectors. The latter were used to

implement Type-1 and Type-2 clone detection, to suggest potential applications of the Pull Up to Common

Feature and Rename refactorings. The authors also implemented an automated migration strategy that

just applies repeatedly the former refactoring to all detected Type-1 clones. They evaluated the migration

process by applying it to five variants of Android games developed with Java with a high-percentage of

cloned code (in total around 69% of the LOCs were identified as inter-feature code clones), by measuring

the reduction in the total LOCs. Since the technique only considers Type-1 and Type-2 clones (meaning that

methods with even very small differences in the implementation could not be refactored), the automatic

migration strategy only achieved a reduction of 4.2% of the total LOCs, with an additional 15.8% reduction

after applying preparatory Rename refactorings. In the final FM, 15 additional target features were created

to group common code.

5.2 Refactor ing Rules for Colorful Al loy

This section proposes a catalog of variant-preserving refactorings for Colorful Alloy, complementing the

non-variability-aware ones previously proposed for standard Alloy (Gheyi, 2007), which were presented

in Section 2.3. Although the main use of this catalogue will be in our clone migration technique, which

is inspired by the technique described in the previous section, they can also be used to promote the

quality and maintenance of Colorful Alloy models, while preserving the set of variants and their individual

behavior. Although the general idea of our technique for clone migration is similar to the work of (Fenske

et al., 2017), in the sense that we first migrate all clones into an initial trivially correct SPL which is then

improved by variant-preserving refactorings, there are some key differences that justify our particular choice

of refactorings, apart from the obvious ones that our technique applies to formal design instead of code,

and targets an annotative approach, instead of a compositional one:

• We will not consider alignment issues at all, assuming that names of entities that model the same

concept in different variants have been previously made equal. The name alignment problem is

mostly orthogonal to the migration problem: some automation can be provided to help with that,

117

5.2. Refactoring Rules for Colorful Alloy

for example using clone detection tools, but mostly it is up to the user to decide when two entities

are to be considered the same. For example, in the process proposed by Fenske et al. (2017), the

automatic migration strategy did not include the Rename refactoring, which was left to the user to

be applied.

• However, we intend to address not only Type-1 code clones, but also Type-3 ones, namely to

enable the merging of two entities (predicates, facts, etc) whose specification might differ. To that

end we propose several refactorings that work on the formula and expression level, a feature that

distinguishes our approach from other works, allowing finer variability annotations, as is common in

feature-oriented design, particularly in the clone-and-own context where changes may be small. This

also distinguishes our approach from that of (Gheyi, 2007), where the proposed Alloy refactorings

are coarse-grained.

• Unlike the technique of (Fenske et al., 2017), our refactorings do not create new features nor change

the FM (as was the case with the Pull Up to Common Feature refactoring). We believe domain

analysis, where the variability is modelled (with FMs), should be an orthogonal (and prior) task to

clone migration, and that the developer should be ultimately responsible for deciding which features

exist and how are they related. As such, we will assume that prior to migration the final FM has

been defined and each clone has already been labeled with the configuration (set of features) it

implements.

The refactoring laws for Colorful Alloy are presented in the form of an equation between two templates

(with square brackets marking optional elements), following the style from (Gheyi, 2007), under the context

of a particular FM 𝐹 extracted from the model under analysis (as described in the previous chapter). Unlike

in the refactoring laws of (Gheyi, 2007), our templates can be matched to part of a model (and not the all

model), meaning that the refactoring is just to be applied locally to that part. As long as the preconditions

are met and the left or right templates matched, the refactoring can be applied in either direction. Also,

our notion of equivalence is different: we do not consider only a subset of relevant signatures and fields,

but all that are declared in the model.

Throughout the section, 𝑐 and 𝑐 will denote a positive or negative annotation for feature 𝑐, while

𝑐 will denote either a positive or negative annotation for 𝑐; moreover, 𝑐 will denote a (possibly empty)

sequence of positive or negative annotations1. Models are assumed to be type checked when the rules

1 Essentially 𝑐 is just a different notation for c, as used in the previous chapter, the only difference being that the annotations in

the former have a particular order while the latter is an unordered set. We believe that this alternative notation improves the

readability of the refactoring laws presented in this section.

118

5.2. Refactoring Rules for Colorful Alloy

are applied, so without loss of generality, in an expression 𝑐 e 𝑐 we assume that the features 𝑐 in the

closing annotations appear in the reverse order as those in the opening annotations, that there are no

contradictory annotations, and that only supported elements of the AST are annotated. We use ann to refer

to any model element amenable of being annotated (possibly itself already annotated), exp and frm for

expressions and formulas, respectively, n for identifiers, ds for (possibly-annotated) relation declarations,

and scp for scopes. We assume that using the extracted FM 𝐹 (a set of configurations) we can answer

simple questions about the FM, namely whether a particular set of features 𝑎 entails a particular feature

set 𝑏 , denoted by 𝐹 ⊧ 𝑎 → 𝑏 , which is defined as follows.

𝐹 ⊧ 𝑎 → 𝑏 iff ∀ 𝑐 ∈ 𝐹 ⋅ 𝑎 ⊆ 𝑐 → 𝑏 ⊆ 𝑐

A n n o t a t i o n L a w s The first set of rules we address manage the feature annotations which, as will

be shown, are often useful to align annotations on elements to enable more advanced refactorings. They

act essentially as the preparatory refactorings in (Fenske et al., 2017).

Law 11 (Annotation reordering).

𝑎 𝑏 ann 𝑏 𝑎 =𝐹 𝑏 𝑎 ann 𝑎 𝑏

This basic rule arises from the commutativity property of conjunctions, and allows users to reorganize

feature annotations. Therefore, users can rearrange the order of marked features on elements as needed.

For example, the field category declaration inside signature Product (Fig. 48, l. 11), marked with

features 1 3 , could alternatively be declared as follows.

3 1 category : one Category 1 3

Law 12 (Redundant annotations).

𝑎 𝑏 ann 𝑏 𝑎 =𝐹 𝑎 ann 𝑎

provided

(↔) 𝐹 ⊧ 𝑎 → 𝑏 and ann ≠ some none.

This rule relies on the FM to identify redundant annotations that can be removed or introduced. In

order to not affect the implicitly specified FM (from which 𝐹 is extracted) its application is forbidden for

some none formulas. For instance, if the FM imposes 2 → 1 (as in our example), then whenever a

2 annotation is present 1 is spurious, and whenever 1 is present 2 is spurious. In an extreme case it

119

5.2. Refactoring Rules for Colorful Alloy

can also be used to remove duplicated annotations, since trivially 𝑐 → 𝑐 . Similar rules are defined

to manage the annotations in the feature scope of commands. In the e-commerce example, using this

refactoring, the declaration of signature Category for variant 1 2 (l. 26–28) could be simplified as follows.

2 sig Category {

inside: one Catalog+Category

} 2

S i g n a t u r e L a w s The next set of refactoring rules manage signatures with shared presence

conditions, including their merging. In particular, most refactorings from (Gheyi, 2007), and others, to

remove syntactic sugar constructs from signatures, must be adapted to the colorful context. Here we

present a few as examples.

Law 13 (Remove signature multiplicity qualifier).

𝑎 [abstract] mlt sig n [ext] {⋯} 𝑎 ==F

𝑎 [abstract] sig n [ext] {⋯} 𝑎

𝑎 fact { mlt n } 𝑎

where

mlt ∈ {lone, one, some}.

This law removes multiplicity of signatures with an additional fact constraint. This rule is similar to that

of normal Alloy, with the only difference being that the same feature expression as the original signature

needs to be marked on the additional fact which indicates that the fact only applies when the original

signature is selected. This rule is very useful as a preparatory refactoring in merging cloned variants,

since signatures with the same identifier but different multiplicity often occur in systems developed with

clone-and-own approaches. Using this law we can then remove these multiplicity constraints to enable

further merging.

Law 14 (Remove abstract qualifier).

𝑎 abstract sig n [ext] {⋯} 𝑎

𝑎 𝑏 sig n0 extends n {⋯} 𝑏 𝑎

⋯

𝑎 𝑐 sig n𝑙 extends n {⋯} 𝑐 𝑎

=𝐹

𝑎 sig n [ext] {⋯} 𝑎

𝑎 𝑏 sig n0 extends n {⋯} 𝑏 𝑎

⋯

𝑎 𝑐 sig n𝑙 extends n {⋯} 𝑐 𝑎

𝑎 fact { n= 𝑏 n0 𝑏 +⋯+ 𝑐 n𝑙 𝑐 } 𝑎

provided

(↔) 𝑙 ≥ 0.

120

5.2. Refactoring Rules for Colorful Alloy

This law removes the abstract qualifier from signature declarations. The last line on the right-hand

side of the law adds an additional fact that constrains the relationship between a parent signature and

all its sub signatures. Law 13 and Law 14 remove syntactic sugar annotations from signatures, and are

often used as a preparatory step to support the following merge signature refactorings. Note however, that

while Law 13 is a direct adaptation of the rules for normal Alloy by considering an annotation context 𝑎 ,

that is not the case for Law 14, where the possible distinct annotations of the children signatures must be

taken into consideration.

Law 15 (Merge signature).

𝑎 𝑏 sig n [extends n0] {

ds0,…,ds𝑘 } 𝑏 𝑎

𝑎 𝑏 sig n [extends n0] {

ds′
0,…,ds

′
𝑙 } 𝑏 𝑎

=𝐹

𝑎 sig n [extends n0] {

𝑏 ds0 𝑏 ,…, 𝑏 ds𝑘 𝑏 ,

𝑏 ds′
0 𝑏 ,…, 𝑏 ds′

𝑙 𝑏 } 𝑎

Signatures cannot be freely merged independently of their annotations, since in Colorful Alloy they are

not sufficiently expressive to represent the disjunction of presence conditions. Signatures with the same

identifier can be merged if they partition a certain annotation context 𝑎 on 𝑏 , in which case the latter can

be dropped (but pushed down to the respective field declarations). Due to the opposite 𝑏 annotations the

two signatures never coexist in a variant, and the merged signature will exist in exactly the same variants,

those determined by 𝑎 . Notice that these laws act on signatures without qualifiers. If qualifiers are

compatible between the two signatures, they can be reintroduced after merging by applying the syntactic

sugar laws in the opposite direction. Similar laws are defined for merging inclusion signatures (declared

with in instead of extends).

Returning to the e-commerce example of Fig. 48, it could be argued that the declaration of two distinct

Category signatures under 1 depending on whether 2 is also selected or not, is not ideal (l. 23–28).

Since neither signature has other qualifiers, Law 15 can be applied directly from left to right to merge the

two signature declarations, resulting in the following single declaration.

1 sig Category {

2 inside: one Catalog 2 ,

2 inside: one Catalog+Category 2

} 1

Notice that fields are left unmerged by this refactoring. These will be the target of a separate set of

refactorings to be presented below.

121

5.2. Refactoring Rules for Colorful Alloy

F i e l d L a w s Much like signatures, fields must be stripped down of syntactic sugar constructs in

order to be merged, which also amounts to adapting fields refactoring from (Gheyi, 2007), and others, to

the colorful context.

Law 16 (Remove binary field multiplicity qualifier).

𝑎 sig n {

𝑏 n0: mlt exp 𝑏 ,

… ,

ds

} 𝑎

==F

𝑎 sig n {

𝑏 n0: set exp 𝑏 ,

… ,

ds

} 𝑎

𝑎 𝑏 fact {

all x:n | mlt x � n0

} 𝑏 𝑎

where

mlt ∈ {lone, one, some} and 𝑥 is a fresh variable.

This law moves the multiplicity constraint of a binary field into a properly annotated fact. Similar laws

are defined for higher-arity declarations. By omission one is the default multiplicity, which must also be

refactored out (rule omitted).

Law 17 (Merge binary field).

𝑎 𝑏 n: set exp1 𝑏 𝑎 ,

𝑎 𝑏 n: set exp2 𝑏 𝑎
==F 𝑎 n: set 𝑏 exp1 𝑏 + 𝑏 exp2 𝑏 𝑎

This law allows fields with the same identifier to be merged, even if they have different binding expressions,

if, like in signatures, they partition an annotation context 𝑎 . Again, similar rules are defined for other field

arities.

Back to the e-commerce example, the duplicated field inside introduced by the merging of signature

Category could be merged into a single field declaration, using Law 16 for removing multiplicities and

then using Law 17 for merging, resulting in

1 sig Category {

inside: set 2 Catalog 2 + 2 Catalog+Category 2

} 1

1 2 fact{ all x:Category | one x.inside } 2 1

1 2 fact{ all x:Category | one x.inside } 2 1

122

5.2. Refactoring Rules for Colorful Alloy

The laws for formulas and expressions, presented next, will further simplify this snippet and allow the

reintroduction of the multiplicities back into the declarations. Nonetheless, in general the merging of fields

may result in additional facts.

P a r a g r a p h L a w s Other paragraphs of Colorful Alloy can be more easily merged since there are

fewer syntactic sugar constructs for them.

Open statements can also be merged only when a feature partitions their annotation context.

Law 18 (Merge import).

𝑎 𝑏 open n[n1,…,n𝑘] [as n0] 𝑏 𝑎

𝑎 𝑏 open n[n1,…,n𝑘] [as n0] 𝑏 𝑎
=𝐹 𝑎 open n[n1,…,n𝑘] [as n0] 𝑎

Law 19 (Merge fact).

𝑎 fact [n] { frm1 } 𝑎

𝑏 fact [n] { frm2 } 𝑏
==F

fact [n] { 𝑎 frm1 𝑎 and 𝑏 frm2

𝑏 }

Facts, unlike the other paragraphs, are not called from other elements but always included in the model,

so they can be soundly merged for whatever feature annotations (including having no annotations at all).

For example, the two additional facts introduced after removing the multiplicities of the two variants of field

inside declaration can be merged as follows.

fact {

1 2 all x:Category | one x.inside 2 1 and

1 2 all x:Category | one x.inside 2 1

}

For the same reason, annotations around facts can also be pushed inside.

Law 20 (Fact annotation).

𝑎 fact [n] { frm } 𝑎 ==F fact [n] { 𝑎 frm 𝑎 }

Similarly to signatures and fields, other referable paragraphs can be merged when a feature partitions the

annotation context, as long as that annotation is pushed inside to the body expressions. For instance, two

variants of a predicate with the same number of arguments can be merged if they partition the annotation

𝑎 over 𝑏 . The respective body expressions are annotated with 𝑏 and 𝑏 and concatenated with the

and operator, and the type of each argument is equal to the union of the two original ones.

123

5.2. Refactoring Rules for Colorful Alloy

Law 21 (Merge predicate).

𝑎 𝑏 pred n [

n0:exp0,

… ,

n𝑘:exp𝑘

]

{ frm1 } 𝑏 𝑎

𝑎 𝑏 pred n [

n0:exp
′
0,

… ,

n𝑘:exp
′
𝑘

]

{ frm2 } 𝑏 𝑎

==F

𝑎 pred n [

n0: 𝑏 exp0 𝑏 + 𝑏 exp′
0 𝑏 ,

… ,

n𝑘: 𝑏 exp𝑘 𝑏 + 𝑏 exp′
𝑘 𝑏

]

{ 𝑏 frm1 𝑏 and 𝑏 frm2 𝑏 } 𝑎

Function refactoring is similar: the types of arguments, the return type, and the body are all merged

with the set union operator, after being properly annotated.

Law 22 (Merge function).

𝑎 𝑏 fun n [

n0:exp0,

… ,

n𝑘:exp𝑘

] : exp𝑘+1

{ exp𝑘+2 } 𝑏 𝑎

𝑎 𝑏 fun n [

n0:exp
′
0,

… ,

n𝑘:exp
′
𝑘

] : exp′
𝑘+1

{ exp′
𝑘+2 } 𝑏 𝑎

==F

𝑎 fun n [

n0: 𝑏 exp0 𝑏 + 𝑏 exp′
0 𝑏 ,

… ,

n𝑘: 𝑏 exp𝑘 𝑏 + 𝑏 exp′
𝑘 𝑏

] : 𝑏 exp𝑘+1 𝑏 + 𝑏 exp′
𝑘+1 𝑏

{ 𝑏 exp𝑘+2 𝑏 + 𝑏 exp′
𝑘+2 𝑏 } 𝑎

Assertions can also be referred inside commands, so their merging rule is similar to that of predicates.

124

5.2. Refactoring Rules for Colorful Alloy

Law 23 (Merge assertion).

𝑎 𝑏 assert n { frm1 } 𝑏 𝑎

𝑎 𝑏 assert n { frm2 } 𝑏 𝑎
==F

𝑎 assert n {

𝑏 frm1 𝑏 and 𝑏 frm2 𝑏

} 𝑎

Since these elements do not affect the model unless referred in other paragraphs, we can define

refactoring laws to introduce new declarations. Often these are useful as preparatory steps to allow the

subsequent merging of declarations. Here we exemplify with a rule for assertions.

Law 24 (Insert assertion).

𝜖 =𝐹 𝑎 assert n […] { frm } 𝑎

provided

(→) for any other assertion n annotated with 𝑏 , 𝐹⊧̸ 𝑎 ∧ 𝑏 ;

(←) for any check command referring to n with feature scope 𝑏 , 𝐹⊧̸ 𝑏 → 𝑎 .

C omma n d L a w s Commands are bounded by the feature scope rather than annotated. If two

commands act on a partition of the variants, they can be merged into a command addressing their union.

As an example, we show the laws for non-block commands.

Law 25 (Merge predicate run command).

run n [for scp] with 𝑎 , 𝑏

run n [for scp] with 𝑎 , 𝑏
=𝐹 run n [for scp] with 𝑎

Law 26 (Merge assertion check command).

check n [for scp] with 𝑎 , 𝑏

check n [for scp] with 𝑎 , 𝑏
=𝐹 check n [for scp] with 𝑎

F o rm u l a a n d E x p r e s s i o n L a w s Lastly, we provide refactoring laws for formulas and ex-

pressions. This distinguishes our approach from other works, allowing finer variability annotations, as is

common in feature-oriented design, particularly in the clone-and-own context where changes may be small.

The first law allows the removal of an annotated neutral element on the right-hand side of a binary

operator. Since the target operators are commutative, it is also possible to use it to remove an annotated

neutral element in the left-hand side.

125

5.2. Refactoring Rules for Colorful Alloy

Law 27 (Remove neutral element).

ann op 𝑎 neutral(op, arity(ann)) 𝑎 ==F ann

where

op ∈ {+, &, and, or}.

When the annotations of the left- and the right-hand sides of a binary operator form a partition it is

possible to replace the operator by its dual, since in each variant only one of the sides is considered.

Law 28 (Exchange operator).

𝑎 ann1 𝑎 op1 𝑎 ann2 𝑎 ==F 𝑎 ann1 𝑎 op2 𝑎 ann2 𝑎

where

op1 ∈ {+, &, and, or} and op2 is the dual operator of op1.

The following law arises from the distributive property of operators and can be applied to both annotated

formulas and expressions.

Law 29 (Merge common expression).

𝑎 ann1 op2 ann2 𝑎

op1

𝑎 ann1 op2 ann3 𝑎

==F ann1 op2 (𝑎 ann2 𝑎 op1 𝑎 ann3 𝑎)

where

op1 ∈ {+, &, and, or} and op2 is the dual operator of op1.

By combining it with the previous refactoring we can obtain several useful variants of this law. For

example, 𝑎 ann1 𝑎 op 𝑎 ann1 op ann2 𝑎 can be refactored to ann1 op 𝑎 ann2 𝑎 , by first

introducing the neutral element of op in the left-hand side, then applying Law 29, and finally removing

the annotated neutral element with Law 27. An extreme case is when we have 𝑎 ann 𝑎 op 𝑎 ann 𝑎 ,

which can be refactored into ann. Since the operators are commutative we can use this law to merge a

common expression in the right-hand side of op2.

For the same binary operators it is also possible to merge two expressions annotated with the same

features, as long as there is a third expression that is not merged.

Law 30 (Merge different expressions).

𝑎 ann1 𝑎 op 𝑎 ann2 𝑎 op ann3 ==F 𝑎 ann1 op ann2 𝑎 op ann3

126

5.2. Refactoring Rules for Colorful Alloy

where

op ∈ {+, &, and, or}.

The reason why this third expression is required is due to the semantics of the language. Expression

𝑎 ann1 op ann2 𝑎 will be replaced by the the neutral element of the enclosing operator if 𝑎 is not

selected. If that operator is different from op we will end up with a different expression then the one

obtained in 𝑎 ann1 𝑎 op 𝑎 ann2 𝑎 when 𝑎 is not selected, which is the neutral element of op.

There is a special case when the third expression is not required, which is when we have a top-level

conjunction of two expressions (for example in a fact). In that case we can merge because, when 𝑎 is not

selected, the all top-level expression it is just removed, which is equivalent to replacing it by the neutral

element of conjunction.

The following laws allow the combination of inclusion tests over the same expression, for whatever

annotations, and arise from the properties of intersection and union.

Law 31 (Merge left-side inclusion).

𝑎 exp1 in exp2 𝑎 and

𝑏 exp1 in exp3 𝑏
==F exp1 in 𝑎 exp2 𝑎 & 𝑏 exp3 𝑏

Law 32 (Merge right-side inclusion).

𝑎 exp2 in exp1 𝑎 and

𝑏 exp3 in exp1 𝑏
==F 𝑎 exp2 𝑎 + 𝑏 exp3 𝑏 in exp1

Since an equality test can be refactored into the conjunction of two inclusion tests it also possible to

use this law to merge some equality tests. In particular if the annotations form a partition it is possible to

combine it with Law 28 to obtain the following law.

Law 33 (Merge equality).

𝑎 exp1 = exp2 𝑎 and

𝑎 exp1 = exp3 𝑎
==F exp1 = 𝑎 exp2 𝑎 op 𝑎 exp3 𝑎

where

op ∈ {+, &}.

It is also possible to merge two multiplicity tests with the following law, if their annotations are a partition.

127

5.2. Refactoring Rules for Colorful Alloy

Law 34 (Merge multiplicity test).

𝑎 mlt exp1 𝑎 op1

𝑎 mlt exp2 𝑎
==F mlt (𝑎 exp1 𝑎 op2 𝑎 exp2 𝑎)

where

mlt ∈ {no, lone, one, some}, op1 ∈ {and, or}, op2 ∈ {+, &}.

Likewise for quantifiers.

Law 35 (Merge quantification).

𝑎 qnt n:exp1 | frm1 𝑎 and

𝑎 qnt n:exp2 | frm2 𝑎
==F

qnt n: 𝑎 exp1 𝑎 + 𝑎 exp2 𝑎 |

𝑎 frm1 𝑎 and 𝑎 frm2 𝑎

where

qnt ∈ {all, some, lone, one, no}.

Finally, we present two laws for merging expressions involving the essential Alloy join operator. Since

join does not distribute over intersection, merging the intersection of two join expressions (when one of the

operands is the same) is only possible when the respective annotations form a partition.

Law 36 (Left distribute join over intersection).

𝑎 exp1 � exp2 𝑎 & 𝑎 exp1 � exp3 𝑎 ==F exp1 � (𝑎 exp2 𝑎 & 𝑎 exp3 𝑎)

Since the join operation distributes over union, merging the union of two join expressions can be done

independently of the annotation context.

Law 37 (Left distribute join over union).

𝑎 exp1 � exp2 𝑎 +

𝑏 exp1 � exp3 𝑏
==F exp1 � (𝑎 exp2 𝑎 + 𝑏 exp3 𝑏)

Similar laws are defined for right distributivity.

Back to the fact resulting from the merging of the field inside, after applying Laws 19, 35, 34, 29, it

can be refactored into

fact{ 1 all x:Category | one x.inside 1 }

This allows the application of Laws 20 and 16 to push the multiplicity back into the field and remove the

fact.

128

5.3. Migrating Clones into a Colorful Alloy Model

1 sig Category {

inside: one 2 Catalog 2 + 2 Catalog+Category 2

} 1

Finally, with an application of Law 29, we can have the following declaration, meaning that a category

is always inside exactly one element, which is either a Catalog or another Category if hierarchical

categories are supported.

1 sig Category {

inside: one Catalog+ 2 Category 2

} 1

As another example, consider fact Thumbnails from our running example (Fig. 48,l. 18–21). With

Laws 35, 31 and 36 it can be refactored into

fact Thumbnails { all c:Catalog |

c.thumbnails in (1 catalog.c 1 & 1 category.(2 inside 2 + 2 ^inside 2).c 1).images

}

The resulting fact is more compact, but whether it improves model comprehension is in the eyes of the

designer.

5.3 Migrat ing Clones into a Colorful Al loy Model

As we have seen, approaches to SPL engineering can either be proactive – where an a priori domain

analysis establishes the variability points that guide the development of the product family, reactive – where

an existing product family is extended as new products and functionalities are developed, or extractive –

where the family is extracted from existing software products with commonalities (Krueger, 2001). Colorful

Alloy was initially conceived with the proactive approach in mind, with annotations being used precisely

to extend a base model with the variability points addressing each desired feature. The model in Fig. 48

could be the result of a such a proactive approach to the design of the e-commerce platform.

With plain Alloy, to develop this design we would most likely resort to the clone-and-own approach. First,

a base model, such as the one in Fig. 60 would be developed. This model would then be cloned and

adapted to specify a new variant adding support for categories, as depicted in Fig. 61. This model would

in turn be further cloned and adapted twice to support hierarchical or multiple categories. A final clone

would then be developed to combine these two features. These last three clones are not depicted, but

129

5.3. Migrating Clones into a Colorful Alloy Model

sig Product {

images: set Image,

catalog: one Catalog

}

sig Image {}

sig Catalog {

thumbnails: set Image

}

fact Thumbnails {

all c:Catalog | c.thumbnails in (catalog.c).images

}

pred Scenario {

some Product.images

}

run Scenario for 10

Figure 60: E-commerce base model (variant 1 2 3).

sig Product {

images: set Image,

category: one Category

}

sig Image {}

sig Catalog {

thumbnails: set Image

}

fact Thumbnails {

all c:Catalog | c.thumbnails in (category.inside.c).images

}

sig Category {

inside: one Catalog

}

pred Scenario {

some Product.images and all c:Category | lone category.c

}

run Scenario for 10

Figure 61: Clone introducing categories (variant 1 2 3).

they would very likely correspond to something like the projections of the colorful model in Fig. 48 over the

respective feature combinations. This section first presents an extractive approach that could be used to

migrate all such plain Alloy clone variants into a single Colorful Alloy model. Later we will also show how

this technique can be adapted for a reactive scenario, where each new clone variant is migrated into a

Colorful Alloy model already combining previous clones.

Our technique follows the idea proposed by Fenske et al. (2017) for migrating Java code clones into an

SPL: first combine all the clones in a trivially correct, but verbose, initial SPL, and then improve it with

a step-wise process using a catalog of variant-preserving refactorings. However, as we mentioned in the

beginning of the previous section there are some key differences in our approach: we don’t deal with

alignment issues (although we also require some preparatory refactorings, changing the name of entities is

130

5.3. Migrating Clones into a Colorful Alloy Model

1 fact FeatureModel {

2 2 1 some none 1 2 and

3 3 1 some none 1 3

4 }

5

6 1 2 3 sig Product {

7 images: set Image,

8 catalog: one Catalog

9 } 3 2 1

10 ...

11 run Scenario with 1 , 2 , 3 for 10

12

13 1 2 3 sig Product {

14 images: set Image,

15 category: one Category

16 } 3 2 1

17 ...

18 run Scenario with 1 , 2 , 3 for 10

19

20 1 2 3 sig Product {

21 images: set Image,

22 category: one Category

23 } 3 2 1

24 ...

25 run Scenario with 1 , 2 , 3 for 10

26 check AllCataloged with 1 , 2 , 3 for 10

27

28 1 2 3 sig Product {

29 images: set Image,

30 category: some Category

31 } 3 2 1

32 ...

33 run Scenario with 1 , 2 , 3 for 10

34

35 1 2 3 sig Product {

36 images: set Image,

37 category: some Category

38 } 3 2 1

39 ...

40 run Scenario with 1 , 2 , 3 for 10

41 check AllCataloged with 1 , 2 , 3 for 10

Figure 62: Part of the initial migrated e-commerce colorful model.

not one of them); we also address Type-3 clones (namely, our refactoring catalogue includes fine-grained

laws for expressions or formulas); our technique will not create features along the process. Regarding

the latter, we assume that prior to clone migration the user identified the implemented features and the

respective FM during domain engineering, and identified which variant (feature combination) corresponds

to each clone.

As such, to obtain the initial (trivially correct) Colorful Alloy model it suffices to migrate every clone to a

single model, annotating all paragraphs and commands of each clone with the feature expression that

131

5.3. Migrating Clones into a Colorful Alloy Model

exactly describes the respective variant. For example, for the e-commerce example, the base model of

Fig. 60 would be annotated with the feature expression 1 2 3 , since this clone does not specify any of

the three features, the clone of Fig. 61 would be annotated with the feature expression 1 2 3 , since

it specifies the variant implementing only simple categories, and so on. If some feature combinations

are invalid according to the FM (that is, there are only clones for some of the combinations), a fact that

prevents the forbidden combinations should also be added, similar to the FeatureModel fact of Fig. 48.

For the e-commerce example, part of the initial colorful model with all five variants is depicted in Fig. 62.

Notice that, since all of the elements of the different clones are included and annotated with disjoint feature

expressions, this Colorful Alloy model trivially and faithfully captures all the variants, although being quite

verbose.

After obtaining this initial model, the refactorings presented in the previous section can be repeatedly

used in a step-wise fashion to merge common elements, reducing the verbosity (and improving the

readability) of the model. For the structural elements the key refactorings are merging signatures (Law 15)

and fields (Law 17), but, as already explained, some additional preparatory refactorings might be needed to

enable those, for example reordering (or removing redundant) feature annotations or removing multiplicity

qualifiers.

For example, in the initial model of Fig. 62 we can start by merging signature Product (and the

respective fields) from clones 1 2 3 and 1 2 3 and obtain

2 3 sig Product {

images: set Image,

1 catalog: one Catalog 1 ,

1 category: one Category 1

} 3 2

and then merge this with the definition from clone 1 2 3 (by first removing the redundant feature

annotation 1 to enable the application of Law 15 – notice that from the FM we can infer that 2 implies

1) in order to obtain

3 sig Product {

images: set Image,

1 2 catalog: one Catalog 2 1 ,

1 category: one Category 1

} 3

The same result would be obtained if we first merged the declarations of Product from clones 1 2 3

and 1 2 3 , and then the one from clone 1 2 3 (in this case, to apply Law 15 we would first need

132

5.4. Automatic Merging Strategy

to remove the redundant annotation 2 , since from the FM we can also infer that 1 implies 2). By

repeatedly merging the variants of Product we can eventually get to the ideal (in the sense of having the

least duplicate declarations) definition for this signature.

sig Product {

images: set Image,

1 catalog: one Catalog 1 ,

1 category: set Category 1

}

1 fact {

all p:Product | 3 one p.category 3 and 3 some p.category 3

} 1

If we repeat this process with all other model elements, we eventually get a (slightly optimized, in terms of

number of declarations) version of the Colorful Alloy model in Fig. 48.

A similar technique can be used to migrate a new clone into an existing colorful model, thus enabling

a reactive approach to SPL engineering. Let us suppose we already have the ideal colorful model for

e-commerce, but we decide to introduce a new variant to support multiple catalogs when categories are

disabled (a new feature 4). The definition of Product for this clone would be

sig Product {

images: set Image,

catalog: some Catalog

}

To migrate this clone to the existing colorful SPL we would annotate the elements of the new variant with

the feature expression that characterizes it, 1 2 3 4 , annotate all elements of the existing SPL with

4 (since neither of its variants support this new feature), refine the FM to forbid invalid variants (adding

some none annotated with 1 4 to forbid the new feature in the presence of categories), and then

restart the refactoring process to improve the obtained model.

5.4 Automatic Merging Strategy

In order to simplify the application of the step-wise refactoring technique described in the previous section,

we also propose an automatic merging strategy that implements a sequence of refactoring laws in one

composed step. This strategy supports the developers in automating the tedious and error-prone merge

tasks and considerably reduces the number of steps (and overall time) to perform clone migration.

133

5.4. Automatic Merging Strategy

To merge the declarations of a particular signature, the strategy repeatedly tries to find pairs of declara-

tions of that signature that can be merged using Law 15, that is, where the respective annotations form

a partition of the variants (ignoring feature annotation order, by implicit application of Law 11). The two

declarations are first aligned using preparatory refactorings: if different, the multiplicity and abstract

qualifiers from each declaration are moved into facts with Laws 13 and 14. When no more pairs of

declarations can be merged by direct application of Law 15, the strategy tries to find a pair of declarations

that could be merged if (at most) one redundant feature is removed from one of the annotations. We

limit the search to one redundant feature for efficiency reasons. If such a pair of declarations is found,

the redundant feature is removed using Law 12 and the process resumes. Whenever a pair of signature

declarations is merged, a similar strategy is used to merge the field declarations inside. Similarly to

signatures, if necessary, the multiplicity annotations of fields are first removed with Law 16, and when

no pair of field declarations can be merged directly with Law 17, the strategy tries to find a pair where

removing one redundant feature would enable merging. Similar laws are used for fields with different

arities. To merge the respective bounding expressions the strategy for merging expressions detailed below

can be applied. In most cases it suffices to apply Law 29 to merge common expressions.

To illustrate this merging strategy, consider its application to signature Product in our example.

The strategy will first merge declarations whose annotations partition the variants, for example the two

declarations from clones 1 2 3 and 1 2 3 , and the two declarations from clones 1 2 3 and

1 2 3 . This choice would lead to the following result, where no more pairs of declarations can be directly

merged with Law 15.

2 3 sig Product {

images: set Image ,

1 catalog: some Catalog 1 ,

1 category: one Category 1

} 3 2

1 2 sig Product {

images: set Image,

category: set Category

} 2 1

1 2 3 sig Product {

images: set Image,

category: some Category

} 3 2 1

1 2 3 fact { all p: Product | some p.category } 3 2 1

1 2 3 fact { all p: Product | one p.category } 3 2 1

134

5.4. Automatic Merging Strategy

Note the two facts that were created to align the declarations of field category. At this point, the strategy

tries to find a pair of declarations that could be merged if one redundant feature is removed. For example,

if redundant feature 1 is removed from the third declaration then it could be merged with the first one. As

such, this redundant feature is removed, the automatic signature merging process resumed and those two

declarations merged. Afterwards, we would end up with two declarations for Product that could not be

directly merged using Law 15, namely with annotations 2 and 1 2 . Again, removing redundant feature

1 from the latter would enable the merging. After finishing the automatic signature and field merging

phase we would end up with the following single declaration for Product.

sig Product {

images: set Image,

1 2 3 catalog: some Catalog 3 2 1 ,

1 category: set Category 1

}

1 2 3 fact { all p: Product | some p.category } 3 2 1

1 2 3 fact { all p: Product | one p.category } 3 2 1

1 2 3 fact { all p: Product | some p.category } 3 2 1

1 2 3 fact { all p: Product | one p.category } 3 2 1

Notice that field catalog is still annotated with two redundant features (2 and 3) that the developer

may later opt to remove. The automatic strategy only removes redundant features if they enable the

merging of two declarations.

Import statements, facts, predicates, functions, assertions, and non-block commands with formulas can

then be merged with Laws 18, 19, 21, 22, 23, 25, and 26, respectively. Block commands are merged

with similar laws. Import statements, predicates, functions, assertions, and commands are merged using

a similar strategy to signatures. Pairs of paragraphs that can be directly merged with the respective laws

are first repeatedly processed, and once no more such pairs remain, the strategy tries to find a pair where

removing a redundant feature enables merging. Since facts can be merged irrespective of the annotations

they have, all facts with the same identifier will be merged in one step. Although in the above example the

facts created to align field declarations are not named, in the actual implementation they have an internal

identifier to ensure that the generated facts from each signature are merged separately. The annotated

formulas and expressions obtained after this iterative process are then merged by repeatedly applying laws

for formulas and expressions from left to right (with the exception of Law 28 that does not reduce the size

of the expression). In Laws 33 and 34, where there is a choice of operator to introduce in the result, the

strategy is currently opting for +. The automated strategy is also implicitly using commutative laws, for

135

5.4. Automatic Merging Strategy

example, also merging common expressions in the right-hand side with Law 29, and also applying the law

variants described above, namely the ones that result from combining Law 29 with Law 27.

Using this strategy, the five clones of our example could be merged in single step, obtaining the model

in Fig. 632. This model has some small differences when compared to the one in Fig. 48:

• Field catalog still has some redundant features in the respective annotation.

• There is a single declaration for field category, but an additional fact with the respective multiplicity

constraints in different variants.

• There is a single declaration for signature Category and the respective inside field.

• There is a single expression inside fact Thumbnails, and a & operator is obtained instead of + in

the sub-expression that chooses ^inside or inside depending on the presence of feature 2 .

• The annotations on fact Acyclic were pushed inside into the corresponding formula.

• There is one redundant feature 1 in the annotation of assertion AllCataloged, and this

annotation marks the all assertion instead of just the inner formula.

Although the resulting model is smaller, one may argue that some of the merged declarations can actually

reduce the comprehension, namely the single declaration for field category. If the user so wishes it

would be possible, after the automatic strategy, to apply some manual refactoring steps and obtain a model

identical to Fig. 48. For example, to obtain the same AllCataloged assert, we could start by removing

the redundant annotation with Law 12 and introduce a trivial assertion with the same name annotated with

the opposite feature using Law 24.

2 assert AllCataloged {

all p:Product | some (p.category.^inside & Catalog)

} 2

2 assert AllCataloged { no none } 2

These assertions can now be merged with Law 23, resulting in the following declaration.

assert AllCataloged {

2 all p:Product | some (p.category.^inside & Catalog) 2 and 2 no none 2

}

2 Currently our implementation pretty-prints the resulting models with spurious parenthesis, but here we opted to remove the

unnecessary ones to ease the understanding of the result. In the near future we intend to solve this issue, using a more

sophisticated pretty-printer.

136

5.4. Automatic Merging Strategy

1 fact FeatureModel {

2 -- 2 Hierarchical requires 1 Categories

3 2 1 some none 1 2

4 -- 3 Multiple requires 1 Categories

5 3 1 some none 1 3

6 }

7

8 sig Product {

9 images: set Image,

10 1 2 3 catalog: some Catalog 3 2 1 ,

11 1 category: set Category 1

12 }

13 fact {

14 1 all p: Product | 3 one p.category 3 and 3 some p.category 3 1

15 }

16

17 sig Image {}

18 sig Catalog {

19 thumbnails: set Image

20 }

21

22 fact Thumbnails {

23 all c:Catalog | c.thumbnails in

24 (1 catalog 1 & 1 category.(2 inside 2 & 2 ^inside 2) 1 .c).images

25 }

26

27 1 sig Category {

28 inside: one Catalog+ 2 Category 2

29 } 1

30

31 fact Acyclic {

32 1 2 all c:Category | c not in c.^inside 2 1

33 }

34

35 pred Scenario {

36 some Product.images and 1 all c:Category | lone category.c 1

37 }

38 run Scenario for 10

39

40 1 2 assert AllCataloged {

41 all p:Product | some (p.category.^inside & Catalog)

42 } 2 1

43 check AllCataloged with 1 , 2 for 10

Figure 63: E-commerce specification obtained with the automatic merging strategy.

Finally the formula can be simplified by removing the annotated neutral element using Law 27, resulting in

the exact same declaration of Fig. 48.

137

6

I M P L EMEN T A T I O N AND E V A L U A T I O N

This chapter describes the implementation of Colorful Alloy and its Analyzer, as well as its evaluation. The

latter has 3 main goals: to assess the expressiveness of the language, the performance and scalability of

the colorful analysis procedures, and the feasibility of the automated clone migration strategy. The colorful

representation of a model and the refactoring rules are implemented as an extension to the Alloy Analyzer,

as detailed in Section 6.1. Section 6.2 describes a set case studies modelled in Colorful Alloy following a

proactive approach to SPL engineering. Section 6.3 presents a set of Alloy clone families collected from

the literature, and the result of applying the migration strategy following a extractive approach to SPL

engineering. Lastly, Section 6.4 presents the performance results for the colorful models from Section 6.2

and Section 6.3, comparing the performance of the amalgamated analysis with that of a iterative analysis

based on projection.

6.1 The Colorful Al loy Analyzer

The Colorful Alloy language, the analysis procedures, and the catalog of refactorings were implemented

in the Alloy Analyzer1. Figure 64 presents an overview of the Colorful Alloy Analyzer, with the editor with

colorful backgrounds and annotations, and the visualizer showing a running scenario and a panel indicating

which variant it belongs to.

The colorful backgrounds and feature annotations are implemented in the Alloy editor, shown in the

left-hand side of the background window in Fig. 64. A colorful model consists simply of plain text, annotated

Alloy files, and is decoupled from the colorful Analyzer. Nonetheless, the colorful editor provides keyboard

shortcuts to support the introduction of features in the model. Pressing Ctrl and a number key (1 to 9)

inserts the respective positive annotation of the feature indicated by the number, while pressing Ctrl plus

1 All Colorful Alloy source code and example models are publicly available at https://github.com/chongliujlu/

ColorfulAlloy/.

138

https://github.com/chongliujlu/ColorfulAlloy/
https://github.com/chongliujlu/ColorfulAlloy/

6.1. The Colorful Alloy Analyzer

Figure 64: The e-commerce in the Colorful Analyzer, showing the editor and the visualizer.

Shift plus a number key inserts the corresponding negative feature annotation. If an excerpt of code is

selected in the editor, the annotation is applied in pair to wrap the selected text, otherwise an individual

annotation is added in the cursor position. Each annotation is presented in the editor with its assigned color.

Following the results from (Feigenspan et al., 2013), we selected low-saturation colors for each feature, to

avoid visual fatigue. For annotated code, the corresponding background color (for positive features) or a

colored strike-through line (for negative features) is added automatically in the editor. Therefore, the user

only needs to focus on introducing feature annotations and not worry about managing backgrounds. We

implement color mixing both for backgrounds and strike-through lines for elements annotated with multiple

features. While this was discarded in (Feigenspan et al., 2013) due to the number of features encountered

in C code, our approach supports a fixed small number of distinct features that we believe adequate for the

typical complexity of Alloy models, as we shall show in the remaining of this chapter. Analysis commands

are not wrapped in annotations, but provided a feature scope through comma-separated annotations, and

are not highlighted with background colors. The special annotation 0 can also be inserted by pressing Ctrl

+ 0). Using this annotation, in the e-commerce example used in this chapter where only five features are

used, the command run Scenario with exactly 1 , 2 , 3 , 4 , 5 for 2 can be replaced

with run Scenario with exactly 0 for 2.

Once the model is defined, the user can instruct the Colorful Analyzer to generate a scenario with a

certain property through a run command or to find a counter-example to a particular property that is

expected to hold through a check command. Annotation parsing errors (e.g., annotations not applied

139

6.1. The Colorful Alloy Analyzer

to a complete AST node) and typing errors (e.g., calling elements in invalid colorful contexts), as defined

in Chapter 4, are detected and reported when such commands are executed, and presented to the user

in the editor’s logging panel as in the regular Alloy Analyzer (right-hand side of the background window

in Fig. 64). As with normal Alloy, these commands are provided with a scope indicating the maximum

size of model’s signature to be considered, but in the colorful Analyzer they can additionally be provided

with a feature scope to control the variants that should be explored. These are a set of (positive and

negative) features, and analysis will either consider all variants for which that presence condition holds,

or the smallest variant if marked with exactly. In general, the analysis implements the amalgamated

translation from Section 4.6, unless the command is analyzing exactly one variant, in which case the

projected variant is analysed (see Section 6.4 for performance evaluation). To help users understand the

semantics of the colorful analysis, a link in the logging panel at the end of the execution information allows

the inspection of the corresponding amalgamated model (much like in plain Alloy the resulting Kodkod

code can also be inspected). In the example, command run Scenario with 1 for 2 allows the

user to explore scenarios for all 16 variants where feature 1 is selected.

Instances or counter-examples generated during the analysis are presented in the Analyzer’s visualizer,

as shown in the foreground window in Fig. 64. Since the amalgamated analysis converts features into

regular Alloy elements, they would appear as regular instance nodes in the visualizer, which could make

it unclear to the user to identify to which variant the presented instance applied. For a feature-oriented

perspective, the features are extracted from the generated instance and presented in the top right corner

of the visualizer. Each 𝑐 (1 ≤ 𝑐 ≤ 9) represents the presence of a feature in the variant under analysis,

and 𝑐 its absence (only features relevant for the model under analysis are presented, in this case five).

Therefore, the example shown in Fig. 64 shows a scenario for variant 1 2 4 5 . Iteration can then be

used to inspect alternative scenarios, which will may either present a different scenario for the same variant

or an alternative variant. Finer, feature-aware scenario exploration operations are left as future work.

The proposed catalog of refactoring rules is also implemented on top of the colorful Analyzer. Most

individual refactorings are implemented in a contextual menu, activated by right-clicking an element in the

editor. These include the rules to manage annotations and all those that do not act at the expression level,

applied from the left-hand side to the right-hand side of the rule, which reduces the number of declarations in

the model (rules over expressions are not implemented at this level because their context would be difficult

to identify by simply right-clicking an element). The Analyzer automatically detects which refactorings can

be applied in the selected context by inspecting the parsed AST. It also scans the model facts to extract

FM constraints from statements with the shape 𝑎 some none 𝑎 , so that the application of laws with

140

6.1. The Colorful Alloy Analyzer

Figure 65: Automatic merge strategies.

preconditions on feature dependencies (namely Law 12) can be automated. For efficiency reasons, the

prototype implements an incomplete decision procedure to check these preconditions, considering only

simple implications directly derived from the FM. This does not affect the soundness of the procedure but

may fail to automatically detect some possible rule applications. The automatic merging strategy from

Section 5.4 has also been implemented and is accessible through the main menu. Besides the application

of the automatic strategy to all elements, the user may also choose to only automatically merge certain

elements, such as signatures or facts.

Figure 65 shows the menu with the automatic merge refactorings for our running example. If the option

to automatically merge every element is selected, a model similar to that from Fig. 63 would be achieved,

as depicted in Fig. 66. As already discussed, in this version certain redundant annotations are still present,

such as 2 and 3 over the catalog field due to the 1 annotation. These can removed using the

contextual menu through right-clicking in catalog as shown in Fig. 66. The other merging strategies

could be used for a more step-wise migration. For instance, if the option to merge signature Product

was selected we would end up with three declarations for Product, since merging them any further

requires the removal of a redundant feature. This could be performed manually through right-clicking in

141

6.2. Proactive Case Studies

Figure 66: Contextual refactoring menu Remove Feature.

Product, and then selecting again the automatic merge signature for Product would result in a single

product. A similar process would then need to be done to merge the three category fields.

6.2 Proact ive Case Studies

In this section, we describe six SPL case studies that were implemented in Colorful Alloy following a

proactive approach. The goal is to evaluate the expressiveness of the language (and later in the chapter,

the performance of the analysis procedures). Some of these have been selected from the literature, while

other arose in the context of other research activities where there was need to reason about design variants.

6.2.1 E-commerce

The e-commerce case study used here is a comprehensive description of the e-commerce example adapted

from (Czarnecki and Pietroszek, 2006) and used in previous chapters. The Colorful Alloy version used for

142

6.2. Proactive Case Studies

Figure 67: Feature diagram of the e-commerce specification.

evaluation extends the example described in Chapter 4 (Fig. 48) to the full FM presented in Fig. 18, except

for the Image feature. This feature was omitted because it simply introduced additional signatures in the

hierarchy of signature Image, which are not interesting when describing the expressiveness of Colorful

Alloy since no additional constraints are introduced in the model. The resulting FD is displayed in Fig. 67

(where the mandatory feature Image is omitted since it would have no children in this version). The code of

the full model, extending the simpler version described in Chapter 4, is available in Fig. 92 of Appendix A.

As described in previous chapters, the catalog structure of an e-commerce platform can be enhanced

by classifying products into 1 Categories that can optionally support the 2 Hierarchical and 3 Multiple

categories. The thumbnail image of the product is individually described as an optional feature 4

Thumbnails. This feature introduces an additional field on Catalog, and a fact to control the presence of

thumbnails in a catalog, whose behaviour depends on whether categories are hierarchical or not. Another

optional feature is to have products 5 OnSale, represented by an additional signature that extends

Product by inclusion, representing the sub-set of products on sale. A new fact is introduced when both

Thumbnails and OnSale are present that forces products on sale to display thumbnails in the respective

catalog. This fact relies on an auxiliary function to retrieve all catalogs, whose body is also annotated.

6.2.2 GrandpaFamily

The GrandpaFamily model is based on two toy models by Jackson (2012) distributed with the Alloy Analyzer

and that share certain elements: one modeling genealogical relationships (genealogy) and other solving

the “I’m My Own Grandpa” puzzle (grandpa), that originated from a novelty song with the same title

from 1940s. The latter is actually presented in stages to address different concepts, which are distributed

as three distinct Alloy files. Our base variant considers basic biological facts, which can be extended

by 1 introducing Adam and Eve, who are considered as the first man and woman according to the

143

6.2. Proactive Case Studies

Figure 68: Feature diagram of the GrandpaFamily specification.

Bible creation myth. Then 2 introduced social norms regarding marriage, optionally also 3 forbidding

incestuous marriages. The FD is shown in Fig. 68 with a hierarchy relation on feature 2 and 3 , and the

corresponding Colorful Alloy code of the design variants is given in Fig. 69. The base model (parts without

annotation) simply introduces a person, either a man or a woman, who cannot be his own ancestor and

can at most have one female and one male parent. A command checks whether a person can be his

own grandpa, as specified in the OwnGrandpa assertion. Feature 1 adds Adam and Eve as singleton

signatures extending Person, with a new fact stating that only Adam and Eve have no parents. A new

command checks whether all persons descend from Adam and Eve in variants with feature 1 . On the

other hand, feature 2 introduces a spouse relation in Person and one additional fact that avoids reflexive

and non-symmetric marriages and a social norm (valid at the time of the song) that a man can only marry

one woman and vice versa. Feature 3 prohibits incest, that is, a person can not marry a sibling or a

parent, through an additional fact.

6.2.3 Alloy4Fun

Alloy4Fun (Macedo et al., 2019) is a web-platform2 developed by our team for learning Alloy and sharing

models. Besides the online creation, analysis and sharing of models, Alloy4Fun has two additional goals:

to provide a kind of auto-grading feature by marking certain parts of the model as secret, and to collect

information regarding usage patterns and typical pitfalls when modeling in Alloy. To explore alternative

design variants, a Colorful Alloy model was developed in its initial stages of development. The full code of

this model is presented in Fig. 70 and the corresponding FD is shown in Fig. 71.

The base variant simply stores models when shared by the user, and is thus comprised by stored

models (signature StoredModel) and assigns to a model at most one public link. By accessing this

2 alloy4fun.inesctec.pt

144

alloy4fun.inesctec.pt

6.2. Proactive Case Studies

1 fact FeatureModel {

2 -- 3 requires 2

3 3 2 some none 2 3

4 }

5

6 abstract sig Person {

7 2 spouse : lone Person 2 ,

8 parents : set Person

9 }

10

11 sig Man, Woman extends Person {}

12 1 one sig Eve extends Woman {} 1

13 1 one sig Adam extends Man {} 1

14

15 fact Biology {

16 -- nobody is his or her own ancestor

17 no p: Person | p in p.^parents

18 -- every person has at most one female and one male parent

19 all p : Person | lone p.parents & Woman and lone p.parents & Man

20 }

21

22 1 fact Bible {

23 -- every person except Adam and Eve has a mother and father

24 all p: Person - (Adam + Eve) | one mother: Woman, father: Man | p.parents = mother + father

25 -- Adam and Eve have no parents

26 no (Adam + Eve).parents

27 -- Adam's spouse is Eve

28 2 Adam.spouse = Eve 2

29 } 1

30

31 2 fact SocialNorms {

32 -- nobody is his or her own spouse

33 no p: Person | p.spouse = p

34 -- spouse is symmetric

35 spouse = ~spouse

36 -- a man's spouse is a woman and vice versa

37 Man.spouse in Woman && Woman.spouse in Man

38 } 2

39

40 2 3 fact NoIncest {

41 -- can't marry a sibling

42 no p: Person | some p.spouse.parents & p.parents

43 -- can't marry a parent

44 no p: Person | some p.spouse & p.^parents

45 } 3 2

46

47 assert OwnGrandPa {

48 no p : Person | p in p.(parents+ 2 parents.spouse 2).(parents+ 2 parents.spouse 2)

49 }

50 check OwnGrandPa with 2 for 10

51

52 1 assert AllDescendFromAdamAndEve {

53 all p : Person - (Adam + Eve) | p in ^parents.Adam and p in ^parents.Eve

54 } 1

55 check AllDescend with 1 for 10

Figure 69: GrandpaFamily specification in Colorful Alloy.

public link, the user can access the code of the full model. Additional constraints in fact Links force a

link to be assigned to exactly one stored model and every stored model to have a public link assigned to it

in the base version. To this base model, four features can be added. Feature 1 Derivation enables the

collection of derivation trees to register the evolution of models. With this feature, each model developed

after accessing a shared link stores the identifier of the model it was derived from. Additional constraints

related to Derivation are specified in the fact Derivations, avoiding cyclic dependencies and specifying

145

6.2. Proactive Case Studies

1 fact FeatureModel {

2 -- 4 requires 3

3 4 3 some none 3 4

4 }

5

6 sig Link {}

7 sig StoredModel {

8 public : lone Link,

9 1 derivationOf : lone StoredModel 1 ,

10 2 secret : lone Link 2 ,

11 3 command : lone Command 3

12 }

13 2 sig Secret in StoredModel {} 2

14

15 3 sig Command {} 3

16 3 4 sig Instance {

17 instanceOf : one Command,

18 model : set StoredModel,

19 link : one Link

20 } 4 3

21

22 fact Links {

23 -- Links are not shared between artifacts

24 all l : Link | one (public+ 2 secret 2 + 3 4 link 4 3).l

25 -- all models have public links, unless commands are stored

26 3 all m : StoredModel | one m.public 3

27 -- Only models with secrets can have a secret link

28 2 secret.Link in Secret 2

29 -- Models with secret links also have a public link

30 2 all m : Secret | some m.secret implies some m.public 2

31 -- A model with secrets with a public link either has a secret link or one of the ancestors

32 2 all m : Secret | some m.public implies some m.(1 ^derivationOf 1 +iden).secret 2

33 }

34 pred BadSpec {

35 -- Private and public links, if existing, must be different

36 2 all m : StoredModel | m.public != m.secret 2 }

37 pred GoodSpec {

38 -- Private and public links, if existing, must be different

39 2 all m : StoredModel | no m.public & m.secret 2 }

40 fact Derivations {

41 -- The derivations form a tree

42 1 no m : StoredModel | m in m.^derivationOf 1

43 -- Models without a link can only have at most one derivation

44 1 all m : StoredModel | no m.public implies lone derivationOf.m 1

45 -- Model with secret derived from secret model

46 1 2 all m : Secret | ^derivationOf.m in Secret 2 1

47 -- A model with secrets just with a public link cannot derive into one with a secret link

48 1 2 all m : Secret | (some m.public and no m.secret) implies no (*derivationOf.m).secret 2 1

49 }

50 fact Commands {

51 -- Commands are unique to one model and there are no commands without models

52 3 all c : Command | one command.c 3

53 -- With commands a model is either stored as result permalinking xor running a command

54 3 all m : StoredModel | no m.public iff some m.command 3

55 }

56 run {some command} with 2 , 3 for 3

57

58 fact Instances {

59 -- Auxiliary relation for visualization

60 3 4 model = instanceOf.~command 4 3

61 -- Commands have at most one instance

62 3 4 all c : Command | lone instanceOf.c 4 3

63 }

64

65 assert PublicSecretDisjoint {

66 -- The set of public and secret links is disjoint

67 2 GoodSpec implies no Model.public & Model.secret 2 }

68 check PublicSecretDisjoint with 2 for 5

Figure 70: Alloy4fun specification in Colorful Alloy.

146

6.2. Proactive Case Studies

Figure 71: Feature diagram of the Alloy4fun specification.

at most one derivation for models without a link. Feature 2 Secret allows the introduction of secret

paragraphs and commands in the Alloy4Fun models. Models with secrets can now be shared with two

kinds of links: a public link from the base version that, when accessed, only shows public paragraphs;

and a secret one that reveals the full model including secrets paragraphs. Facts restricting the shape of

the derivation tree must also be adapted when secrets are present. If a model has secrets, then all of its

ancestors in the derivation also had secrets, and a model with secrets just with a public link cannot be

derived into one with a secret link. Feature 3 Store Command allows finer data collection by storing the

model when commands are executed rather than just when shared by the user. In this case, the command

that originated such models is also stored and the constraint on the existence of public links is removed

since stored models created through command execution are not shared. Lastly, 4 Instance Share allows

storing and sharing the solutions of satisfiable execution commands. The constraint on links (l. 28) is

relaxed, so that links may now point to stored instances rather than just stored models.

When the Store Commands feature was introduced, some run commands were specified to animate the

storing of models that did not originate from sharing. One such command is shown in l. 56, and attempts

to generate a scenario with some command stored in variants with secrets, as specified by the feature

scope. To our surprise, such command was unsatisfiable, due to a bug in the specification of links that

forbade models without links (here, represented by predicate BadSpec for illustrative purposes). This

bug only manifested itself in variants with Secret and Store Commands, and could be missed without

the feature-aware commands supported by Colorful Alloy. We often encounter such “legacy” constructs

in Alloy models to illustrate interesting issues, and they could also be easily encoded as an additional

feature, so that the incorrect code would be properly identified and highlighted (see, for instance, the Hotel

example below). In the evaluation that will be presented in Section 6.4, this test (that under those variants,

BadSpec guarantees that no command can exist) has been converted into a check command in order

to exercise the colorful analysis procedures. This bug is fixed in predicate GoodSpec, that should be

147

6.2. Proactive Case Studies

Figure 72: Feature diagram of the Graph specification.

considered an additional axiom of the model. Another assertion is specified to check whether public and

private links are always disjoint.

6.2.4 Graph

The Graph example is adapted from a compositional version proposed in (Apel et al., 2013) using

FeatureAlloy, which explores the specification of different classes of graphs. Its full specification is

presented in Fig. 93 of Appendix A. The base model simply defines nodes and edges, which can be

extended by the features presented in the FD from Fig. 72. On a first level, these features force the graph

to be: 1 a Multigraph, allowing multiple edges by relaxing a restriction in the base model; 2 Undirected,

forcing all the edges are bidirectional through an additional fact; 3 a DAG (Directed Acyclic Graph) by

imposing an additional restriction on the adjacency relation; or 4 Vertex Labeled through a new field on

nodes. DAG graphs can be further classified as a 5 Tree a tree, by introducing a root node and forcing all

nodes but the root to have a parent. Trees can additionally be a 6 Binary Tree by restricting the outgoing

edges to two. The FM additionally forbids graphs to be undirected and directed acyclic at the same time.

Additionally, the FM declares that feature 6 also requires 5 , since the labels Left and Right are

used to mark the transitions to the two descendants of each node.

An assertion is specified for variants where the graphs form a tree, testing whether all nodes descend

from the root node. Another assertion is defined that is expected to hold only for DAGs, namely that

non-empty graphs have at least one source and one sink node.

148

6.2. Proactive Case Studies

Figure 73: Feature diagram of the Vending Machine example.

6.2.5 Vending Machine

The Vending machine is an implementation of the feature transition systems described in Fig. 38 and is

inspired by various vending machine examples commonly used in SPL literature (e.g., (Fantechi and Gnesi,

2008)). Unlike the examples presented so far, it models a dynamic system. A snippet of the model with a

single operation Select is shown in Fig. 74; the encoding for other operations follows a similar style, and

is presented for the interested reader in Fig. 94 of Appendix A.

The base variant encodes the process of selecting and serving products through the respective states and

transitions. The machine has to count inserted money, one coin at a time, and return change after serving

products. The evolution of the system is represented by a totally ordered signature Time, which has a

State of the machine assigned at each instant. At each instant, the products in stock and the money

balance of the machine is also registered. Lastly, interactions with the user is also registered though the

current product selection, the total cost of the current selection, and the amount of coins that

has been inserted by a customer into the machine but not yet been used to purchase something. The

code of the product selection operation is shown in Fig. 74. The premise in the base version is that it can

only occur in the state Paid, and that the selected product must be in stock and not already selected.

The state is transitioned to Selected and the selection and total fields updated.

The base model is extensible by introducing four independent features shown in Fig. 73, by supporting:

1 the serving of Free drinks; 2 the Multiple Selection of different products; 3 the possibility to Cancel

a selection; and 4 Multiple Prices for distinct products, adding a new field to the product signature.

What’s more, features 2 and 4 are only allowed when free drinks are not allowed. When Free drinks are

provided, states and fields controlling costs and money are removed from the model. Operations must also

be adapted by annotating the predicates. In the case of Select, when 1 Free drinks are provided, the

operation is no longer triggered in the Paid state, but instead directly from Ready; moreover, restrictions

related to money are removed. When 2 Multiple Selection is allowed, this transition can also be triggered

149

6.2. Proactive Case Studies

1 module vending

2 open util/ordering[Time]

3 open util/natural as nat

4

5 abstract sig State {}

6 one sig Ready, Selected,Served extends State {}

7 1 one sig Paid extends State{} 1

8 1 one sig Done extends State{} 1

9

10 sig Product {

11 4 price : one Natural 4

12 }

13

14 sig Time {

15 state : one State,

16 stock : set Product,

17 selection : set Product,

18 1 total : one Natural 1 ,

19 1 coins : one Natural 1 ,

20 1 balance : one Natural 1

21 }

22

23 pred Select [pre,pos : Time, p : Product] {

24 pre.state in 1 Ready 1 + 1 Paid 1 + 2 Selected 2

25 p in pre.stock - pre.selection

26 4 1 pos.total= inc[pre.total] 1 4

27 4 1 pos.total= add[pre.total, p.price] 1 4

28 pos.state = Selected

29 pos.stock = pre.stock

30 pos.selection = pre.selection + p

31 1 pos.coins = pre.coins 1

32 1 pos.balance = pre.balance 1

33 }

34 ...

35 1 assert Balance {

36 all t : Time | t.state = Served implies gte[t.balance, Zero]

37 } 1

38 check Balance with 1 for 5 but 20 Time

39

40 assert Selection {

41 all t : Time, p : Product | p not in t.stock implies all u : t.nexts |

42 p not in u.selection

43 }

44 check Selection for 5 but 20 Time

45

46 pred NoStock {

47 some t : Time | no t.stock

48 }

49 run NoStock for 5 but 10 Time

Figure 74: Snippet of Vending Machine specification in Colorful Alloy.

150

6.2. Proactive Case Studies

Figure 75: Feature diagram of the Bestiary specification.

when already in the Selected state, leading to the selection of additional products. Finally, when feature

4 Multiple Price is selected, the total price increases with the current price of the selected product

(otherwise each selected product is assumed to have the price of 1).

A command tests whether a machine’s balance is always greater than zero when a product is served,

for variants with no free drinks. A second check command checks that once a product is out of stock, it

can no longer be selected in any point in the future. A run command is also defined to explore a scenario

where there exists a time when the stock of the machine is empty.

6.2.6 Bestiary

The Bestiary is a a family of very simple models that were used in classes by our team to explore different

classes of binary relations. Its full code is presented in Fig. 95 of Appendix A. The base model encodes an

arbitrary binary relation, and each feature forces this relation to be 1 Injective, 2 Functional, 3 Total,

or 4 Surjective as shown in Fig. 75. Commands test alternative definitions of injectivity and functionality

for all variants that are injective and functional, respectively, as well as whether relations are associative.

6.2.7 Comparison with Compositional Approaches

As mentioned in previous chapters, the compositional approaches such as FeatureAlloy are typically

implemented through superimposition, which compose a feature-specific variant by integrating the base

model with several feature-specific code units. The most evident consequence of this approach is the often

coarse-grained nature of the superimposition process. For instance, in FeatureAlloy, variant modules can

extend signatures with new fields, but facts, predicates or functions are simply overridden. We’ve seen in

the presented examples that in Alloy models variation points may simply change a single formula inside a

block of formulas, or even a field being called inside a complex formula. For instance, in e-commerce,

the existence of hierarchical categories requires the replacement of field inside by its transitive closure

151

6.3. Evaluating the Clone Migration Strategy

^inside at various places; in typical compositional approaches this would require the complete rewriting

of the facts.

As we know, in SPL systems, semantic dependencies often occur, where one feature requires the

presence of another feature, and this relationship crucially imposes the choice of the feature’s code snippet.

If one feature requires the presence of another feature, but the other feature is not selected, the final

product will have the incorrect behavior. In our Colorful Alloy, we can easily avoid such errors by having an

FM that displays the representation of feature dependencies.

Another issue that has to be considered when engineering an SPL is feature interaction, that is, features

that affect the same portion of the system and thus, when used in combination, have a combined behaviour.

In compositional approaches, these are usually handled by creating an additional derivative, or lifter, feature

that encodes the combined behavior of the interacting features, and which must be merged on top of them.

In FeatureAlloy, for instance, new derivative features would have to be developed adjusting the combined

behavior. Then, when both interacting features are selected, the new derivative feature would have to

be placed it the list of selected features so that the interference is eliminated. In our colorful approach,

if features a and b interact, their combined behaviour can be introduced by nesting the annotations

a b . If one wishes to disable a behaviour of a when b is present, such expression is simply annotated

with a b . As a result, feature interaction is no longer a problem in our colorful approach. Another

consequence of feature interaction is that the order in which the feature-specific code is integrated affects

the code of the resulting variant, while in an annotative approach the order is irrelevant.

Annotative approaches are not without issues themselves due to the lack of modularity, namely reduced

maintainability and comprehension as the number of features, and their interaction, increases. We argue

however, that at the Alloy level, this process is still manageable. For our examples, we never required more

than 6 features, and interactions never involved more than 2 features.

6.3 Evaluat ing the Clone Migrat ion Strategy

The evaluation of the clone migration aimed to answer the following research questions: 1) Since in principle

smaller specifications are easier to understand, how effective is the clone migration technique at reducing

the total size of the models? 2) Is the automatic merging strategy as effective as the manual application of

the refactoring rules? 3) Is our catalog of refactorings sufficient to reach an ideal colorful model specified

by an expert? To answer these questions, we considered various sets of cloned Alloy models that fall in two

categories: the example SPLs proactively developed by us and already detailed in the previously section,

152

6.3. Evaluating the Clone Migration Strategy

Figure 76: Feature diagram of the Grandpa specification.

and four examples developed by Jackson (2012) and packaged with the standard Alloy Analyzer distribution

as sample models, for which several plain Alloy variants exist (very likely developed with clone-and-own).

For the former examples, we generated the plain Alloy clones by projecting the colorful model over all the

valid feature combinations. For the latter, we chose the grandpa, ring election, address book, and hotel as

our examples, which will be described next.

6.3.1 Extractive Case Studies

The Grandpa example SPL considered from (Jackson, 2012) is a simpler version of the presented Grand-

paFamily, with only three variants, excerpts of which are shown in Figs. 77 to 79. These models attempt to

solve the “I’m my own grandpa puzzle”, and each variant is developed incrementally, introducing new

features to attempt to solve the puzzle. The first describes the basic structure of the model and two general

constraints. That is, a person, either man or woman, has at most one father and one mother and cannot

be his or her own ancestor. A man can have a wife and, similarly, a woman can have a husband, and

the relationship is symmetrical. Function grandpas returns a person’s biological grandpa. The second

variant extends the notion of grandpa by including step-grandfathers through marriage. The third version

adds an additional fact to avoid incest. To make the fact clear and readable, the facts are split into separate

paragraphs and given suggestive names. We identified feature 1 as the support for Step-parents and

feature 2 to Forbid Incest, as shown in Fig. 76. The presented clones were annotated as 1 2 , 1 2 ,and

1 2 , respectively. Since there is no variant forbidding incest but with step-parents, that combination is

forbidden in the FM with an additional constraint.

The resulting merged code is shown in Fig. 96 of Appendix A. Notice how auxiliary predicates and

functions were merged from different variants, most interesting the function defining the notion of grandpa.

In our colorful refactoring, we only consider cases where the facts have the same name. Therefore, fact

153

6.3. Evaluating the Clone Migration Strategy

abstract sig Person {

father: lone Man,

mother: lone Woman

}

sig Man extends Person {

wife: lone Woman

}

sig Woman extends Person {

husband: lone Man

}

fact {

no p: Person | p in p � ^(mother+father)
wife = ∼husband

}

…

fun grandpas [p: Person] : set Person {

p � (mother+father) � father
}

� �

Figure 77: A snippet of variant 1 2 of the GrandPa specification.

abstract sig Person {

father: lone Man,

mother: lone Woman

}

sig Man extends Person {

wife: lone Woman

}

sig Woman extends Person {

husband: lone Man

}

fact {

no p: Person | p in p � ^(mother+father)
wife = ∼husband

}

…
fun grandpas [p: Person] : set Person {

let parent = mother + father + father � wife + mother � husband |

p � parent � parent & Man

}

…

Figure 78: A snippet of variant 1 2 of the GrandPa specification.

154

6.3. Evaluating the Clone Migration Strategy

abstract sig Person {

father: lone Man,

mother: lone Woman

}

sig Man extends Person {

wife: lone Woman

}

sig Woman extends Person {

husband: lone Man

}

fact Biology {

no p: Person | p in p � ^(mother+father)
}

fact Terminology {

wife = ∼husband

}

fact SocialConvention {

no (wife+husband) & ^(mother+father)

}

…

fun grandpas [p: Person] : set Person {

let parent = mother + father + father � wife + mother � husband |

p � parent � parent & Man

}

…

pred SocialConvention1 {

no (wife + husband) & ^(mother + father)

}

pred SocialConvention2 {

let parent = mother + father {

no m: Man | some m � wife and m � wife in m � *parent � mother
no w: Woman | some w � husband and w � husband in w � *parent � father

}

}

assert Same {

SocialConvention1 iff SocialConvention2

}

check Same

Figure 79: A snippet of variant 1 2 of the GrandPa specification.

155

6.3. Evaluating the Clone Migration Strategy

Figure 80: Feature diagram of the Ring Election specification.

Biology and Terminology in the third variant cannot be merged even though they have the same

expression as the unnamed fact in variant 1 and variant 2.

The Ring Election example was selected from the two sample models packaged with the Alloy Analyzer

describing a well-known distributed algorithm for leader election. The code excerpts of the models are

shown in Figs. 81 and 82. The processes (sig Process) that participate in the election form a ring and

have uniquely ordered identifiers. Each of them has a successor (succ) process which is its neighbor in

the ring, a pool (toSend) of identifiers to be sent around the ring, and a set of Time elements indicating

when a process is considered the leader (elected). The fact ring constraints that all processes are

reachable from any process by its succ, forcing the processes to form a ring. There are two operations,

skip and step, that can occur during trace execution. The skip simulates a step that does nothing and

the step simulates an operation that passes an identifier (id) form the pool of a process (from) to the

successor process. The expression p � succ � prevs represents a set of identifiers that precede p � succ.

Therefore, the identifiers are passed by a process only if larger than its own. Expression p � toSend �

t−p � toSend � (t � prev) represents the set of identifiers received at time t. The elected processes

(DefineElected) are those that just received their own identifiers. Commands AtMostOneElected

and AtLeastOneElected evaluate whether there is at most or at least one elected process. The

second assertion is invalid in the first variant since every process can choose to skip in every step. This

problem was fixed in the second variant with a predicate progress which forces the existence of a non

skip step while there are processes with a nonempty pool. The FD is shown in Fig. 80 and the merged

version of this two examples is in Fig. 97 of Appendix A.

For the AddressBook example there are 17 variants with few differences packaged with the Analyzer.

These variants are divided into three groups. The first group describes a simple address book model with

names and addresses; the second group allows addresses to be organized into groups and adds an abstract

notion of target to introduce a hierarchy on address entries; and the third group introduces an execution

trace, allowing multiple steps to be checked from an initial state. The goal of these variants is to introduce

different Alloy concepts, including a distinct dynamic idiom in the last group. For the first two groups, we

selected the final version of the model, addressBook1h.als and addressBook2e.als respectively, because

156

6.3. Evaluating the Clone Migration Strategy

open util/ordering[Time] as TO

open util/ordering[Process] as PO

sig Time {}

sig Process {

succ: Process,

toSend: Process → Time,

elected: set Time

}

fact ring {

all p: Process | Process in p � ^succ
}

pred step [t, t': Time, p: Process] {

let from = p � toSend, to = p � succ � toSend |

some id: from � t {

from � t' = from � t − id

to � t' = to � t + (id − p � succ � prevs)
}

}

pred skip [t, t': Time, p: Process] {

p � toSend � t = p � toSend � t'
}

fact defineElected {

no elected � first
all t: Time−first | elected � t = {p: Process | p in p � toSend � t − p �
toSend � (t � prev)}

}

assert AtMostOneElected { lone elected � Time }

check AtMostOneElected for 3 Process, 7 Time

assert AtLeastOneElected { some t: Time | some elected � t }

check AtLeastOneElected for 3 Process, 7 Time

…

Figure 81: A snippet of Ring Election specification, variant 1 .

157

6.3. Evaluating the Clone Migration Strategy

open util/ordering[Time] as TO

open util/ordering[Process] as PO

sig Time {}

sig Process {

succ: Process,

toSend: Process → Time,

elected: set Time

}

pred progress {

all t: Time − TO/last |

let t' = TO/next [t] |

some Process � toSend � t ⇒ some p: Process | not skip [t, t', p]

}

assert AtLeastOneElected { progress ⇒ some elected � Time }

check AtLeastOneElected for 3 Process, 7 Time

…

Figure 82: A snippet of Ring Election specification, variant 1 .

Figure 83: Feature diagram of the AdressBook specification.

the other versions represent the iterative modelling of the address book, introducing new paragraphs on top

of the previous versions, which would not be interesting for the merging process we are evaluating. For the

third group, we just pick a simple one, addressBook3b.als, since the other versions have few differences

and would result in a similar merging process. Excerpts of the selected variants are shown in Figs. 84

to 86 and the corresponding FD in Fig. 83. We use the addressBook1h.als as the base model, and two

additional features, 1 that adds the notion of Target and 2 that adds Tracing. Again, since the variant

with tracing but without target is not defined, it is excluded from the FM.

The merged version of this example is in Fig. 98 of Appendix A. Notice that the predicates encoding the

operations in the base model can not be merged with those of the other variants since they have different

arguments, even though the internal expressions are similar. Notice also how seamlessly the introduction

of traces was, essentially imposing an order on books and facts restricting their evolution.

A snippet of the Hotel model is shown in Figs. 88 to 91. The first variant of the hotel example describes

the process of the checking in and checking out of a hotel room locking system. This variant had a

158

6.3. Evaluating the Clone Migration Strategy

sig Name, Addr { }

sig Book {

addr: Name → lone Addr

}

pred add [b, b': Book, n: Name, a: Addr] {

b' � addr = b � addr + n→a

}

…

Figure 84: A snippet of AddressBook1h.als specification, variant 1 2 .

abstract sig Target {}

sig Addr extends Target {}

abstract sig Name extends Target {}

sig Alias, Group extends Name {}

sig Book {

names: set Name,

addr: names → some Target

}

pred add [b, b': Book, n: Name, t: Target] {

b' � addr = b � addr + n→t

}

…

Figure 85: A snippet of AddressBook2e.als specification, variant 1 2 .

open util/ordering [Book] as BookOrder

abstract sig Target {}

sig Addr extends Target {}

abstract sig Name extends Target {}

sig Alias extends Name {}

sig Group extends Name {}

sig Book {

names: set Name,

addr: names → some Target

}

pred add [b, b': Book, n: Name, t: Target] {

b' � addr = b � addr + n→t

}

…
fact traces {

init [first]

all b: Book−last | let b' = b � next |

some n: Name, t: Target | add [b, b', n, t] or del[b, b', n, t]

}

…

Figure 86: A snippet of AddressBook3b.als specification, variant 1 2 .

159

6.3. Evaluating the Clone Migration Strategy

Figure 87: Feature diagram of the Hotel specification.

sig Key {}

sig Time {}

sig Room {

keys: set Key,

currentKey: keys one → Time

}

sig Guest {

keys: Key → Time

}

…

Figure 88: A snippet of the Hotel variant 1 2 .

bug that generated a counter-example, which is fixed in the second version by adding an additional fact

NoIntervening to avoid the key being entered after checking out. The third variant introduces an event-

based idiom, changing the operations from predicates to being identified by the occurrence of atoms from a

signature of events. The fourth version adds the NoIntervening constraint under the event idiom. For

the migration of this model, we annotated the variants with two features: feature 1 NoIntervening denotes

whether or not the fact to fix the bug is enforced, and 2 Event Idiom which encodes the event idiom

for the evolution of the model. Therefore the presented variants are annotated with 1 2 , 1 2 , 1 2 ,

and 1 2 , respectively, and the corresponding FD is shown in Fig. 87. The merged version of these four

examples is in Fig. 99 of Appendix A.

6.3.2 Clone Migration Results

Table 3 summarizes the results of the refactoring evaluation for the defined examples, where NP denotes

the number of clones in the example, and LI and CI the total size of all plain Alloy clones measured in

number of lines and characters, respectively.

To answer question 1) we applied our clone migration techniques to all of the examples, until we reached

a point where no more merge refactorings could be applied, and compared the size of the resulting Colorful

Alloy model with the combined size of all plain Alloy clones.

160

6.3. Evaluating the Clone Migration Strategy

sig Key {}

sig Time {}

sig Room {

keys: set Key,

currentKey: keys one → Time

}

sig Guest {

keys: Key → Time

}

fact NoIntervening {

all t: Time−last | let t' = t � next, t'' = t' � next |

all g: Guest, r: Room, k: Key |

checkin [t, t', g, r, k] ⇒ (entry [t', t'', g, r, k] or no t'')

}

…

Figure 89: A snippet of the Hotel variant 1 2 .

sig Key {}

sig Time {}

sig Room {

keys: set Key,

currentKey: keys one → Time

}

sig Guest {

keys: Key → Time

}

abstract sig Event {

pre, post: Time,

guest: Guest

}

abstract sig RoomKeyEvent extends Event {

room: Room,

key: Key

}

sig Entry extends RoomKeyEvent { } {

key in guest � keys � pre
let ck = room � currentKey |

(key = ck � pre and ck � post = ck � pre) or

(key = nextKey[ck � pre, room � keys] and ck � post = key)

currentKey � post = currentKey � pre ++ room→key

}

…

Figure 90: A snippet of the Hotel variant 1 2 .

161

6.3. Evaluating the Clone Migration Strategy

sig Key {}

sig Time {}

sig Room {

keys: set Key,

currentKey: keys one → Time

}

sig Guest {

keys: Key → Time

}

abstract sig Event {

pre, post: Time,

guest: Guest

}

abstract sig RoomKeyEvent extends Event {

room: Room,

key: Key

}

sig Entry extends RoomKeyEvent { } {

key in guest � keys � pre
let ck = room � currentKey |

(key = ck � pre and ck � post = ck � pre) or

(key = nextKey[ck � pre, room � keys] and ck � post = key)

currentKey � post = currentKey � pre ++ room→key

}

fact NoIntervening {

all c: Checkin |

c � post = last

or some e: Entry {

e � pre = c � post
e � room = c � room
e � guest = c � guest

}

}

…

Figure 91: A snippet of the Hotel variant 1 2 .

162

6.3. Evaluating the Clone Migration Strategy

Table 3: Evaluation results.

Original Manual Automatic

SPL NP LI CI RS DL LF CF RL RC LF CF RL RC

E-commerce(3feats) 5 112 1851 101 15 34 574 70% 69% 35 586 69% 68%

E-commerce(5feats) 20 491 10197 306 17 42 757 91% 93% 42 796 91% 92%

Vending 10 942 20675 504 13 111 2304 88% 89% 113 2304 88% 88%

Bestiary 16 239 4714 207 7 22 222 91% 95% 22 231 91% 95%

OwngrandPa 6 147 3642 77 9 40 842 73% 77% 40 874 73% 76%

Alloy4fun 12 341 7353 162 14 57 1200 83% 84% 60 1300 82% 82%

Graph 18 358 7091 277 9 37 652 90% 91% 54 1160 85% 84%

RingElection 2 91 1941 25 8 52 1077 43% 43% 52 1083 43% 44%

Grandpa 3 102 1798 36 11 56 961 45% 47% 54 984 47% 45%

AddressBook 3 140 3078 26 9 75 1813 46% 41% 75 1855 46% 40%

Hotel 4 328 6653 109 9 95 2394 71% 64% 95 2458 71% 63%

Average 15 299 6272 166 11 57 1163 72% 72% 58 1239 71% 71%

The results are presented in the columns of Table 3 under Manual, where RS is the number of individual

refactoring steps, DL the number of distinct refactoring laws that were used in the process, LF and CF

the resulting number of lines and characters after migration, respectively, and RL and RC the reduction in

relation to the original number of lines and characters, respectively. In average we achieved a reduction of

around 72% on both lines and characters, which is quite substantial: the formal design of the full SPL in the

final Colorful Alloy model occupies in average a quarter of the size of all the plain Alloy clones combined,

which in principle considerably simplifies its understanding. The lowest reduction was for the ring elected

example (around 43%), since there are only two clones to be merged. The average number of refactoring

steps was 166. This number has a strong correlation with the number of clones, since the proposed

merging refactorings operate on two clones at a time – if a common element exists in 𝑛 clones, we will

need at least 𝑛 − 1 rule applications to merge it.

To answer question 2) we applied the automatic strategy to all examples and again compared the size of

the resulting Colorful Alloy model with the combined size of the Alloy clones. The results are presented in

the columns of Table 3 under Automatic, where LF and CF are the resulting number of lines and characters

after automatic migration, respectively, and RL and RC the reduction in relation to the original number

of lines and characters, respectively. In average, the reduction in lines and characters was only slightly

smaller than the manual approaches at 71% . This is due to some issues already presented, such as the

persistence of redundant annotations and the choice of + over & in some rules which may prevent further

automatic refactorings.

For question 3) we relied on the seven examples where the clones were derived from previously developed

Colorful Alloy models. For all of them, our catalog of refactorings was sufficient to migrate the clones

and obtain the original colorful model from which they were derived. As seen in Table 3, these examples

163

6.4. Evaluating Colorful Analysis

Table 4: Evaluation of the amalgamated and iterative approaches for the proactive examples.

Model NF Command Analysis NP NV Scope TA(s) TI(s) SU SP(s)

E-commerce 5 AllCataloged UNSAT 32 20

10 4.0 64.8 16.2 21.1

11 16.9 343.0 20.3 85.2

12 62.2 1256.3 20.2 222.2

GrandpaFamily 3

OwngrandPa SAT 4 4

9 0.1 0.2 3.1 0.1

10 0.1 0.3 3.7 0.1

11 0.1 0.4 3.7 0.1

12 0.1 0.4 4.1 0.1

AllDescend UNSAT 4 3

9 0.3 1.7 5.7 0.9

10 1.0 10.9 10.9 4.0

11 7.3 24.1 3.3 13.4

12 26.1 132.6 5.1 57.1

Alloy4Fun 4 PublicSecretDisjoint UNSAT 8 6

20 1.1 6.3 5.7 1.9

25 2.8 19.6 7.0 7.6

30 5.9 37.9 6.4 11.0

Graph 6

Connected UNSAT 32 6
8 3.2 19.2 6.0 3.4

9 11.9 80.9 6.8 16.7

SourcesAndSinks UNSAT 32 10
8 7.0 62.1 7.0 12.9

9 187.5 1010.2 5.4 166.0

Vending Machine 4

Balance UNSAT 8 8

20 0.4 2.2 5.7 0.4

25 0.7 4.0 6.1 0.7

30 1.1 6.4 5.9 1.4

Selection UNSAT 16 10

20 0.4 3.8 10.0 0.8

25 0.6 7.3 11.8 2.1

30 1.0 18.5 18.4 6.5

NoStock SAT 16 10

20 0.3 7.2 20.5 3.1

25 0.6 19.3 30.6 6.3

30 1.0 48.3 47.8 13.2

Bestiary 4

Injective UNSAT 8 8
25 6.9 12.8 1.9 3.0

30 9.8 49.6 5.1 16.0

Functional UNSAT 8 8
25 2.4 11.1 4.6 2.4

30 10.2 33.6 3.3 8.4

Associative UNSAT 8 8

6 2.8 9.4 3.4 2.5

7 52.5 211.9 4.0 62.2

8 230.2 891.9 3.9 309.1

required a wider range of refactoring laws than the ones whose variants were developed with clone-and-own

in plain Alloy, because the original Colorful Alloy models were purposely complex and diverse in terms of

variability annotations, since they were originally developed to illustrate the potential of the Colorful Alloy

language.

6.4 Evaluat ing Colorful Analysis

Our evaluation of the colorful analysis procedures aimed to answer two questions regarding the feasibility

of the approach, prior to developing more advances analysis procedures: 1) is the analysis through the

amalgamated technique feasible? And if so, 2) does it outperform a preprocessing approach that iteratively

164

6.4. Evaluating Colorful Analysis

analyzes all projected variants? To answer these questions, we applied our technique to all the 10 previously

presented model families with different characteristics, including some rich on structural and others on

behavioral properties, and mostly encoding variants of system design. Tables 4 and 5 depict execution

times for the proactive and extractive examples, respectively, with a varying scope for each command. The

table presents how many features each model has (NF). Then, for each pair command/scope of a model,

it presents how many variants are considered by the feature scope (NP), how many of those variants are

valid according to the FM (NV), what is the result of the analysis in each executed command (SAT/UNSAT)3,

the analysis time under the amalgamated model (TA), under the iterative analysis of all projected variants

(TI), and the speedup of the former in relation to the latter (SU). The slowest time for a single projected

variant (SP) is also presented. All commands were run 5 times on a MacBook with a 2.4 GHz Intel Core i5

and 8GB memory using the MiniSAT solver, with the reported time being the average of those runs.

Table 5: Evaluation of the amalgamated and iterative approaches for the extractive examples.

Model NF Command Analysis NP NV Scope TA(s) TI(s) SU SP(s)

Grandpa 2

NoSelfFather UNSAT 4 3

30 0.7 1.5 2.2 0.6

35 2.0 3.9 2.0 1.6

40 1.3 2.7 2.0 1.1

NoSelfGrandpa SAT 4 3

35 0.8 2.1 7.3 0.9

30 1.6 3.8 2.4 1.8

40 2.4 5.1 2.1 2.1

RingElection 1

AtmostOneElection UNSAT
2

2

6 0.3 0.6 2.1 0.3

7 1.1 2.0 1.9 1.0

8 9.2 18.8 2.0 9.4

AtLeastOneElection SAT
2

2

6 0.3 0.6 2.1 0.3

7 1.1 2.0 1.9 1.0

8 9.2 18.8 2.0 9.4

Addressbook 2

delUndoesAdd UNSAT 4 3

15 - 4.8 - 3.5

18 - 11.1 - 8.6

20 - 19.5 - 14.9

addIdempotent UNSAT 4 3

15 - 4.6 - 3.5

18 - 12.2 - 8.7

20 - 19.5 - 14.3

addLocal SAT 4 3

15 - 9.7 - 8.2

18 - 33.3 - 37.9

20 - 32.8 - 36.9

Hotel 2 NoBadEntry SAT 4 4

10 5.1 13.9 2.7 8.0

11 8.1 30.9 3.8 16.9

12 14.3 48.0 3.4 28.2

13 21.1 70.9 3.4 37.0

Results show that the amalgamated approach is indeed feasible, since it proves to be always faster than

the iterative analysis. However, the amalgamated analysis of the AddressBook example was not possible

3 When an analysis is UNSAT (unsatisfiable) it means that every candidate solution was explored (for example, when a checked

assertion is true). When it is SAT (satisfiable) it stopped because a valid instance (in a run command) or a counterexample (in a

check command) was found.

165

6.4. Evaluating Colorful Analysis

due to the ordering statement on signature Book (that only exists on variant 1 2). The amalgamated

analysis technique does not yet support the conditional opening of modules.

A surprising result was how often the amalgamated approach is actually faster than the analysis

of a single, projected variant. For GrandpaFamily we identified a cause related to imposing signature

multiplicities through the declaration rather than through a fact: e.g., in variant 1 2 , having Adam

declared without any multiplicity and enforcing one in a fact actually speeds up the analysis in comparison

to directly declaring the signature with multiplicity one. Another identified issue is related to the declaration

of fields that are always forced to be empty: e.g., in variant 1 , having spouse declared but forced to be

empty actually speeds up the analysis when compared to removing it. We suspect that similar situations

happen in the other examples where the amalgamated analysis was also faster. To understand why these

refactorings of the specification affect the underlying Kodkod analysis, and research whether they can be

explored to also improve performance of the iterative technique (or Alloy in general), is left as future work.

166

7

CONC LU S I O N

In this thesis, we started by proposing an annotative approach for formal feature-oriented design that

minimally extends the Alloy language and its Analyzer with colorful annotations and variability-aware analysis

commands. We have shown how this language extension, named Colorful Alloy, can be used to proactively

design several case studies that required not only coarse-grained annotations but also fine-grained ones, for

example, annotating part of a formula or a relational expression. Previous proposals of languages for formal

SPL design were either compositional, not adequate for fine-grained feature support, or focused on low-level

behavioural design and analysis, making Colorful Alloy the first annotative approach targeted at lightweight

high-level structural software design. For the analysis of this language extension two alternative techniques

have been explored: an iterative approach that analyzes a specific variant at a time; and an amalgamated

approach that analyzes multiple variants at once. A preliminary study has been conducted which shows

that the amalgamated analysis is better than iterating over all variants. Although not presented in this

thesis, the Colorful Alloy approach was also applied to the Electrum extension and used to pro-actively

design an automotive related case-study (Cunha et al., 2020).

We also proposed a catalog of variant-preserving refactoring laws for Colorful Alloy. This catalog covers

most aspects of the language, from structural elements, such as signature and field declarations, to

formulas in facts and assertions, including analysis commands. Using these refactorings, we proposed a

step-wise technique for migrating sets of plain Alloy clones, specifying different variants of a system, into a

single Colorful Alloy SPL. We manually evaluated the effectiveness of this migration technique with several

sets of plain Alloy clones and achieved a substantial reduction in the size of the equivalent Colorful Alloy

model, with likely gains in terms of maintainability, understandability, and efficiency of analysis. We also

implemented an automatic merging strategy that composes a sequence refactorings steps, and that can

be used to perform clone migration in a single step. This automatic strategy was evaluated against the

best result obtained manually applying the refactoring laws and achieved almost the same reduction in

size for all our examples.

167

7. Conclusion

As future work, we are going to extend support for additional operators and elements for Colorful Alloy.

At present, except for a few exceptions, we can only annotate optional elements of the AST. Many elements

that are not optional, such as quantifiers or unary operators, cannot be marked, which may require the

introduction of an entirely new constraint in a particular variant, even if there is little difference to an already

existing one. Therefore, we intend to support the markup of these elements to make the use of our Colorful

Alloy more convenient. We also want to explore whether specific syntactic constructs would help specify

the FM. Currently, FMs must be specified with normal Colorful Alloy syntax, for instance through annotated

some none expression. In the future we intend to add a small DSL to specify the FM, and thus simplify

the process of extracting the respective constraints.

Regarding the analysis processes, we plan to continue exploring the issues that caused the amalgamated

analysis to be faster than the projected one, even for a single variant, and whether they can be exploited to

improve the efficiency of the latter. We also intend to improve the scenario exploration capabilities of the

Colorful Alloy Analyzer, namely allow the user to control the search for instances or counter-examples in

specific variants, for example, adding a feature selector to enable the user to quickly focus on a variant. We

also intend to explore the usage of model merging techniques or variational SAT solving (Young et al., 2020)

to be able to present the user with a single, feature annotated, counter-example instance that succinctly

captures which features are causing errors.

Concerning the clone migration technique, we intend to conduct a more extensive evaluation, with more

examples and measuring other aspects of model quality, in order to assess if the positive results achieved

in the preliminary evaluation still hold. We also intend to implement a full SAT-based decision procedure

for testing the preconditions of the refactoring laws.

168

B I B L I O G R A PH Y

Andreas Abele, Yiannis Papadopoulos, David Servat, Martin Törngren, and Matthias Weber. The CVM

framework - A prototype tool for compositional variability management. In Proceedings of the 4th

International Workshop on Variability Modelling of Software-Intensive Systems (VaMoS’10), volume 37,

pages 101–105. Universität Duisburg-Essen, 2010.

Michal Antkiewicz and Krzysztof Czarnecki. Featureplugin: feature modeling plug-in for eclipse. In

Proceedings of the 2004 OOPSLA workshop on Eclipse Technology eXchange (ETX’04), pages 67–72.

ACM, 2004.

Sven Apel and Christian Kästner. An overview of feature-oriented software development. Journal of Object

Technology, 8:49–84, 2009.

Sven Apel, Wolfgang Scholz, Christian Lengauer, and Christian Kastner. Detecting dependences and

interactions in feature-oriented design. In Proceedings of the IEEE 21st International Symposium on

Software Reliability Engineering (ISSRE’10), pages 161–170. IEEE Computer Society, 2010.

Sven Apel, Christian Kästner, and Christian Lengauer. Language-independent and automated software

composition: The FeatureHouse experience. IEEE Transactions on Software Engineering, 39(1):63–79,

2013.

Wesley KG Assunção, Roberto E Lopez-Herrejon, Lukas Linsbauer, Silvia R Vergilio, and Alexander Egyed.

Reengineering legacy applications into software product lines: a systematic mapping. Empirical Software

Engineering, 22:2972–3016, 2017.

Wesley KG Assunção, Silvia R Vergilio, and Roberto E Lopez-Herrejon. Automatic extraction of product line

architecture and feature models from UML class diagram variants. Information and Software Technology,

117:106198, 2020.

Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT press, 2008.

Kacper Bak, Zinovy Diskin, Michal Antkiewicz, Krzysztof Czarnecki, and Andrzej Wasowski. Clafer: unifying

class and feature modeling. Software & Systems Modeling, 15:811–845, 2016.

169

bibliography

Don Batory. Feature models, grammars, and propositional formulas. In Proceedings of the 9th International

Conference on Software Product Lines (SPLC’05), volume 3714, pages 7–20. Springer, 2005.

Don S. Batory and Egon Börger. Modularizing theorems for software product lines: The Jbook case study.

Journal of Universal Computer Science, 14:2059–2082, 2008.

Thomas Bednasch. Konzept und implementierung eines konfigurierbaren metamodells für die merk-

malmodellierung. Master’s thesis, Fachhochschule Kaiserslautern, Standort Zweibrücken, 2002.

Stefan Bellon, Rainer Koschke, Giulio Antoniol, Jens Krinke, and Ettore Merlo. Comparison and evaluation

of clone detection tools. IEEE Transactions on software engineering, 33:577–591, 2007.

David Benavides, Pablo Trinidad, and Antonio Ruiz Cortés. Using constraint programming to reason on

feature models. In Proceedings of the 17th International Conference on Software Engineering and

Knowledge Engineering (SEKE’05), volume 5, pages 677–682, 2005a.

David Benavides, Pablo Trinidad, and Antonio Ruiz-Cortés. Automated reasoning on feature models.

In Proceedings of the 17th International Conference on Advanced Information Systems Engineering

(CAiSE’05), volume 3520, pages 491–503. Springer, 2005b.

David Benavides, Sergio Segura, Pablo Trinidad, and Antonio Ruiz Cortés. Fama: Tooling a framework for

the automated analysis of feature models. In the 1st International Workshop on Variability Modelling of

Software-intensive Systems (VAMOS’07), volume 2007-01, pages 129–134, 2007.

David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. Automated analysis of feature models 20 years

later: A literature review. Information systems, 35:615–636, 2010.

Fabian Benduhn, Thomas Thüm, Malte Lochau, Thomas Leich, and Gunter Saake. A survey on modeling

techniques for formal behavioral verification of software product lines. In Proceedings of the 9th

International Workshop on Variability Modelling of Software-intensive Systems (VaMoS’15), page 80.

ACM, 2015.

Julien Brunel, David Chemouil, Alcino Cunha, and Nuno Macedo. The Electrum analyzer: Model checking

relational first-order temporal specifications. In 33rd ACM/IEEE International Conference on Automated

Software Engineering (ASE’18), page 884–887. ACM, 2018.

Muffy Calder and Alice Miller. Feature interaction detection by pairwise analysis of LTL properties - A case

study. Formal Methods in System Design, 28:213–261, 2006.

170

bibliography

Felix Sheng-Ho Chang and Daniel Jackson. Symbolic model checking of declarative relational models. In

Proceedings of the 28th International Conference on Software Engineering (ICSE’06), page 312–320.

ACM, 2006.

Philipp Chrszon, Clemens Dubslaff, Sascha Klüppelholz, and Christel Baier. Profeat: feature-oriented

engineering for family-based probabilistic model checking. Formal Aspects of Computing, 30:45–75,

2018.

Alessandro Cimatti, Edmund Clarke, Fausto Giunchiglia, and Marco Roveri. NuSMV: A new symbolic model

checker. International Journal on Software Tools for Technology Transfer, 2:410–425, 2000.

Dave Clarke, Radu Muschevici, José Proença, Ina Schaefer, and Rudolf Schlatte. Variability modelling in the

ABS language. In Proceedings of the 9th International Symposium on Formal Methods for Components

and Objects (FMCO’10), volume 6957, pages 204–224. Springer, 2010.

A. Classen, M. Cordy, P. Y. Schobbens, P. Heymans, A. Legay, and J. F. Raskin. Featured transition

systems: Foundations for verifying variability-intensive systems and their application to LTL model

checking. IEEE Transactions on Software Engineering, 39:1069–1089, 2013.

Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, Axel Legay, and Jean-François Raskin. Model

checking lots of systems: efficient verification of temporal properties in software product lines. In Pro-

ceedings of the 32nd ACM/IEEE International Conference on Software Engineering-Volume 1 (ICSE’10),

pages 335–344. ACM, 2010.

Andreas Classen, Quentin Boucher, and Patrick Heymans. A text-based approach to feature modelling:

Syntax and semantics of TVL. Science of Computer Programming, 76:1130 – 1143, 2011a.

Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, and Axel Legay. Symbolic model checking of

software product lines. In Proceedings of the 33rd International Conference on Software Engineering

(ICSE’11), pages 321–330. ACM, 2011b.

Andreas Classen, Maxime Cordy, Patrick Heymans, Axel Legay, and Pierre-Yves Schobbens. Model checking

software product lines with SNIP. International Journal on Software Tools for Technology Transfer, 14:

589–612, 2012.

Andreas Classen, Maxime Cordy, Patrick Heymans, Axel Legay, and Pierre-Yves Schobbens. Formal

semantics, modular specification, and symbolic verification of product-line behaviour. Science of

Computer Programming, 80:416 – 439, 2014.

171

bibliography

Matthias Clauß. Generic modeling using UML extensions for variability. In Proceedings of the Workshop on

Domain Specific Visual Languages, Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA’01), volume 2001, 2001.

Maxime Cordy, Pierre-Yves Schobbens, Patrick Heymans, and Axel Legay. Behavioural modelling and

verification of real-time software product lines. In Proceedings of the 16th International Software Product

Line Conference (SPLC’12), pages 66–75. ACM, 2012.

Maxime Cordy, Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, and Axel Legay. Provelines: a

product line of verifiers for software product lines. In Proceedings of the 17th International Software

Product Line Conference co-located workshops (SPLC’13 workshops), pages 141–146. ACM, 2013.

Rui Couto, José Creissac Campos, Nuno Macedo, and Alcino Cunha. Improving the visualization of

Alloy instances. In Proceedings of the 4th Workshop on Formal Integrated Development Environment

(F-IDE’18), volume 284 of EPTCS, pages 37–52, 2018.

Alcino Cunha. Bounded model checking of temporal formulas with Alloy. In Proceedings of the 4th

International Conference on Abstract State Machines, Alloy, B, TLA, VDM, and Z (ABZ’14), volume 8477,

page 303–308. Springer, 2014.

Alcino Cunha, Nuno Macedo, and Chong Liu. Validating multiple variants of an automotive light system

with Electrum. In Proceedings of the 7th International Conference on Rigorous State-Based Methods,

pages 318–334. Springer, 2020.

Krzysztof Czarnecki and Michal Antkiewicz. Mapping features to models: A template approach based on

superimposed variants. In Proceedings of the 4th International Conference on Generative Programming

and Component Engineering (GPCE’05), volume 3676, pages 422–437. Springer, 2005.

Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative programming - methods, tools and applications.

Addison-Wesley, 2000.

Krzysztof Czarnecki and Krzysztof Pietroszek. Verifying feature-based model templates against well-

formedness OCL constraints. In Proceedings of the 5th International Conference on Generative Pro-

gramming and Component Engineering (GPCE’06), page 211–220. ACM, 2006.

Krzysztof Czarnecki and Andrzej Wasowski. Feature diagrams and logics: There and back again. In

Proceedings of the 11th International Software Product Line Conference (SPLC’07), pages 23–34. IEEE

Computer Society, 2007.

172

bibliography

Krzysztof Czarnecki, Thomas Bednasch, Peter Unger, and Ulrich W. Eisenecker. Generative programming

for embedded software: An industrial experience report. In Proceedings of the International Conference

on Generative Programming and Component Engineering (GPCE’2002), volume 2487, pages 156–172.

Springer, 2002.

Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Formalizing cardinality-based feature models

and their specialization. Software Process: Improvement and Practice, 10:7–29, 2005.

Xavier Devroey, Maxime Cordy, Gilles Perrouin, Eun-Young Kang, Pierre-Yves Schobbens, Patrick Heymans,

Axel Legay, and Benoit Baudry. A vision for behavioural model-driven validation of software product

lines. In Proceedings of the 5th International Symposium on Leveraging Applications of Formal Methods,

Verification and Validation (ISoLA’12), volume 7609, pages 208–222. Springer, 2012.

Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski, Martin Becker, and Krzysztof Czarnecki.

An exploratory study of cloning in industrial software product lines. In Proceedings of the 17th European

Conference on Software Maintenance and Reengineering (CSMR’13), pages 25–34. IEEE Computer

Society, 2013.

Jonathan Edwards, Daniel Jackson, and Emina Torlak. A type system for object models. In Proceedings

of the 12th International Symposium on Foundations of Software Engineering (SIGSOFT’04/FSE-12),

volume 29, page 189–199. ACM, 2004.

Holger Eichelberger and Klaus Schmid. A systematic analysis of textual variability modeling languages. In

Proceedings of the 17th International Software Product Line Conference (SPLC’13), pages 12–21. ACM,

2013.

Alessandro Fantechi and Stefania Gnesi. Formal modeling for product families engineering. In 12th

International Software Product Line Conference (SPLC’08), pages 193–202. IEEE, 2008.

Janet Feigenspan, Christian Kästner, Sven Apel, Jörg Liebig, Michael Schulze, Raimund Dachselt, Maria

Papendieck, Thomas Leich, and Gunter Saake. Do background colors improve program comprehension

in the# ifdef hell? Empirical Software Engineering, 18:699–745, 2013.

Wolfram Fenske, Jens Meinicke, Sandro Schulze, Steffen Schulze, and Gunter Saake. Variant-preserving

refactorings for migrating cloned products to a product line. In Proceedings of the 24th International

Conference on Software Analysis, Evolution and Reengineering (SANER’17), pages 316–326. IEEE

Computer Society, 2017.

173

bibliography

Martin Fowler. Refactoring: improving the design of existing code. Addison-Wesley Professional, 2018.

Marcelo F. Frias, Juan P. Galeotti, Carlos López Pombo, and Nazareno Aguirre. DynAlloy: upgrading Alloy

with actions. In Proceedings of the 27th International Conference on Software Engineering (ICSE’05),

pages 442–450. ACM, 2005.

Marcelo F. Frias, Carlos G. Lopez Pombo, Juan P. Galeotti, and Nazareno M. Aguirre. Efficient analysis of

DynAlloy specifications. ACM Transactions on Software Engineering and Methodology (TOSEM), 17:

1–34, 2007.

Rohit Gheyi. A Refinement Theory for Alloy. PhD thesis, Universidade Federal de Pernambuco, 2007.

Rohit Gheyi and Paulo Borba. Refactoring Alloy specifications. Electronic Notes in Theoretical Computer

Science, 95:227–243, 2004.

Rohit Gheyi, Tiago Massoni, and Paulo Borba. A theory for feature models in Alloy. In 1st Alloy workshop,

pages 71–80. Citeseer, 2006.

Stefania Gnesi and Marinella Petrocchi. Towards an executable algebra for product lines. In Proceedings

of the 16th International Software Product Line Conference (SPLC’12), pages 66–73. ACM, 2012.

Hassan Gomaa. Object oriented analysis and modeling for families of systems with UML. In Proceedings

of the 6th International Conference on Software Reuse (ICSR-6), volume 1844, pages 89–99. Springer,

2000.

Ali Gondal, Mike Poppleton, Michael Butler, and Colin Snook. Feature-oriented modelling using Event-B. In

Proceedings of the International Conference on Software Engineering Theory and Practice (SETP’10),

pages 100–106, 2010.

Joel Greenyer, Amir Molzam Sharifloo, Maxime Cordy, and Patrick Heymans. Efficient consistency checking

of scenario-based product-line specifications. In Proceedings of the 20th IEEE International Requirements

Engineering Conference (RE’12), pages 161–170. IEEE Computer Society, 2012.

Martin L. Griss, John M. Favaro, and Massimo D’Alessandro. Integrating feature modeling with the rseb.

In Proceedings of the 5th International Conference on Software Reuse (ICSR’1998), pages 76–85. IEEE

Computer Society, 1998.

174

bibliography

Arne Haber, Holger Rendel, Bernhard Rumpe, and Ina Schaefer. Delta modeling for software architec-

tures. In Proceedings of the Dagstuhl Workshop on Model-Based Development of Embedded Systems

(MBEES’11), pages 1–10. fortiss GmbH, München, 2011.

Adithya Hemakumar. Finding contradictions in feature models. In Proceedings of the International Workshop

on Analyses of Software Product Lines (ASPL’08), pages 183–190. Lero Int. Science Centre, University

of Limerick, Ireland, 2008.

Gerard Holzmann. Spin Model Checker, the: Primer and Reference Manual. Addison-Wesley Professional,

first edition, 2003. ISBN 0-321-22862-6.

Gerard J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineering, 23:279–295,

1997.

Daniel Jackson. Software Abstractions: logic, language, and analysis. MIT press, 2012.

Jean-Marc Jézéquel. Model-driven engineering for software product lines. International Scholarly Research

Notices, 2012:1–24, 2012.

Edson A. Oliveira Junior, Itana Maria de Souza Gimenes, and José Carlos Maldonado. Systematic

management of variability in UML-based software product lines. Journal of Universal Computer Science,

16(17):2374–2393, 2010.

Paulius Juodisius, Atrisha Sarkar, Raghava Rao Mukkamala, Michal Antkiewicz, Krzysztof Czarnecki, and

Andrzej Wasowski. Clafer: Lightweight modeling of structure, behaviour, and variability. The Art, Science,

and Engineering of Programming, 3:2, 2018.

Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak, and A Spencer Peterson. Feature-oriented

domain analysis (foda) feasibility study. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Software

Engineering Inst, 1990.

Christian Kästner and Sven Apel. Integrating compositional and annotative approaches for product line

engineering. In Proceedings of the Workshop on Modularization, Composition, and Generative Techniques

for Product Line Engineering (McGPLE’08), pages 35–40, 2008.

Christian Kästner, Sven Apel, and Martin Kuhlemann. Granularity in software product lines. In Proceedings

of the 30th International Conference on Software Engineering (ICSE’08), page 311–320. ACM, 2008.

175

bibliography

Charles W. Krueger. Easing the transition to software mass customization. In Proceedings of the 4th

International Workshop on Software Product-Family Engineering (PFE’01), pages 282–293. Springer-

Verlag, 2001.

Duc Minh Le, Hyesun Lee, Kyo Chul Kang, and Lee Keun. Validating consistency between a feature model

and its implementation. In Proceedings of the international Conference on Software Reuse (ICSR’13),

pages 1–16. Springer, 2013.

Chong Liu, Nuno Macedo, and Alcino Cunha. Simplifying the analysis of software design variants with a

Colorful Alloy. In Proceedings of the International Symposium on Dependable Software Engineering:

Theories, Tools, and Applications (SETTA’19), pages 38–55. Springer, 2019.

Chong Liu, Nuno Macedo, and Alcino Cunha. Merging cloned Alloy models with colorful refactorings. In

Proceedings of the 23rd Brazilian Symposium on Formal Methods (SBMF’20), pages 173–191. Springer,

2020.

Malte Lochau, Stephan Mennicke, Hauke Baller, and Lars Ribbeck. Deltaccs: A core calculus for behavioral

change. In Proceedings of the 6th International Symposium on Leveraging Applications of Formal

Methods, Verification and Validation (ISoLA’14), volume 8802, pages 320–335. Springer, 2014.

Nuno Macedo, Alcino Cunha, and Tiago Guimarães. Exploring scenario exploration. In Proceedings of the

18th International Conference on Fundamental Approaches to Software Engineering (FASE’15), volume

9033, pages 301–315. Springer, 2015.

Nuno Macedo, Julien Brunel, David Chemouil, Alcino Cunha, and Denis Kuperberg. Lightweight specification

and analysis of dynamic systems with rich configurations. In Proceedings of the 24th ACM SIGSOFT

International Symposium on Foundations of Software Engineering (FSE’16), pages 373–383. ACM,

2016.

Nuno Macedo, Alcino Cunha, José Pereira, Renato Carvalho, Ricardo Silva, Ana C. R. Paiva, Miguel S.

Ramalho, and Daniel Castro Silva. Sharing and learning Alloy on the web. CoRR, abs/1907.02275,

2019.

Kenneth L. McMillan. Symbolic model checking. Kluwer, 1993. ISBN 978-0-7923-9380-1.

Marcílio Mendonça, Moises Branco, and Donald D. Cowan. S.P.L.O.T.: software product lines online tools.

In Proceedings of the 24th ACM SIGPLAN conference companion on Object oriented programming

systems languages and applications (OOPSLA’09), pages 761–762. ACM, 2009a.

176

bibliography

Marcílio Mendonça, Andrzej Wasowski, and Krzysztof Czarnecki. Sat-based analysis of feature models is

easy. In Proceedings of the 13th International Software Product Line Conference (SPLC’09), volume

446, pages 231–240. ACM, 2009b.

Aleksandar Milicevic and Daniel Jackson. Preventing arithmetic overflows in Alloy. Science of Computer

Programming, 94:203–216, 2014.

Joseph P. Near and Daniel Jackson. An imperative extension to Alloy. In Proceedings of the International

Conference on Abstract State Machines, Alloy, B and Z (ABZ’10), volume 5977, pages 118–131.

Springer, 2010.

Tim Nelson, Salman Saghafi, Daniel J. Dougherty, Kathi Fisler, and Shriram Krishnamurthi. Aluminum:

Principled scenario exploration through minimality. In Proceedings of the 35th International Conference

on Software Engineering (ICSE’13), page 232–241. IEEE, 2013.

Natsuko Noda and Tomoji Kishi. Aspect-oriented modeling for variability management. In Proceedings

of the 12th International Conference on Software Product Lines (SPLC’08), pages 213–222. IEEE

Computer Society, 2008.

Malte Plath and Mark Ryan. Feature integration using a feature construct. Science of Computer Program-

ming, 41:53–84, 2001.

Klaus Pohl, Günter Böckle, and Frank J van Der Linden. Software product line engineering: foundations,

principles and techniques. Springer Science & Business Media, 2005.

Hendrik Post and Carsten Sinz. Configuration lifting: Verification meets software configuration. In

Proceedings of the 23rd IEEE/ACM International Conference on Automated Software Engineering

(ASE’08), pages 347–350. IEEE, 2008.

Christian Prehofer. Feature-oriented programming: A fresh look at objects. In European Conference on

Object-Oriented Programming, pages 419–443. Springer, 1997.

Iris Reinhartz-Berger and Arnon Sturm. Comprehensibility of UML-based software product line specifications

- A controlled experiment. Empirical Software Engineering, 19(3):678–713, 2014.

Matthias Riebisch, Kai Böllert, Detlef Streitferdt, and Ilka Philippow. Extending feature diagrams with

uml multiplicities. In Proceedings of the 6th Conference on Integrated Design & Process Technology

(IDPT’02), volume 23, pages 1–7, 2002.

177

bibliography

Shamim Ripon, Keya Azad, Sk. Jahir Hossain, and Mehidee Hassan. Modeling and analysis of product-line

variants. In Proceedings of the 16th International Software Product Line Conference (SPLC’12), pages

26–31. ACM, 2012.

Silva Robak, Bogdan Franczyk, and Kamil Politowicz. Extending the UML for modeling variabilities for

system families. International Journal of Applied Mathematics and Computer Science, 12:285–298,

2002.

Julia Rubin and Marsha Chechik. Combining related products into product lines. In Proceedings of the 15th

International Conference on Fundamental Approaches to Software Engineering (FASE 2012), volume

7212, pages 285–300. Springer, 2012.

Julia Rubin and Marsha Chechik. Quality of merge-refactorings for product lines. In Proceedings of the 16th

International Conference on Fundamental Approaches to Software Engineering (FASE 2013), volume

7793, pages 83–98. Springer, 2013.

Julia Rubin, Krzysztof Czarnecki, and Marsha Chechik. Cloned product variants: From ad-hoc to managed

software product lines. International Journal on Software Tools for Technology Transfer, 17:627–646,

2015.

Hamideh Sabouri and Ramtin Khosravi. Delta modeling and model checking of product families. In

Proceedings of the 5th International Conference on Fundamentals of Software Engineering (FSEN’13),

volume 8161, pages 51–65. Springer, 2013.

Ina Schaefer. Variability modelling for model-driven development of software product lines. In Proceedings

of the 4th International Workshop on Variability Modelling of Software-Intensive Systems (VaMoS’10),

volume 10, pages 85–92. Universität Duisburg-Essen, 2010.

Ina Schaefer and Reiner Hähnle. Formal methods in software product line engineering. IEEE Computer,

44(2):82–85, 2011.

Sandro Schulze, Thomas Thüm, Martin Kuhlemann, and Gunter Saake. Variant-preserving refactoring in

feature-oriented software product lines. In Proceedings of the 6th International Workshop on Variability

Modelling of Software-Intensive Systems (VaMoS’12), pages 73–81. ACM, 2012.

Sergio Segura. Automated analysis of feature models using atomic sets. In 1st Workshop on Analyses of

Software Product Lines (SPLC’08), pages 201–207, 2008.

178

bibliography

Samuel Sepúlveda, Carlos Cares, and Cristina Cachero. Towards a unified feature metamodel: A systematic

comparison of feature languages. In Proceedings of the 7th Iberian Conference on Information Systems

and Technologies (CISTI’12), pages 1–7, 2012.

José Serna, Nancy A. Day, and Sabria Farheen. DASH: A new language for declarative behavioural

requirements with control state hierarchy. In Proceedings of the 25th International Requirements

Engineering Conference Workshops (REW’17), pages 64–68. IEEE, 2017.

Pourya Shaker, Joanne M. Atlee, and Shige Wang. A feature-oriented requirements modelling language.

In Proceedings of the 20th IEEE International Requirements Engineering Conference (RE’12), pages

151–160. IEEE Computer Society, 2012.

Shin’ichi Shiraishi. An AADL-Based approach to variability modeling of automotive control systems. In

Proceedings of the 13th International Conference on Model Driven Engineering Languages and Systems

(MODELS’10), page 346–360. Springer-Verlag, 2010.

Anjali Sree-Kumar, Elena Planas, and Robert Clarisó. Analysis of feature models using Alloy: A survey. In

Proceedings of the 7th International Workshop on Formal Methods and Analysis in Software Product

Line Engineering (FMSPLE’16), volume 206, pages 46–60, 2016.

Harald Störrle. Towards clone detection in UML domain models. Software & Systems Modeling, 12:

307–329, 2013.

Chang-ai Sun, Rowan Rossing, Marco Sinnema, Pavel Bulanov, and Marco Aiello. Modeling and managing

the variability of web service-based systems. Journal of Systems and Software, 83:502–516, 2010.

Maurice H. ter Beek and Erik P. de Vink. Towards modular verification of software product lines with mcrl2.

In Proceedings of the 6th International Symposium On Leveraging Applications of Formal Methods,

Verification and Validation (ISoLA’14), volume 8802 of LNCS, pages 368–385. Springer, 2014a.

Maurice H. ter Beek and Erik P. de Vink. Using mcrl2 for the analysis of software product lines. In

Proceedings of the 2nd FME Workshop on Formal Methods in Software Engineering (FormaliSE’14),

pages 31–37. ACM, 2014b.

Maurice H. ter Beek, Alberto Lluch-Lafuente, and Marinella Petrocchi. Combining declarative and procedural

views in the specification and analysis of product families. In Proceedings of the 17th International

Software Product Line Conference co-located workshops (SPLC’13 workshops), pages 10–17. ACM,

2013.

179

bibliography

Thomas Thüm, Christian Kästner, Fabian Benduhn, Jens Meinicke, Gunter Saake, and Thomas Leich.

Featureide: An extensible framework for feature-oriented software development. Science of Computer

Programming, 79:70–85, 2014.

Emina Torlak and Daniel Jackson. Kodkod: A relational model finder. In Proceedings of the 13th International

Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’07), pages

632–647. Springer, 2007.

Arie Van Deursen and Paul Klint. Domain-specific language design requires feature descriptions. Journal

of computing and information technology, 10:1–17, 2002.

Hai H Wang, Yuan Fang Li, Jing Sun, Hongyu Zhang, and Jeff Pan. Verifying feature models using OWL.

Journal of web semantics, 5:117–129, 2007.

Jeffrey M. Young, Eric Walkingshaw, and Thomas Thüm. Variational satisfiability solving. In Proceedings of

the 24th ACM Conference on Systems and Software Product Line (SPLC ’20), pages 18:1–18:12. ACM,

2020.

Atulan Zaman, Iman Kazerani, Medha Patki, Bhargava Guntoori, and Derek Rayside. Improved visualization

of relational logic models. Technical Report CS-2013-04, University of Waterloo, 2013.

180

A
CO LO R F U L E X AMP L E S

1 module Ecommerce

2 fact FeatureModel {

3 2 1 some none 1 2 -- Hierarchical requires Categories

4 3 1 some none 1 3 -- Multiple requires Categories

5 }

6 sig Product {

7 images : set Image,

8 1 catalog : one Catalog 1 ,

9 1 3 category : some Category 3 1 ,

10 1 3 category : one Category 3 1 }

11

12 5 sig onSale in Product {} 5

13

14 sig Image {}

15

16 sig Catalog {

17 4 thumbnails: set Image 4 }

18

19 1 2 sig Category {

20 inside : one Catalog+ Category

21 } 2 1

22 1 2 sig Category {

23 inside : one Catalog

24 } 2 1

25

26 1 2 fact Acyclic {

27 all c : Category | c not in c.^inside

28 } 2 1

29 4 fact Thumbnails {

30 all c : Catalog |

31 c.thumbnails in (1 category.((2 inside 2 + 2 ^inside 2).c) 1 + 1 catalog.c 1).images

32 } 4

33 4 5 fact OnSaleThumbnails {

34 all p: onSale, c: catalogs[p]| some p.images & c.thumbnails

35 } 5 4

36

37 pred Scenario{

38 some Product.images and 1 all c : Category | lone category.c 1

39 }

40 run Scenario with exactly 1

41

42 fun catalogs [p : Product] : set Catalog {

43 1 p.catalog 1 + 1 p.category.(2 inside 2 + 2 ^inside 2) & 2 Catalog 2 1

44 }

45 assert AllCataloged {

46 all p : Product | some catalogs[p]

47 }

48 check AllCataloged for 10

Figure 92: E-commerce specification in Colorful Alloy.

181

1. Colorful Examples

1 module Graph

2 /*

3 * 1 Multigraph

4 * 2 Undirected

5 * 3 DAG

6 * 4 Tree

7 * 5 Vertex Labeled

8 * 6 Binary Tree

9 */

10

11 fact FeatureModel {

12 -- DAG incompatible with Undirected

13 2 3 some none 3 2

14 -- Tree requires DAG

15 4 3 some none 3 4

16 -- Binary Tree requires Tree

17 6 4 some none 4 6

18 -- Binary Tree requires Vertex Labeled

19 6 5 some none 5 6

20 }

21

22 sig Node {

23 adj : set Node,

24 5 label : one Label 5

25 }

26 4 lone sig Root extends Node {} 4

27

28 5 sig Label {} 5

29

30 sig Edge {

31 src, dst : one Node

32 }

33 6 sig Left, Right extends Edge {} 6

34

35 fact {

36 -- Auxiliary relation to help with visualization and specification

37 adj = ~src.dst

38 -- No multiple edges

39 1 all disj e, e' Edge | e.src != e'.src or e.dst != e'.dst 1

40 -- The adjency relation is symetric

41 2 adj = ~adj 2

42 -- No cycles

43 3 all n : Node | n not in n.^adj 3

44 -- All nodes except the root have one parent

45 4 all n : Node-Root | one adj.n 4

46 -- Labels are unique

47 5 label in Node lone -> Label 5

48 -- In binary trees all edges are either left or right

49 6 Edge = Left+Right 6

50 -- Each node has at most one left and one right adjacent

51 6 all n : Node | lone (src.n & Left).dst and lone (src.n & Right).dst 6

52 -- The left and right adjacent nodes must be distinct

53 6 all n : Node | no (src.n & Left).dst & (src.n & Right).dst 6

54 }

55 run {} with exactly 4 for 5 expect 0

56

57 4 assert Connected {

58 -- All nodes descend from root

59 Node in Root.*adj

60 } 4

61 check Connected with exactly 3 , 4 for 8

62

63 3 assert SourcesAndSinks {

64 -- If the graph is not empty there is at least one source and one sink node

65 some Node implies (some n : Node | no adj.n and some n : Node | no n.adj)

66 } 3

67 check SourcesAndSinks with 3 for 7

Figure 93: Graph specification in Colorful Alloy.

182

1. Colorful Examples

1 module vending

2 /*

3 * 1 Free drinks

4 * 2 Multiple Selection

5 * 3 Cancel

6 * 4 Multiple Prices

7 */

8

9 open util/ordering[Time]

10 open util/natural as nat

11

12 fact FeatureModel {

13 -- Free drinks incompatible with Multiple Selection

14 1 2 some none 2 1

15 -- Free drinks incompatible with Multiple Prices

16 1 4 some none 4 1

17 }

18

19 abstract sig State {}

20 one sig Ready,Selected,Served extends State {}

21 1 one sig Paid extends State {} 1

22 1 one sig Done extends State {} 1

23

24 sig Product {

25 4 price : one Natural 4

26 }

27

28 sig Time {

29 state : one State,

30 stock : set Product,

31 selection : set Product,

32 1 total : one Natural 1 ,

33 1 coins : one Natural 1 ,

34 1 balance : one Natural 1

35 }

36

37 1 pred Pay [pre, pos : Time] {

38 pre.state in Ready+Paid

39 pos.state = Paid

40 pos.stock = pre.stock

41 pos.selection = pre.selection

42 pos.total = pre.total

43 pos.coins = inc[pre.coins]

44 pos.balance = pre.balance

45 } 1

46

47 pred Select [pre,pos : Time, p : Product] {

48 pre.state in 1 Ready 1 + 1 Paid 1 + 2 Selected 2

49 p in pre.stock - pre.selection

50 4 1 pos.total= inc[pre.total] 1 4

51 4 1 pos.total= add[pre.total, p.price] 1 4

52 pos.state = Selected

53 pos.stock = pre.stock

54 pos.selection = pre.selection + p

55 1 pos.coins = pre.coins 1

56 1 pos.balance = pre.balance 1

57 }

58

59 3 pred Cancel [pre,pos : Time] {

60 pre.state = Selected

61 pos.state = 1 Done 1 + 1 Ready 1

62 pos.stock = pre.stock

63 no pos.selection

64 1 pos.total = Zero 1

65 1 pos.coins = pre.coins 1

66 1 pos.balance = pre.balance 1

67 } 3

Figure 94: Vending Machine specification in Colorful Alloy (part 1).

183

1. Colorful Examples

1 pred Serve [pre,pos : Time] {

2 pre.state = Selected

3 pos.state = Served

4 1 gte[pre.coins, pre.total] 1

5 pos.stock = pre.stock - pre.selection

6 pos.selection = pre.selection

7 1 pos.total = pre.total 1

8 1 pos.coins = sub[pre.coins, pre.total] 1

9 1 pos.balance = add[pre.balance, pre.total] 1

10 }

11

12 pred Open [pre,pos : Time] {

13 pre.state = Served

14 pos.state = 1 Done 1 + 1 Ready 1

15 pos.stock = pre.stock

16 no pos.selection

17 1 pos.total = Zero 1

18 1 pos.coins = pre.coins 1

19 1 pos.balance = pre.balance 1

20 }

21

22 1 pred Change [pre, pos : Time] {

23 pre.state = Done

24 pos.state = Ready

25 pos.stock = pre.stock

26 pos.selection = pre.selection

27 pos.total = pre.total

28 pos.coins = Zero

29 pos.balance = pre.balance

30 } 1

31

32 pred Nop [pre,pos : Time] {

33 pre.state = Ready

34 no pre.stock

35 pos.state = pre.state

36 pos.stock = pre.stock

37 pos.selection = pre.selection

38 1 pos.total = pre.total 1

39 1 pos.coins = pre.coins 1

40 1 pos.balance = pre.balance 1

41 }

42

43 fact Behaviour {

44 first.state = Ready

45 no first.selection

46 some first.stock

47 1 first.coins = Zero 1

48 1 first.balance = Zero 1

49 1 first.total = Zero 1

50 all pre : Time-last, pos : pre.next {

51 1 Pay[pre, pos] 1 or (some p : Product | Select[pre,pos,p]) or 3 Cancel[pre,pos] 3 or

52 Serve[pre,pos] or Open[pre,pos] or 1 Change[pre, pos] 1 or Nop[pre,pos]

53 }

54 }

55

56 1 assert Balance {

57 all t : Time | t.state = Served implies gte[t.balance, Zero]

58 } 1

59 check Balance with exactly 1 for 5 but 20 Time

60

61 assert Selection {

62 all t : Time, p : Product | p not in t.stock implies all u : t.nexts |

63 p not in u.selection

64 }

65 check Selection with exactly 1 for 5 but 20 Time

66

67 pred NoStock {

68 some t : Time | no t.stock

69 }

70 run NoStock for 5 but 10 Time

Figure 94: Vending Machine specification in Colorful Alloy (part 2).

184

1. Colorful Examples

1 module Bestiary

2 /*

3 * 1 Injective

4 * 2 Functional

5 * 3 Total

6 * 4 Surjective

7 */

8

9 sig A {

10 r : set B

11 }

12

13 sig B {}

14

15 fact Bestiary {

16 1 r in A lone -> B 1

17 2 r in A -> lone B 2

18 3 r in A -> some B 3

19 4 r in A some -> B 4

20 }

21

22 assert Injective {

23 r.~r in iden

24 }

25

26 check Injective with 1 for 25

27

28 assert Simple {

29 ~r.r in iden

30 }

31

32 check Simple with 2 for 25

33

34 assert Associative {

35 r.(~r.r) = (r.~r).r

36 }

37

38 check Associative for 6

Figure 95: Bestiary specification in Colorful Alloy.

185

1. Colorful Examples

1 fact FeatureModel {

2 -- 2 requires 1

3 2 1 some none 1 2

4 }

5

6 abstract sig Person {

7 father: lone Man,

8 mother: lone Woman

9 }

10

11 sig Man extends Person {

12 wife: lone Woman

13 }

14 sig Woman extends Person {

15 husband: lone Man

16 }

17

18 2 fact {

19 no p: Person | p in p.^(mother+father)

20 wife = ~husband

21 } 2

22 1 2 fact Biology { no p: Person | p in p.^(mother+father) } 2 1

23 1 2 fact Terminology { wife = ~husband } 2 1

24

25 assert NoSelfFather {

26 no m: Man | m = m.father

27 }

28 check NoSelfFather

29

30 fun grandpas [p: Person] : set Person {

31 1 2 p.(mother+father).father 2 1 +

32 1 let parent = mother + father + father.wife + mother.husband |

33 p.parent.parent & Man 1

34 }

35

36 pred ownGrandpa [p: Person] {

37 p in p.grandpas

38 }

39 run ownGrandpa for 4 Person

40

41 1 2 assert NoSelfGrandpa { no p: Person | p in p.grandpas } 2 1

42 check NoSelfGrandpa with exactly 1 , 2 for 4 Person

43

44 1 2 fact SocialConvention { no (wife+husband) & ^(mother+father) } 2 1

45 1 2 pred SocialConvention1 { no (wife + husband) & ^(mother + father) } 2 1

46 1 2 pred SocialConvention2 {

47 let parent = mother + father {

48 no m: Man | some m.wife and m.wife in m.*parent.mother

49 no w: Woman | some w.husband and w.husband in w.*parent.father }

50 } 2 1

51

52 1 2 assert Same { SocialConvention1 iff SocialConvention2 } 2 1

53 check Same with exactly 1 , 2

Figure 96: OwnGrandPa specification in Colorful Alloy.

186

1. Colorful Examples

1 module ringElection

2 open util/ordering[Time]

3 open util/ordering[Process]

4

5 sig Time {}

6 sig Process {

7 succ: Process,

8 toSend: Process -> Time,

9 elected: set Time

10 }

11

12 fact ring {

13 all p: Process | Process in p.^succ

14 }

15

16 pred init [t: Time] {

17 all p: Process | p.toSend.t = p

18 }

19

20 pred step [t, t': Time, p: Process] {

21 let from = p.toSend, to = p.succ.toSend |

22 some id: from.t {

23 from.t' = from.t - id

24 to.t' = to.t + (id - p.succ.prevs)

25 }

26 }

27

28 fact defineElected {

29 no elected.first

30 all t: Time-first | elected.t = { p: Process | p in p.toSend.t - p.toSend.(t.prev) }

31 }

32

33 fact traces {

34 init [first]

35 all t: Time-last |

36 let t' = t.next |

37 all p: Process |

38 step [t, t', p] or step [t, t', succ.p] or skip [t, t', p]

39 }

40

41 pred skip [t, t': Time, p: Process] {

42 p.toSend.t = p.toSend.t'

43 }

44

45 pred show { some elected }

46 run show for 3 Process, 4 Time

47

48 assert AtMostOneElected { lone elected.Time }

49 check AtMostOneElected for 3 Process, 7 Time

50

51 1 pred progress {

52 all t: Time - last | let t' = next [t] |

53 some Process.toSend.t => some p: Process | not skip [t, t', p]

54 } 1

55

56 assert AtLeastOneElected {

57 1 progress => some elected.Time 1

58 1 some t: Time | some elected.t 1

59 }

60 check AtLeastOneElected for 3 Process, 7 Time

61

62 1 pred looplessPath { no disj t, t': Time | toSend.t = toSend.t' } 1

63 run looplessPath with 1 for 3 Process, 12 Time

64 run looplessPath with 1 for 3 Process, 13 Time

Figure 97: Ring Election specification in Colorful Alloy.

187

1. Colorful Examples

1 module tour/addressBook

2 1 2 open util/ordering [Book] as BookOrder 2 1

3 fact FeatureModel {

4 -- 2 requires 1

5 2 1 some none 1 2

6 }

7 1 2 sig Name {} 2 1

8 1 2 sig Addr {} 2 1

9 1 abstract sig Target {} 1

10 1 sig Addr extends Target {} 1

11 1 abstract sig Name extends Target {} 1

12 1 sig Alias extends Name {} 1

13 1 sig Group extends Name {} 1

14 sig Book {

15 1 2 addr: Name->lone Addr 2 1 ,

16 1 names: set Name 1 ,

17 1 addr: names->some Target 1

18 }

19 fact sigBook{

20 1 all b: Book |no n: Name | n in n.^(b.addr) 1

21 1 all b: Book, a: Alias | lone a.(b.addr) 1

22 }

23

24 1 2 pred add [b, b': Book, n: Name, a: Addr] { b'.addr = b.addr + n-a } 2 1

25 1 2 pred del [b, b': Book, n: Name] { b'.addr = b.addr - n-Addrn } 2 1

26 1 pred add [b, b': Book, n: Name, t: Target] { b'.addr = b.addr + n->t } 1

27 1 pred del [b, b': Book, n: Name, t: Target] { b'.addr = b.addr - n->t } 1

28

29 1 2 fun lookup [b: Book, n: Name] : set Addr { n.(b.addr) } 2 1

30 1 fun lookup [b: Book, n: Name] : set Addr { n.^(b.addr) & Addr } 1

31

32 1 2 pred show [b: Book] { #b.addr > 1 #Name.(b.addr) > 1 } 2 1

33 run show with 1 , 2 for 3 but 1 Book

34

35 1 2 pred init [b: Book] { no b.addr } 2 1

36 1 2 fact traces {

37 init [first]

38 all b: Book-last |

39 let b' = b.next | some n: Name, t: Target |

40 add [b, b', n, t] or del [b, b', n, t]

41 } 2 1

42

43 1 2 pred showAdd [b, b': Book, n: Name, a: Addr] {

44 add [b, b', n, a] #Name.(b'.addr) > 1

45 } 2 1

46 run showAdd with 1 , 2 for 3 but 2 Book

47

48 assert delUndoesAdd {

49 1 2 all b, b', b'': Book, n: Name, a: Addr |

50 no n.(b.addr) and add [b, b', n, a] and del [b', b'', n] implies b.addr = b''.addr 2 1

51 1 all b, b', b'': Book, n: Name, t: Target |

52 no n.(b.addr) and add [b, b', n, t] and del [b', b'', n, t] implies b.addr = b''.addr 1

53 }

54 check delUndoesAdd for 3

55

56 assert addIdempotent {

57 1 2 all b, b', b'': Book, n: Name, a: Addr |

58 add [b, b', n, a] and add [b', b'', n, a] implies b'.addr = b''.addr 2 1

59 1 all b,b',b'': Book,n: Name,t: Target |

60 add [b, b', n, t] and add [b', b'', n, t] implies b'.addr = b''.addr 1

61 }

62 check addIdempotent for 3

63

64 assert addLocal {

65 1 2 all b, b': Book, n, n': Name, a: Addr |

66 add [b, b', n, a] and n != n'implies lookup [b , n'] = lookup [b', n'] 2 1

67 1 all b,b': Book,n,n': Name, t: Target |

68 add [b,b',n,t] and n != n'implies lookup [b,n'] = lookup [b',n'] 1

69 }

70 check addLocal for 3 but 2 Book

71

72 1 assert lookupYields {

73 all b: Book, n: b.names | some lookup [b,n]

74 } 1

75 check lookupYields with 1 , 2 for 4 but 1 Book

Figure 98: AddressBook specification in Colorful Alloy.

188

1. Colorful Examples

1 open util/ordering [Time]

2 open util/ordering [Key]

3 sig Key {}

4 sig Time {}

5 sig Room {

6 keys: set Key,

7 currentKey: keys one -> Time

8 }

9

10 fact DisjointKeySets {

11 Room<:keys in Room lone-> Key

12 }

13

14 one sig FrontDesk {

15 lastKey: (Room -> lone Key) -> Time,

16 occupant: (Room -> Guest) -> Time

17 }

18 sig Guest {

19 keys: Key -> Time

20 }

21

22 fun nextKey [k: Key, ks: set Key]: set Key {

23 min [k.nexts & ks]

24 }

25

26 pred init [t: Time] {

27 no Guest.keys.t

28 no FrontDesk.occupant.t

29 all r: Room | FrontDesk.lastKey.t [r] = r.currentKey.t

30 }

31

32 1 pred entry [t, t': Time g: Guest, r: Room, k: Key] {

33 k in g.keys.t

34 let ck = r.currentKey |

35 (k = ck.t and ck.t' = ck.t) or

36 (k = nextKey[ck.t, r.keys] and ck.t' = k)

37 noRoomChangeExcept [t, t', r]

38 noGuestChangeExcept [t, t',none]

39 noFrontDeskChange [t, t']

40 } 1

41

42 1 pred noFrontDeskChange [t, t': Time] {

43 FrontDesk.lastKey.t = FrontDesk.lastKey.t'

44 FrontDesk.occupant.t = FrontDesk.occupant.t'

45 } 1

46

47 1 pred noRoomChangeExcept [t, t': Time, rs: set Room] {

48 all r: Room - rs | r.currentKey.t = r.currentKey.t'

49 } 1

50

51 1 pred noGuestChangeExcept [t, t': Time, gs: set Guest] {

52 all g: Guest - gs | g.keys.t = g.keys.t'

53 } 1

54

55 1 pred checkout [t, t': Time, g: Guest] {

56 let occ = FrontDesk.occupant {

57 some occ.t.g

58 occ.t' = occ.t - Room -> g

59 }

60 FrontDesk.lastKey.t = FrontDesk.lastKey.t'

61 noRoomChangeExcept [t, t',none]

62 noGuestChangeExcept [t, t', none]

63 } 1

64

65 1 pred checkin [t, t': Time, g: Guest , r: Room, k: Key] {

66 g.keys.t' = g.keys.t + k

67 let occ = FrontDesk.occupant {

68 no occ.t [r]

69 occ.t' = occ.t + r -> g }

70 let lk = FrontDesk.lastKey {

71 lk.t' = lk.t ++ r -> k

72 k = nextKey [lk.t [r], r.keys] }

73 noRoomChangeExcept [t, t', none]

74 noGuestChangeExcept [t, t', g]

75 } 1

Figure 99: Hotel specification in Colorful Alloy (part 1).

189

1. Colorful Examples

1 1 abstract sig Event {

2 pre, post: Time,

3 guest: Guest

4 } 1

5

6 1 abstract sig RoomKeyEvent extends Event {

7 room: Room,

8 key: Key

9 } 1

10

11 1 sig Entry extends RoomKeyEvent {} 1

12 1 fact sigEntry {

13 key in guest.keys.pre

14 let ck = room.currentKey |

15 (key = ck.pre and ck.post = ck.pre) or

16 (key = nextKey[ck.pre, room.keys] and ck.post = key)

17 currentKey.post = currentKey.pre ++ room->key

18 } 1

19

20 1 sig Checkin extends RoomKeyEvent {} 1

21 1 fact SigCheckin {

22 keys.post = keys.pre + guest -> key

23 let occ = FrontDesk.occupant {

24 no occ.pre [room]

25 occ.post = occ.pre + room -> guest }

26 let lk = FrontDesk.lastKey {

27 lk.post = lk.pre ++ room -> key

28 key = nextKey [lk.pre [room], room.keys] }

29 } 1

30

31 1 sig Checkout extends Event {}

32 1 fact sigCheckout {

33 let occ = FrontDesk.occupant { some occ.pre.guest and occ.post = occ.pre - Room -> guest }

34 } 1

35

36 fact traces {

37 init [first]

38 1 all t: Time-last | let t' = t.next |some g: Guest, r: Room, k: Key |

39 entry [t, t', g, r, k] or checkin [t, t', g, r, k] or checkout [t, t', g] 1

40 1 all t: Time-last | let t' = t.next | some e: Event {

41 e.pre = t and e.post = t'

42 currentKey.t != currentKey.t' => e in Entry

43 occupant.t != occupant.t' => e in Checkin + Checkout

44 (lastKey.t != lastKey.t' or keys1.t != keys1.t') => e in Checkin } 1

45 }

46

47 fact NoIntervening {

48 1 2 all t: Time-last | let t' = t.next, t" = t'.next |

49 all g: Guest, r: Room, k: Key |

50 checkin [t, t', g, r, k] = (entry [t', t", g, r, k] or no t") 2 1

51 1 2 all c: Checkin |

52 c.post = last

53 or some e: Entry { e.pre = c.post e.room = c.room e.guest = c.guest } 2 1

54 }

55

56 assert NoBadEntry {

57 1 all t : Time, r : Room, g : Guest, k : Key |

58 let t' = t.(next) | let o = r.(FrontDesk.occupant.t) |

59 (entry[t, t', g, r, k]) and some o = g in o 1

60 1 all e : Entry |

61 let o = e .room.(FrontDesk.occupant.(e.pre)) | some o => e.guest in o 1

62 }

63 check NoBadEntry for 3 but 2 Room, 2 Guest, 5 Time

Figure 99: Hotel specification in Colorful Alloy (part 2).

190

	1 Introduction
	2 Formal Software Design with Alloy
	2.1 Alloy by Example
	2.1.1 E-commerce Example
	2.1.2 Signature and Field Declaration
	2.1.3 Type System
	2.1.4 Exploring Scenarios
	2.1.5 Specifying Constraints
	2.1.6 Verifying Assertions
	2.1.7 Modularization

	2.2 Formal Presentation of the Language
	2.2.1 Formal Syntax
	2.2.2 Formal Semantics
	2.2.3 Type Inference
	2.2.4 Analysis

	2.3 Refactoring Alloy Models
	2.3.1 Laws for Signatures
	2.3.2 Laws for Fields
	2.3.3 Laws for Formulas

	2.4 Alloy Extensions

	3 Feature-oriented Software Design
	3.1 Feature Modeling
	3.1.1 Specifying Feature Models
	3.1.2 Analyzing Feature Models

	3.2 Modeling in Feature-oriented Design
	3.2.1 Ad-hoc Approaches
	3.2.2 Composition-based Languages
	3.2.3 Annotation-based Languages

	3.3 Analysis in Feature-oriented Design
	3.4 Supporting Clone-and-own
	3.4.1 Migrating Clones into an SPL

	4 Colorful Alloy
	4.1 The Background Color Approach
	4.2 Colorful Alloy Syntax
	4.3 An Example of Proactive SPL Design
	4.4 Type Checking Rules
	4.5 Semantics
	4.6 Analysis

	5 Merging Cloned Alloy Models with Colorful Refactorings
	5.1 Migrating Code Clones into an SPL with Refactoring
	5.2 Refactoring Rules for Colorful Alloy
	5.3 Migrating Clones into a Colorful Alloy Model
	5.4 Automatic Merging Strategy

	6 Implementation and Evaluation
	6.1 The Colorful Alloy Analyzer
	6.2 Proactive Case Studies
	6.2.1 E-commerce
	6.2.2 GrandpaFamily
	6.2.3 Alloy4Fun
	6.2.4 Graph
	6.2.5 Vending Machine
	6.2.6 Bestiary
	6.2.7 Comparison with Compositional Approaches

	6.3 Evaluating the Clone Migration Strategy
	6.3.1 Extractive Case Studies
	6.3.2 Clone Migration Results

	6.4 Evaluating Colorful Analysis

	7 Conclusion
	Bibliography
	A Colorful Examples

