
Universidade do Minho
Escola de Engenharia
Departamento de Informática

Bruno Miguel Sousa Cancelinha

Towards model checking Electrum
specifications with LTSmin

October 2019

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Bruno Miguel Sousa Cancelinha

Towards model checking Electrum
specifications with LTSmin

Master dissertation
Master Degree in Computer Science

Dissertation supervised by
Professor Doutor Alcino Cunha
Professor Doutor Paulo Sérgio Almeida

October 2019

D I R E I T O S D E AU T O R E C O N D I Ç Õ E S D E U T I L I Z A Ç Ã O D O
T R A B A L H O P O R T E R C E I R O S

Este é um trabalho académico que pode ser utilizado por terceiros desde que respeitadas
as regras e boas práticas internacionalmente aceites, no que concerne aos direitos de autor
e direitos conexos. Assim, o presente trabalho pode ser utilizado nos termos previstos na
licença abaixo indicada. Caso o utilizador necessite de permissão para poder fazer um uso
do trabalho em condições não previstas no licenciamento indicado, deverá contactar o autor,
através do RepositóriUM da Universidade do Minho.

Atribuição
CC BY
https://creativecommons.org/licenses/by/4.0/

i

https://creativecommons.org/licenses/by/4.0/

A C K N O W L E D G E M E N T S

When writting the acknowledgments of a master thesis, we are not just acknowledging the
people who were close by and helped on the construction of the whole dissertation. Rather
it is my view that we are acknowledging everyone who accompanied us in these past five
years. I am certantily not the same person I was five years ago, and I am sure I wont be
the same person five years from now. But that transformation cannot be attributed to a
single person or a group, but to everyone I have ever interacted with; in the sense that every
person I stumble upon during my life, in some way or another, changes me and the path I
am following. I cannot therefore thank individually each one who helped bringing me here,
since I would either have inadequately long acknowledgments or I would have committed
the terrible disgrace of missing someone.

With that cleared out, I must thank those who, like me, where thrown into a new world
five years ago and who have been supporting me ever since. I also send my thanks: To those
friendships that begun on Wednesday nights, and prolonged during the years. To those
whom culture and the joy of argumentation brought us together. To those that I have recently
met through activism. To those with whom I have lived with, and had to put up with me.
To everyone I have ever drank tea with. To everyone I have ever loved. To the people at
CeSIUM with whom I have learned so much. To the volunteers of CoderDojo and the kids
we teach. To the community around Include Braga. To all my professors and teachers. To
the cafés that provided the tranquil environment that allowed for this dissertation to be
written. To my long-lasting friends in Chaves that sometimes had to assume I went missing.
To my family and our pets.

Finally I must also acknowledge, this time by name, those who directly helped in the
development of this dissertation. Namely Professor Alcino Cunha for always keeping
the ambition and motivation high; Professor Paulo Sérgio Almeida, for always bringing
a different perspective on things; Nuno Macedo whom was always ready to help me and
discuss my problems; Alfons Laarman for having the patience of answering my long list of
questions on LTSmin.

ii

iii

This work is financed by the ERDF – European Regional Development Fund through
the Operational Programme for Competitiveness and Internationalisation - COMPETE 2020

Programme and by National Funds through the Portuguese funding agency, FCT - Fundação
para a Ciência e a Tecnologia, within project POCI-01-0145-FEDER-016826.

S TAT E M E N T O F I N T E G R I T Y

I hereby declare having conducted this academic work with integrity. I confirm that I have
not used plagiarism or any form of undue use of information or falsification of results along
the process leading to its elaboration. I further declare that I have fully acknowledged the
Code of Ethical Conduct of the University of Minho.

iv

R E S U M O

Model checking é uma técnica comum de verificação; garante a consistência e integridade de
qualquer sistema fazendo uma exploração exaustiva de todos os possíveis estados. Devido à
grande quantidade de intercalações possíveis entre eventos, modelos de sistemas distribuídos
muitas vezes acabam por gerar um número de estados muito grande. Nesta dissertação
vamos explorar os efeitos de partial order reduction — uma técnica para mitigar os efeitos
da explosão de estados — implementando uma linguagem semelhante ao Electrum com
LTSmin. Vamos também propor um event layer por cima do Electrum e uma análise sintática
para extrair informação necessária para que esta técnica possa ser implementada.

Palavras-chave: Alloy, Electrum, Model checking, LTSmin, Partial order reduction, TLA+

v

A B S T R A C T

Model checking is a common verification technique to guarantee the consistency and integrity
of any system by an exhaustive exploration of all possible states. Due to the large amount of
interleavings, models on distributed systems often end up with a huge state-space. In this
dissertation we will explore the effects of partial order reduction — a technique to mitigate
the effects of this state-explosion problem — by implementing an electrum-like language
with LTSmin. We will also propose an event layer over Electrum and a syntactic analysis to
extract valuable information for this technique to be implemented.

Keywords: Alloy, Electrum, Model checking, LTSmin, Partial order reduction, TLA+

vi

C O N T E N T S

1 introduction 1

2 model checking 3

2.1 Modelling 3

2.2 Specification 4

2.2.1 CTL 5

2.2.2 LTL 6

2.3 Verification 8

2.3.1 Model checking for CTL 8

2.3.2 Automata-based model checking for LTL 9

2.3.3 Bounded model checking for LTL 12

2.4 Partial order reduction 14

3 electrum 17

3.1 Language 17

3.1.1 Showcase example - Poolboy 17

3.1.2 Modeling the system 18

3.1.3 Specifying the system 27

3.2 Analyzing the model 29

3.2.1 Validation 30

3.2.2 Verification 31

3.3 Backend overview 33

4 ltsmin 35

4.1 PINS architecture 35

4.2 Specifying in PINS 37

4.2.1 Showcase Ring leader election example 37

4.2.2 Modelling ring leader election in C 38

4.2.3 Analysing with LTSmin 44

4.3 Guard-based partial order reduction 44

4.3.1 A stubborn approach 45

4.3.2 Calculating necessary enabling sets 46

4.3.3 Defining the DNA matrix for ring leader election 48

4.4 Results 49

5 taino : an electrumesque front-end for ltsmin 50

5.1 The language 50

vii

contents viii

5.1.1 Modelling ring leader election 50

5.2 Translating to LTSmin 53

5.2.1 Defining the state 53

5.2.2 Initial state 55

5.2.3 Defining Next state 56

5.2.4 Calculating dependency matrices 58

5.3 The Taino project 59

5.4 Results 60

6 conclusion 63

6.1 Conclusions 63

6.2 Prospect for future work 63

a poolboy specification 68

b ltsmin model 76

b.1 Specification file header (spec.h) 76

b.2 Specification file (spec.c) 78

b.3 Dlopen implementation file (dlopen.c) 86

c taino ring leader election 92

L I S T O F F I G U R E S

Figure 1 Two representations of the same computation in linear and branching
time 5

Figure 2 The representation of properties (1) and (2) in branching time 7

Figure 3 Electrum’s representation of the first state 32

Figure 4 Electrum’s architecture 33

Figure 5 Stubborn set in a mock example. 46

Figure 6 Two transition systems of two concurrent processes. 47

Figure 7 Representation of the state vector 55

Figure 8 Representation of the Taino architecture 60

ix

L I S T O F TA B L E S

Table 1 Overview table of the extensions 36

Table 2 Tests for property eventually everyone knows the leader 49

Table 3 Tests for property always at most one elected 60

Table 4 Tests for property eventually always one elected 61

Table 5 Tests for the emptiness of the mailboxes when everyone agrees on the
leader 61

x

1

I N T R O D U C T I O N

In a time where computational systems more and more affect our daily lives, the need for
fully verified and error free software grows. In critical systems specially, the high demand
for reliable software requires mathematical techniques to ensure its correctness. Formal
methods consists of multiple mathematical techniques to, even at an early stage of the design
process, guarantee the consistency and integrity of any system.

One of the most widely-used formal method techniques is model-based verification, which
relies on models mathematically describing a system’s evolution. Having this model one can,
through exausitive exploration – meaning testing every possible scenario –, verify certain
specified properties about the system’s behaviour. This technique is called model checking.

Due to the somewhat recent improvements in computer science with enhanced processing
power, and faster algorithms and data structures, model checking techniques have been
gaining relevance for verifying real-world systems (Baier and Katoen (2007)). Many model
checking tools like Alloy and TLA+are being regularly used by governments and business.
TLA+, for instance, is being used by the Amazon team Newcombe (2014).

Today with the proliferation of IoT technologies and decentralized services, modern
systems often exhibit some concurrent characteristics. Thus various model checking solutions
exists like Temporal Logic of Actions (TLA+) (with its associated checker, TLC) and Alloy 1.
TLA+is known for its efficiency although this is achieved by severely limiting the language
expressiveness. Alloy, on the other hand, is famous for its unrestrained expressiveness
allowing a variety of ways to specify systems and properties.

Electrum is an expansion of Alloy that is being devoleped at the University of Minho in
Portugal, and ONERA in France. It aims to get the efficiency of TLA+while mantaining
the expressiveness of Alloy. It borrowed concepts from TLA+, like actions that model the
evolution of the system over time, and allows properties to be defined using Linear Temporal
Logic (LTL). Although having most of the features associated with TLA+, Electrum still trails
behind TLC when compared to its efficiency.

Nevertheless, TLA+inspired features make Electrum appealing for modelling distributed
systems. However, the nature of such systems usually implies asynchronous communication

1 Technically, Alloy is a model finder, but in practice is frequently used as a bounded model checker, mainly for
safety properties

1

2

and independence between actions. This turns out to be a huge burden for model checkers,
that end up recreating various system traces that are all identical to each other, modulo re-
ordering of independent actions. Partial order reduction reduces the state space by removing
irrelevant system traces and it is a technique in model checkers, but it is not currently being
implemented by Electrum.

In this dissertation we will analyze different techniques to improve Electrum and propose
new changes to its language and the Analyzer. We will first take a deep look at how model
checking works in Chapter 2, running through the history of model checking and describing
a technique to reduce the overall state space. In Chapter 3 we describe the Electrum model
checker and learn how to specify and analyze properties for it. Later, in Chapter 4, we
study the LTSmin model checker and its usages; we will also take a deep look at its unique
algorithm for state space reduction. Finally, in Chapter 5 we will combine what we have
learned from the past chapters and present an electrum-like language with LTSmin. We
wind up this dissertation with its final conclusions in Chapter 6.

2

M O D E L C H E C K I N G

Model checking began in the early 1980s in works such as those developed by Emerson and
M. Clarke (1982). It is a way to automatically verify formal specifications in a model of a
system, this is achieved by an exhaustive exploration of all possible system traces to check
desirable properties.

In this chapter we will take an overview of the theory of model checking and study
multiple techniques to automatically verify formulas in a model.

The process of model checking a system usually is deconstructed in three steps: Modelling,
translate the system to a model acceptable by the model checking tool; Specification, formalize
the system requirements into properties understandable by the tool; Verification, the process
of checking that a property holds in the model. In theory, the last step is fully automated
by the tool but usually the verification ends up revealing errors, either in the model or in
the specification, which must be fixed in order to get trustworthy results. In this section we
shall go more in depth in each of these steps and explain the theory behind them.

2.1 modelling

For the purposes of the present dissertation, we will mostly consider reactive systems which
continuously interact with their environment. Because of their infinite nature, these systems
cannot be modeled by simply describing their input-output behaviour; as such we must
conceive of another way to abstract how they behave.

A key component to understand this way of looking at systems is the notion of a state. A
state is a snapshot, a look at the values of all the variables of the system at one instant. Now
we can imagine how a system evolves by going from one state to another: a set of transition
defined as pairs of states. In short, we can perceive the system as a state machine and the
computation as a sequence of states reached by following the transitions. Thus, we get the
implicit notion of time and the evolution of the system.

One possible way to represent this state machine is by a Kripke structure (Kripke (1963)).
We define a Kripke structure M over the atomic propositions AP as the pair M = 〈S, S0, R, L〉,
where:

3

2.2. Specification 4

1. S is the set of all possible system states.

2. S0 ⊆ S is the set of initial states.

3. R ⊆ S× S is the relation that defines the transition from one state to the other.

4. L : S → 2AP is the labelling function that labels each state with the set of atomic
propositions from AP true in that state.

Relation R is assumed to be total i.e. for every s ∈ S there is a s′ ∈ S where 〈s, s′〉 ∈ R,
meaning that for every state s there is a transition to another state s′. We will mostly denote
s R s′ instead of 〈s, s′〉 ∈ R.

From the Kripke structure we can infer the notion of paths. A path — denoted by π —
is an infinite sequence of states; π = s0s1s2 . . . represents the path starting on state s0 and
where ∀i ≥ 0 : 〈si, si+1〉 ∈ R. We will also use πi to be the i-th state from path π, πi to
denote the sub-path of π beginning in the ith state, Paths(s) represents all possible paths
beginning in state s, and Paths(M) represents all possible paths of model M. These notions
will be useful for defining the semantics of our specification logic.

2.2 specification

Most of the software requirements are specified in a natural language; however, natural
languages are frequently susceptible to ambiguity and cannot be easily translated to logical
formulas. Formal logic specifications, on the other hand, allow for a unique interpretation. In
general, these specifications fall into two categories: liveness properties, usually characterised
by "Eventually something good will happen"; and safety properties, of the kind "Something bad
never happens".

Such notions of "eventually" and "always" (negation of "never") refer to the evolution of
a system without explicitly referring to time. We can describe these notions in a formal
language using temporal operators. We have an intuitive understanding of what these terms
("eventually" and "always") mean, however we must define them in the context of Kripke
structures as well as show how atomic propositions can be validated in them. This can be
achieved by a powerful logic called temporal logic.

Temporal logic is an expansion of classical logic to support reasoning over time. In
computer science there are two main temporal logic formalisms: branching time and linear
time, which are ilustrated by Figure 1. In branching time (Figure 1b), the semantics is defined
on a computation tree unrolled from a initial state of the Kripke structure; while in linear
time (Figure 1a), the semantics is defined over the set of computational paths of the Kripke
struucture.

2.2. Specification 5

a0 b0 d0c0 ...

a0 b0 d1c0 ...

a0 b1 d2c2 ...

(a) Representation of linear time

a0

b1

b0 c0

d1

d0

c2 d2

...

...

...

(b) Representation of branching time

Figure 1: Two representations of the same computation in linear and branching time

2.2.1 CTL

Computation Tree Logic (CTL) is a branching time temporal logic. The interpretation of CTL
formulas is defined both in terms of states and paths. Because of its branching-time nature
which, with a single tree, allows us to reason about multiple computations, properties
defined in CTL are capable of expressing notions such as "in some computations X happens".

CTL formulas are classified into state formulas and path formulas. State formulas assert
properties over a state and quantify propositions over paths beginning in that state, whereas
path formulas describes temporal properties over one path.

CTL state formulas are defined by the following grammar:

Φ ::= true | false | a | Φ1 ∨Φ2 | Φ1 ∧Φ2 | ¬Φ | ∃ϕ | ∀ϕ

Being AP a set of atomic propositions and a ∈ AP, and ϕ a path formula. Path formulas,
on the other hand, are defined by:

ϕ ::= eΦ | �Φ | ♦Φ | Φ1 U Φ2 | Φ1 R Φ2

Where Φ is a state formula. Omitting ¬,∧ and ∨, the above symbols are read as:

∃ϕ There exists at least one computation path where ϕ holds.

∀ϕ ϕ holds for all computation paths.

cΦ Φ holds in the next state.

�Φ Φ always holds.

♦Φ Eventually Φ will hold.

Φ1 U Φ2 Φ1 holds until Φ2.

Φ1 R Φ2 Φ1 releases Φ2.

2.2. Specification 6

Given a model M and a state formula Φ we say Φ holds in M (M |= Φ) if and only if
∀s ∈ S0 : M, s |= Φ, that is, Φ holds for every initial sate of M. We define the satisfaction
relation (|=) by: Let AP be a set of atomic propositions, p ∈ AP, Φ, Φ1, and Φ2 be state
formulas and ϕ be a path formula, and 6|= be the negation of |=,

M, s |= p ⇐⇒ p ∈ L(s)

M, s |= ¬Φ ⇐⇒ M, s 6|= Φ

M, s |= Φ1 ∧Φ2 ⇐⇒ M, s |= Φ1 ∧M, s |= Φ2

M, s |= Φ1 ∨Φ2 ⇐⇒ M, s |= Φ1 ∨M, s |= Φ2

M, s |= ∀ϕ ⇐⇒ ∀π ∈ Paths(s) : M, π |= ϕ

M, s |= ∃ϕ ⇐⇒ ∃π ∈ Paths(s) : M, π |= ϕ

We have just defined |= for state formulas, now let us define it for path formulas. With all
the above assumptions and let π be a path in M,

M, π |= eΦ ⇐⇒ M, π1 |= Φ

M, π |= �Φ ⇐⇒ ∀i ≥ 0 : M, πi |= Φ

M, π |= ♦Φ ⇐⇒ ∃i ≥ 0 : M, πi |= Φ

M, π |= Φ1 U Φ2 ⇐⇒ ∃i > 0 : M, πi |= Φ2 ∧ ∀0 ≤ j < i : M, πj |= Φ1

M, π |= Φ1 R Φ2 ⇐⇒ ∀i > 0 : M, πi |= Φ2 ∨ ∃0 ≤ j < i : M, πj |= Φ1

To understand the difference between the path quantifiers, imagine the following two
properties:

∃♦Φ (1)

∀♦Φ (2)

They are both stating that eventually Φ will hold. However, property 1 is true if at least
one of the computational paths satisfies ♦Φ, while for property 2 to be true all computational
paths must satisfy ♦Φ. In figure 2a it is represented a model that satisfies property 1 but not
property 2, and the model represented in figure 2b satisfies both properties.

2.2.2 LTL

Linear Temporal Logic (LTL) is a linear time temporal logic and was actually suggested before
CTL by Pnueli (1977). It consists only of path formulas, thus it is unable to define properties

2.2. Specification 7

Φ

...

...

...

(a) Model that satisfies property (1)

Φ

Φ

...

...

...

Φ

(b) Model that satisfies property (2)

Figure 2: The representation of properties (1) and (2) in branching time

involving unrestrained quantification over paths. By definition, LTL formulas apply to all
computational paths, as if it was a CTL formula with a single implicit ∀.

The syntax of LTL is given by the following grammar:

ϕ ::= true | f alse | a | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | eϕ | �ϕ | ♦ϕ | ϕ1 U ϕ2 | ϕ1 R ϕ2

All those symbols are read exactly the same as in CTL, however their semantics change
because we do not have a satisfaction relation for state formulas, only for path formulas.
So we say that ϕ holds in model M (M |= ϕ) if and only if ∀π ∈ Paths(M) · M, π |= ϕ.
The reader might notice that, although the syntax is very similar, the semantics is not. The
satisfaction relation of LTL is defined differently using only path formulas. Let AP be a set
of atomic propositions, p ∈ AP, and πn be a sub-path of π beginning in the n-th state,

M, π |= p ⇐⇒ p ∈ L(π0)

M, π |= ¬ϕ ⇐⇒ M, π 6|= ϕ

M, π |= ϕ1 ∧ ϕ2 ⇐⇒ M, π |= ϕ1 ∧M, π |= ϕ2

M, π |= ϕ1 ∨ ϕ2 ⇐⇒ M, π |= ϕ1 ∨M, π |= ϕ2

M, π |= eϕ ⇐⇒ M, π1 |= ϕ

M, π |= �ϕ ⇐⇒ ∀i ≥ 0 : M, πi |= ϕ

M, π |= ♦ϕ ⇐⇒ ∃i ≥ 0 : M, πi |= ϕ

M, π |= ϕ1 U ϕ2 ⇐⇒ ∃i > 0 : M, πi |= ϕ2 ∧ ∀0 ≤ j < i : M, π j |= ϕ1

M, π |= ϕ1 R ϕ2 ⇐⇒ ∀i > 0 : M, πi |= ϕ2 ∨ ∃0 ≤ j < i : M, π j |= ϕ1

2.3. Verification 8

2.3 verification

Verification is basically a way to get all states where a formula is valid. Let M = 〈S, S0, R, L〉
be a Kripke structure representing a reactive system, and φ be a temporal logic formula. The
set of states where formula φ is valid is denoted by

[[φ]]M = { s ∈ S | M, s |= φ }

So, for some formula φ to be valid in model M, all the initial states from M must be in
[[φ]]M, that is,

M |= φ ⇐⇒ S0 ⊆ [[φ]]M

In this section we will first look at two ways of verifying CTL formulas by explicit model
chekcing and symbolic model checking. Later we will briefly take a look at how LTL formulas
can be verified using Büchi automata, and how LTL formulas can be converted into CTL
formulas. Lastly we will look at mechanisms to speedup the verification of both LTL and
CTL formulas.

2.3.1 Model checking for CTL

Since we wont be using CTL model checking in this dissertation, we will just take a general
overview of how model checking is performed in CTL.

Explicit model checking

The first model checking tools verified formulas by transversing an explicit state machine, a
technique called explicit model checking. Explicit model checking is an approach that checks
the validity of some temporal logic formula by explicitly transversing a state machine.

In explicit model checking for CTL, most operators are seen to be redundant and only five
basic operators are used (¬, ∨, ∃ e, ∃ U , ∃�) 1 , and the set of states where some formula
is valid is, most of the times pretty direct. For instance, the states [[¬φ]] = S \ [[φ]], i.e., the
states where some formula ¬φ is valid is the set of all states minus those where φ is valid.

To check φ1 ∃U φ2, for instance, we first find [[φ2]]M and then we transverse the graph
backwards using the converse of relation R (R◦) and register the states from all paths π

where ∀s ∈ π : s ∈ [[φ1]]M.
Checking ∃�φ is more complicated. First, the model is reduced to only those states

which do satisfy φ, then the state machine is broken down into nontrivial strongly connected
components (SCC), with the goal of finding a terminal SCC reachable from an initial state,
thus trivially ensuring the satisfiability pf ∃�φ. This procedure is efficient because a linear

1 For an easier notation, we say Φ1 ∃U Φ2 instead of ∃(Φ1 U Φ2)

2.3. Verification 9

time algorithm to calculate strongly connected components has been proposed by Tarjan
(1972).

Symbolic model checking

Symbolic model checking was first proposed by McMillan (1993) who figured out that one
could specify a state machine implicitly by using propositional logic with ordered binary
decision diagrams (OBDDs).

The first insight is to consider that it is possible to represent the set of formulas can be
represented symbolically by a propositional formula. And that most LTL properties can be
expressed with either ∃�φ and ∃U , which can be calculated by finding the fixpoint.

Given a function f , a fixpoint x is such that x = f (x). In symbolic model checking, a CTL
formula is transformed by a function called predicate transformer denoted by τ : P(S)→ P(S).
We can then calculate [[φ]] for any formula φ by finding a fixpoint of some τ. For most
formulas we need one of two types of fixponts, a least fixpoint or a greater fixpoint, denoted
by µ and υ respectively.

[[∃�φ]] = υZ · φ ∧ ∃ eZ
[[φ1 ∃U φ2]] = µZ · φ2 ∨ (φ1 ∧ ∃ eZ)

Having defined ∃ eZ to be a quantified boolean formula (QBF), we can now define the
semantics of CTL temporal operators as being the least or the greatest fixpoint of specific
predicate transformers. These formulas can then be efficiently calculated using binary
decision diagrams.

Although this technique is used to calculate symbolic model checking of CTL formulas,
Clarke et al. (1994) demonstrated that LTL model checking can be reduced to CTL model
checking under fairness contraints. They have sucessfully translated LTL formulas into SMV
models, this ways introducing LTL model checking into SMV.

2.3.2 Automata-based model checking for LTL

Vardi and Wolper (1986) proposed a technique to verify LTL properties by using nondeter-
ministic Büchi automata (NBA), a structure first suggested by Büchi (1990). The key idea is
to translate the entire transition system and the negation of the LTL property we want to
verify into a Büchi automaton (representing the counter-examples) and then check if there is
some intersection between the languages of both automata. This is the technique used by
the model checkers SPIN (Holzmann (1997)) and LTSmin (Kant et al. (2015)).

2.3. Verification 10

A Büchi automata A is a finite automata defined by A = 〈S, Σ, ρ, S0, F〉, where

1. S is a set of states

2. Σ is an alphabet

3. ρ : S× Σ→ 2S is a nondeterministic transition function

4. S0 ⊆ S is the set of initial states

5. F ⊆ S is the set of accepting states

As we stated previously, we are aiming to prove M |= φ where M is a kripke structure
and φ an LTL formula. Being AM and A¬φ a Büchi automata for the model and for the LTL
formula respectively, and L(A) the language of some Büchi automata. The main challenge
becomes:

L(AM) ∩ L(A¬φ) = ∅

Since several standard techniques exist to check the emptiness of an automata, in order
to verify an LTL property we just need to know how to calculate the intersection of two
automata and how to translate an LTL formula into a Büchi automata.

Intersection of automata

A generalised NBA (GNBA) is similar to a regular NBA but, instead of having a single set of
accepting states F, it has a set of sets of accepting states F . It is easy to understand how
NBA can be translated into a GNBA: Everything is the same and F = {F}.

For two Büchi automata A1 = 〈S1, Σ, δ1, S01 ,F1〉 and A2 = 〈S2, Σ, δ2, S02 ,F2〉 there is some
other Büchi automata A such that:

L(A) = L(A1) ∩ L(A2)

This new Büchi automata A is a GNBA and can be calculated as the cross product of the
two auomata, that is:

A = A1 ⊗A2 = 〈S1 × S2, Σ, δ, S01 × S02 ,F〉

Where δ is the conjunction of both δ1 and δ2, and F is given by:

F = {F1 × S2 | F1 ∈ F1} ∪ {S1 × F2 | F2 ∈ F2}

2.3. Verification 11

Translating an LTL formula into a Büchi automaton

First we need to present a couple of definitions on Büchi automata:
Let word v of length |v| over alphabet Σ in the automaton A denote a possible sequence of

transitions of A.
We say that a run of A over the word v is the sequence of states possible by going through

each transition of v.
A run is said to be an accepting run if the sequence of states ends in some accepting state

of F.
Finally, we say that A accepts a word v if and only if there is an accepting run of A over v.
For example, the automaton below – where q0 is the only accepting state – accepts the

empty word (ε), a, ba, bba, bbaa, abaa, et cetera, but not ab, for example.

q0 q1

a

b

a

b

A language of an automata L(A) is the set of all words accepted by the automata.
All LTL formulas can be represented by a Büchi automaton, we will now look at some

examples of this translation. Suppose we have an alphabet Σ = {φ, ψ}.
Let us start with a simple example: the LTL property �φ means that φ is valid in every

state, that is, there is a transition φ in every state. We can intuitively consider a language for
that formula or at least some words for it. The empty word ε is a word in L(A�φ), as is, φ,
φφ, φφφ, et cetera. This way, the corresponding Büchi automata for forumla �φ is:

q0

φ

For a more complex property p1 = �(φ⇒ ♦ψ) we have:

ε ∈ L(p1)

ψ ∈ L(p1)

¬φ, φ, ψ ∈ L(p1)

. . .

Therefore we have the following Büchi automaton:

2.3. Verification 12

q0 q1

¬φ ∨ ψ

true

ψ

true

2.3.3 Bounded model checking for LTL

In bounded model checking, we aim to find paths of lenght k which break a given propositional
formula. If no path of size k is found, then the search continues for paths larger than k. We
can reduce this into a satisfiability formula with propositional logic and pass it to a SAT
solver.

Bounded model checking was introduced by Biere et al. (1999) and presented as a fast way
to calculate minimal length counterexamples, and one that uses less space when compared
to approaches based on binary decision diagrams as is the case with symbolic model
checking. In this subsection we will study how it is possible to translate LTL formulas into
propositional logic formulas that can be checked by a SAT solver.

Semantics

Although the aim is to get a finite k-sized prefix of a (possibly infinite) path, such prefix can
still represent an infinite path if there is a back loop, that is, if the successor of the last state is
another state inside the prefix. This little nuance makes huge differences when looking at
the semantics for LTL. Take a look at the formula �φ which states that "φ will always be
true", in a non-looping finite path of size k such formula cannot be truthfully verified since
φ might not hold for some state after k. When defining the semantics for bounded model
checking we must be mindful of whether we are talking about looping or non-looping paths.

In non-looping paths we consider that �φ is always false. The semantics for φ R ψ also
changes as we have to exclude the possibility where φ always holds and ψ is not in the
bounded path. This effectively eliminates the duality between � and ♦ since we can no
longer say that �¬φ ≡ ¬♦φ, and between R and U since ¬(φ U ψ) 6≡ (¬φ) R (¬ψ).

Translation

Now we will take a look at the problem of reducing an LTL formula into a CNF formula
understandable by a SAT solver. We will represent the finite sequences of states s0, s1, . . . , sk

composing the k-sized path that satisfy an LTL formula φ in a Kripke model M by [[M, φ]]k.

2.3. Verification 13

To define [[M, φ]]k, we must first define [[M]]k that represents all possible k-sized paths in
M and then we restrict that sequence to those paths in [[φ]]k We define [[M]]k formally as
follows: Let M = 〈S, S0, R, L〉 be a Kripke structure, si ∈ S and s0 ∈ S0,

[[M]]k = I(s0) ∧
k−1∧
i=0

〈si, si+1〉 ∈ R

Where I represents the condition for the initial state.
Now to calculate [[φ]]k we must be careful to distinguish from non-looping and looping

paths because of the two different semantics. We assume that φ was converted into negation
normal form. Let us start by expanding [[φ]]k to [[φ]]ik where i is the current position in the
k-sized prefix, and define it for non-looping paths:

[[p]]ik = pi

[[¬p]]ik = ¬p(si)

[[φ ∧ ψ]]ik = [[φ]]ik ∧ [[ψ]]ik

[[φ ∨ ψ]]ik = [[φ]]ik ∨ [[ψ]]ik

[[�φ]]ik = ∅

[[♦φ]]ik = ∨k
j=i[[φ]]

j
k

[[eφ]]ik = i f i < k then [[φ]]i+1
k else ∅

[[φ U ψ]]ik = ∨k
j=i([[ψ]]

j
k ∧ ∧

j−1
n=i[[φ]]

n
k)

[[φ R ψ]]ik = ∨k
j=i([[φ]]

j
k ∧ ∧

j
n=i[[ψ]]

n
k)

When dealing with looping paths, the notation [[φ]]ik is not sufficient so we expand it to

l [[φ]]
i
k where l represents where the loop starts. Let φ and ψ be two LTL formulas, k, i, j ∈N

and l, i ≤ k, succ(si) be the successor state of si such that succ(i) = i + 1 and succ(k) = l

2.4. Partial order reduction 14

l [[φ]]
i
k = φ(si)

l [[¬φ]]ik = ¬φ(si)

l [[φ ∧ ψ]]ik = l [[φ]]
i
k ∧ l [[ψ]]

i
k

l [[φ ∨ ψ]]ik = l [[φ]]
i
k ∨ l [[ψ]]

i
k

l [[�φ]]ik = ∧k
j=min(i,l) l [[φ]]

j
k

l [[♦φ]]ik = ∨k
j=min(i,l) l [[φ]]

j
k

l [[
eφ]]ik = l [[φ]]

succ(i)
k

l [[φ U ψ]]ik = ∨k
j=i(l [[ψ]]

j
k ∧ ∧

j−1
n=i l [[φ]]

n
k)∨

∨i−1
j=l (l [[ψ]]

j
k ∧ ∧

k
n=i l [[φ]]

n
k ∧ ∧

j−1
n=l l [[φ]]

n
k)

l [[φ R ψ]]ik = ∧k
j=min(i,l) l [[ψ]]

j
k∨

∨k
j=i (l [[φ]]

j
k ∧ ∧

j
n=i l [[ψ]]

n
k)∨

∨i−1
j=l (l [[φ]]

i
k ∧ ∧k

n=i l [[ψ]]
n
k ∧ ∧

j
n=l l [[ψ]]

n
k)

Now it is necessary to merge these definitions of [[φ]]k and l [[φ]]k with [[M]]k. Be aware that
there are two definitions for formulas depending on whether or not the path is looping. In
order to make our translation as general as possible, we first need to find a predicate to
distinguish looping paths from non-looping ones. For that, we define the loop condition as:
for k, l ∈N, let:

l Lk = 〈sk, si〉 ∈ R

Lk = ∨k
l=0l Lk

Now we can define our general translation to encompass both non-looping paths (¬Lk)
and looping ones as

[[M, φ]] = [[M]]k ∧ ((¬Lk ∧ [[φ]]0k) ∨
k∨

l=0

(l Lk ∧ l [[φ]]
0
k))

2.4 partial order reduction

We have been describing these methods as if the complete state graph was needed to validate
any property. This is, however, not necessary in some cases. And thankfully so, as some
systems might end up with a huge number of states to validate, taking up a lot of memory
and time, a phenomenon called state explosion problem. Frequently in distributed systems,
only a subset of the entire state graph needs to be considered. To illustrate this property,

2.4. Partial order reduction 15

imagine a distributed system with n processes running simultaneously each changing their
internal variable once, and we want to check that eventually they all change their variable.
In such a system, the final result is independent of the ordering in which these actions take
place. It is, therefore, only necessary to check a single ordering and not all n! possible ones.
This is the aim of the partial order reduction technique: to reduce the number of possible
scenarios, and as a result, the number of states considered to validate a given formula, thus
solving the state explosion problem. It must be noted that this reduction is possible as long
as the intermediate states are not necessary to the property being checked.

This is a rather simplistic example, in a more complex system where processes do
communicate and not all actions are independent from all the others, the partial order
reduction technique must single out those actions which are independent of their ordering
and can thus be reduced.

There are many algorithms for applying partial order reduction, but all crucially rely on
the notion of independence between actions, as Baier and Katoen (2007) point out. Usually,
two actions are considered independent when: they do not disable each other and commute,
meaning that, the resulting state is the same regardless of their ordering. This notion of
independence is often determined by a syntactic analysis, and is then used when selecting
which actions to explore. For each state, only a subset of all possible actions is considered.
These subsets are sometimes called stubborn sets, ample sets or persistent set, although they are
somewhat equivalent as is noted by Geldenhuys et al. (2009).

Partial order reduction techniques have been implemented in symbolic model checking
by Alur et al. (1997), although significantly more work has been made on partial order
reduction for explicit model checking. Regarding explicit state analysis, there are two main
approaches: dynamic and static partial order reduction.

In dynamic partial order reduction the reduction is conducted while the property is
being checked; Flanagan and Godefroid (2005) demonstrated how a dynamic partial order
reduction algorithm can be applied to software model checking. In software model checking,
instead of having an abstract model to check, we have a software program which gives us
access to program counters and other features that facilitate the detection of independent
actions by static analysis. More recently, Aronis et al. (2018) showed how dynamic partial
order reduction can be applied using wakeup trees and an important happens-before relation.
Although both these approaches were capable of detecting dead-lock and check safety
properties, they both relied on the notion of process and were incapable of checking arbitrary
LTL properties.

As for static partial order reduction, in contrast with dynamic POR, the state graph is
first reduced and only then the analysis is performed. Flanagan and Godefroid (2005)
presented a static partial order reduction algorithm capable of both safety and liveness
property checking, although still adhering to a process-centred mindset. This technique

2.4. Partial order reduction 16

is currently being used by the SPIN model checker. Finally, Laarman et al. (2016) were
able to develop a process-agnostic technique, based on the stubborn sets of Valmari (1991),
suited for checking both safety and liveness properties. This last algorithm is currently being
used by the LTSmin model checker. We will aim at introducing partial order reduction on
Electrum which, as it will be clearer on the following chapter, does not have a notion of
process. Therefore, due to its highly flexible characteristics and its indifference towards
processes, we will study this algorithm in more detail in section 4.3 in the chapter dedicated
to LTSmin.

3

E L E C T R U M

Model checking is a verification technique that explores every possible system behaviour,
and in which previously specified properties over the system are verified. Alloy, introduced
by Jackson (2006), is one of the most popular model checking frameworks. Together with a
quite flexible specification language, Alloy’s Analyzer adopts relational logic — an expansion
for first-order-logic with transitive closures — as its main logical formalisms. Electrum (Macedo
et al. (2016)) expands these formalisms to include temporal logic operators without limiting
Alloy’s flexibility.

In this chapter we will take a look at the Electrum’s language and its model checker.

3.1 language

Model checking frameworks usually have two distinct languages: one language for describ-
ing systems, and another one for specifying properties over said systems. Indeed, these two
use cases are widely different. However, in Alloy — and therefore Electrum — these two
languages are not separated, instead having a single language empowered with propositional
and relational logic for both modeling and specifying the system and its properties. This
was inspired by TLA+, a formalism that also has a single language to describe both the
model and the specifications. As such, in this section we will discuss the language as a
whole, explaining first how to model the system and then how to write properties for it.

We will first begin by presenting the system we will model — how the system evolves
through time and what properties we should check — later we will learn how we can
describe its evolution and its properties in Electrum.

3.1.1 Showcase example - Poolboy

Erlang is an functional programming language based on actors. An actor is a lightweight en-
tity in a separate virtual machine that communicates with other actors through asynchronous
message passing. An actor reacts to the different messages it receives in its mailbox.

17

3.1. Language 18

Poolboy is an Erlang library that allows a user to checkout an actor (called worker), use it
in whatever way it needs, and check it back in. It allows for fast attribution of workers by
preemptively spawning them and hand them down when needed. It is possible, however, for
the client issuing the checkout to timeout, in which case it should not receive the requested
worker.

Poolboly is configured by a file that sets the number of initial workers (iw) and the
maximum overflow (mo) of workers. When Poolboy has given all its initial workers, it
spawns up to mo more. This means that, at maximum, Poolboy is capable of giving iw + mo
number of workers.

We chose to model poolboy because of its easy to understand behaviour and due to the
fact that the older versions where found to have some bugs by Thompson (2012).

From this example, we can identify the following requirements:

1. There should never be more workers that those allowed by the configuration file.

2. If a client sends a checkout request when there are available workers, provided it
doesn’t timeout, it will receive a worker.

3. If a client times out and doesn’t request another worker, it will not receive a worker.

3.1.2 Modeling the system

The full Poolboy specification in Electrum can be found at Appendix A. For now, we will
take a look at the most important parts of the model in order to better understand how an
Electrum specification of this kind is implemented.

Actors

We will begin by defining the actors that will interact with Poolboy. The prime way of
defining these objects is to use signatures; a signature defines a set of atoms. In Alloy atoms
are indivisible and immutable primitive entities without any built-in properties.

Poolboy has three main actors: Poolboy itself, clients that communicate with Poolboy, and
the workers. To our model, it is not relevant whether or not Poolboy is an actor, therefore
we will only specify clients and workers.

1 abstract sig Actor {}

2

3 sig Worker extends Actor {}

4 sig Client extends Actor {}

3.1. Language 19

Since signatures are sets, it might be helpful to interpret the above lines through the lens
of set theory. An abstract signature has no elements besides those that belong to its extensions,
so we could describe set Actor as:

Actor = Worker ∪ Client

The extends keyword forces the sets Worker and Client to be disjoint although both
contained in the set Actor.

Worker ∪ Client ⊆ Actor ∧Worker ∩ Client = ∅

According to the system we are aiming to model, a Client can have a set of workers; we
should therefore relate the two. A relation is a set of tuples that relates atoms of two or more
sets. One can easily expand signatures to include declarations of relations as follows:

1 sig Client extends Actor {

2 var workers : set Worker

3 }

This introduces the relation workers whose domain is Client and range is a set of Worker.
In other words, it relates every client with its set of workers. An example of this set written
using common mathematical notation is something like:

workers = {〈c1, w1〉, 〈c1, w2〉, 〈c2, w3〉}

In the above example, client c1 has two workers (w1 and w2) while client c2 only has one
(w3).

The Actor previously defined is also a relation, since it is a set of unary pairs; these types
of relations are usually called unary relations. In fact, every set is a unary relation.

Notice that the relation workers is declared with var, designating it as a variable relation, i.e.
it can change over time. This allows clients to check in and out workers over time. Variable
sets and relations are part of Electrum, which contrasts heavily with the fully static nature
of Alloy.

The actors in our system can be alive, dead or blocked; an actor can only be blocked if it
is alive. Through out the execution — miming the system we are modeling — clients can
be killed and revived and can be blocked and unblocked. We will add these notions to our
model by declaring new subsets of actors:

1 var sig alive in Actor {}

2 var sig blocked in alive {}

First, we declare these signatures as variable, since they change over time. Any actor, be
they Client or Worker, can die and revive. Now remember the usage of the keyword extends

3.1. Language 20

we mentioned previously; in the above specification, we use the keyword in instead. extends
means that all other sets expanding the same superset are disjoint, however in is much
more loose and means, in the above declaration of alive, that any Actor can be in the subset
alive. Only actors that are alive can be blocked, so we keep blocked as a subset of alive. The
keyword in should not be confused with the set membership operator (∈) of set theory, in
fact it more appropriately represents the operator subset (⊆).

Having all our actors defined, let us now move on to Poolboy itself.

1 abstract sig Message {}

2

3 one sig MaxOverflow in Int {}

4

5 one sig Poolboy {

6 var free : set Actor, -- Every free actor poolboy has

7 var overflow : one Int, -- The number of overflow workers poolboy gave

8 var waiting : set Client, -- Clients waiting for workers

9 var mailbox : set Message, -- Mailbox where Poolboy recives messages

10 size : one Int -- The initial size of free

11 }

Poolboy is defined as one signature; this is the multiplicity keyword. In this case, since
Poolboy is a unary relation (i.e. just a set), it just represents its size. In Alloy and Electrum
the multiplicity of a relation can be:

no An empty set

one A set with only one element

lone A set with either one element or none

some A set with one or more elements

Considering that our system only has one Poolboy, the set representing it must also
limit its multiplicity to one. The other relations that are defined in sig Poolboy also have
diverse multiplicities. But note that when the relation’s range is defined as set it has no size
restrictions.

Any given Erlang actor has a mailbox. However, we have limited this to just Poolboy itself,
because the client’s mailboxes will be abstracted in our model. Otherwise, we could have
relation mailbox declared inside the signature Actor.

Messaging system

In the above code snippet we not only declared sig Poolboy but also another signature
Message. There is nothing new on that declaration so we can move on to define every

3.1. Language 21

message. There are a lot of messages in this system, so it would be unwise to explain all of
them in detail in the present document. We will use the definition of Checkin as an example.

1 sig Checkin extends Message {

2 client : Client, -- Client issuing the checkin

3 actor : Actor -- Checkin actor

4 }

Remember that Checkin is the act of returning a worker to Poolboy, therefore the message
has the reference to the client issuing the checkin and the worker that is being checked in.
In the above example we define the message Checkin with two relations: client, the client
issuing the checkin; and actor, the worker being returned. By default, the multiplicity of
relations declared inside signatures is one.

Notice that we did not explicitly force a worker to be checked in — choosing instead to
have any kind of actor —, this is because some of the bugs found by Thompson were caused
by the client sending an invalid worker.

Now that we have the messages defined, we shall move on to specifying how these
messages are sent and received.

1 pred sendMessage[m : Message] {

2 m not in Poolboy.mailbox

3 mailbox’ = mailbox + Poolboy→m

4 }

5

6 pred readMessage[m : Message] {

7 m in Poolboy.mailbox

8 mailbox’ = mailbox - Poolboy→m

9 }

A predicate is a boolean-valued function, meaning it can only be either true or false.
sendMessage has one parameter, m of type message. m is actually a set of multiplicity one.

The dot join (.) is actually a very important operator, it represents the composition of relations.
It is not the same as the mathematical composition of functions, nevertheless I will borrow
its symbol (◦) to define it in a formal language: Let 〈a1, a2, ..., an〉 ∈ R represent a n-ary pair
which belongs to the relation R,

R ◦ S = {〈a1, a2, . . . , an−1, an+1, . . . , an+m〉 | 〈a1, a2, . . . , an〉 ∈ R ∧ 〈an, an+1, . . . , an+m〉 ∈ S}

As you can see, to join two pairs we check if the last atom of the first pair is equal to the
first atom of the second pair; if they are, then the new pair starts with the atoms of the
first and ends with those from the second omitting the matched atom. When joining (or
composing) two relations we join every matching pair.

3.1. Language 22

In line 2 in the declaration of pred sendMessage, we compose Poolboy and mailbox. Remem-
ber that Poolboy is a unary relation with only one element and mailbox is a relation between
the only atom from Poolboy and a set of messages, so by composing the two we get only the
set of messages. One can read line 2 quite naturally: message m is not in Poolboy’s mailbox.
We already figured out that Poolboy.mailbox is the set of messages received by Poolboy, and
because every thing is a set in Alloy/Electrum, m is also a set. Remember, not in represents
the mathematical symbol 6⊆.

The apostrophe following mailbox means: the value of mailbox in the immediately follow-
ing state instance. Please remember that mailbox relates Poolboy with a set of messsages.

In Alloy and Electrum, the pair 〈a, b〉 is denoted by a→b, however, since everything is a
set, the → operator more accurately represents the mathematical cartesian product (×). So,
when in Alloy we write A→B being A and B both sets, we are saying:

A× B = {〈a, b〉 : a ∈ A ∧ b ∈ B}

In line 3, because Poolboy and m are both sets with multiplicity one, the result of Poolboy→m

is also a set of multiplicity one with a pair relating the only atom of Poolboy and m.
Finally, Alloy includes the typical set operators:

+ The union of two sets (∪)

& The intersection of two sets (∩)

- The difference of two sets (\)

Since mailbox is a set of pairs, by adding this new pair (Poolboy→m) we are, in effect,
adding just a new message. With all that in mind, we can now read line 3 as the next instance
of mailbox is equal to the current instance with a new message.

This is not imperative programming sendMessage does not actually send any message,
rather it is more helpful to think of it as a predicate that is true if and only if a given message
m is not currently in Poolboy.mailbox but will be in the next state.

Events

Now, if we try to run our system nothing meaningful will happen, the initial state will be
generated at random and the variable sets will change chaotically. This is because we have
just yet specified what objects our system has, now we have to define how they will behave.

Firstly we begin by defining the initial state:

1 fact init {

2 Poolboy.overflow = 0

3 gte[MaxOverflow, 0]

4 Poolboy.free = alive & Worker

3.1. Language 23

5 Poolboy.size = #Poolboy.free

6 no waiting

7 no workers

8 no blocked

9 no mailbox

10 }

A fact limits all possible generated traces to only those that satisfy a given formula. If
the formula does not contain any temporal operator — as is the case above —, then it only
applies to the initial state. This is a pretty straight forward declaration, the only two new
elements from the above listing are: gte which is a predicate that asserts MaxOverfow to be
greater than or equal to 0; and #Poolboy.free read as the cardinality of the set Poolboy.free, that is
the number of elements in the set Poolboy.free.

Having our initial state specified, we can now focus on defining what can happen in the
system. Because there are a lot of actions that can happen, we will just show one as an
example.

1 pred clientSendCheckin[cli : Client, act : Actor] {

2 cli in (Client & alive) - blocked

3 act in cli.workers

4

5 some msg : Checkin {

6 msg.client = cli

7 msg.actor = act

8 sendMessage[msg]

9 }

10 workers’ = workers - cli→act

11

12 alive’ = alive

13 blocked’ = blocked

14 free’ = free

15 overflow’ = overflow

16 waiting’ = waiting

17 }

The predicate above is divided in three parts: firstly we restrict the given parameters, then
we specify what should change and finally we specify what should not change, this last part
is called the frame condition.

We begin by specifying which Clients and Actors can be the parameters of this action, in
this case we say that cli can only be an alive client which is not blocked, and act is one
of cli’s workers. Then we move to specify what changes, in this case a Checkin message
should be sent and act should be removed from cli’s workers. Here, at line 5, the keyword

3.1. Language 24

some represents an existential quantification over msg, in first-order logic using standard
mathematical notation this line would translate to,

∃msg ∈ Checkin : . . .

Universal quantification (∀) is also possible by using the keyword all. Lastly, we define
the frame conditions, i.e. what doesn’t change in this action, by going through every variable
relation and force it to stay static.

Again, this is not imperative programming. clientSendCheckin does not make any changes
in the system per se, more like the other way around, clientSendCheckin is only true, if and
only if the conjunction of all those predicates that compose it is true.

Having specified every other action, we now have to limit the traces to only those that
represent meaningful actions by defining a new fact.

1 fact traces {

2 always (

3 some c : Client | ClientSendCheckout[c] or

4 some c : Client, w : Worker | ClientSendCheckin[c, w] or

5 some c : Client | ClientSendTimeout[c] or

6 PbCheckoutReady or

7 PbCheckoutFull or

8 . . .
9)

10 }

The above code snippet is actually quite interesting, it is the first time we encounter a
linear temporal logic operator: always which is often denoted by �. If we did not include the
always operator, we would only be limiting the first state and allow our model to behave
chaotically after that.

The above predicate traces is of shape �A, where A is the disjunction of every possible
action. This restricts the trace to behave in a specific ways.

We have just described how the system will behave by defining a few predicates, let us call
this the predicate idiom to specify events. However Electrum is quite versatile and this is but
one possible way of defining the system evolution. This approach has its problems: to begin
with it is difficult to examine the counter-example traces, since we only see the side-effects
and have to extrapolate what event has happened between two consecutive states — which
can be nearly impossible if two concurrent events happen at the same time.

We must model our system in such a way that it is clear what is happening. As such, we
introduce a new signature that represents the current event (or events) that is (resp. are)
taking place. Let us call it signature idiom to specify events.

1 one var abstract sig Event {}

3.1. Language 25

We define the abstract signature Event so that every event that can happen in the system
extends it. We made Event a one arity set so that only one event takes place at a time, where
it to be a no arity set, the system would be static and no event possible.

To better understand this new approach, we will encode the event clientSendCheckin using
a signature:

1 var sig ClientSendCheckin extends Event {

2 var cli : Client,

3 var act : Actor

4 }

Right now, signature ClientSendCheckin shows the actors involved in the event — in this
case a client and an actor — but does not define what the event does, to specify that we add
the following fact:

1 fact {

2 all event : ClientSendCheckin {

3 event.cli in (Client & alive) - blocked

4 event.act in event.cli.workers

5

6 some msg : Checkin {

7 msg.c = event.cli

8 msg.a = event.act

9 sendMessage[msg]

10 }

11 workers’ = workers - event.cli→event.act

12 }

13 }

Facts that apply to all atoms of a single signature are best written as signature facts,
so that referencing the signature is implicit. We expand our declaration of signature
ClientSendCheckin to include signature facts.

1 var sig ClientSendCheckin extends Event {

2 var cli : Client,

3 var act : Actor

4 } {

5 cli in (Client & alive) - blocked

6 act in cli.workers

7

8 some msg : Checkin {

9 msg.c = cli

10 msg.a = act

11 sendMessage[msg]

12 }

13 workers’ = workers - cli→act

3.1. Language 26

14 }

Notice how we now have no need to write event.cli since cli implicitly refers to the
relation defined in the signature.

We have no need to explicitly state the frame condition, this is due to the way we will
specify what traces are possible. With the predicate idiom we would write the fact trace and
explicitly state what actions can occur, in this approach we look for what variables change
and imply that some event took place. For example: the only events that change overflow are
PbCheckoutReady, PbCheckinOverflow and PbExitOverflow, therefore if overflow changed, one
of these events must have taken place. In Electrum we write it the following way:

1 fact updated {

2 always (

3 (blocked’ != blocked

4 implies some ClientSendCheckout + ClientSendTimeout + ActorExit +

5 PbCheckoutReady + PbCheckoutOverflow + PbCheckinWaiting + PbExitWaiting) and

6

7 (workers’ != workers

8 implies some ClientSendCheckin + ActorExit + PbCheckoutReady +

9 PbCheckoutOverflow + PbCheckinWaiting + PbExitWaiting) and

10

11 (alive’ != alive

12 implies some ActorExit + PbCheckoutOverflow + PbCheckinOverflow +

13 PbExitWaiting + PbExitReady) and

14

15 (free’ != free

16 implies some PbCheckoutReady + PbCheckinReady +

17 PbExitOverflow + PbExitReady) and

18

19 (overflow’ != overflow

20 implies some PbCheckoutOverflow + PbCheckinOverflow + PbExitOverflow) and

21

22 (waiting’ != waiting

23 implies some PbCheckoutFull + PbTimeout + PbCheckinWaiting + PbExitWaiting) and

24

25 (mailbox’ != mailbox

26 implies some ClientSendCheckout + ClientSendCheckin + ClientSendTimeout +

27 ActorExit + PbCheckoutReady + PbCheckoutOverflow + PbCheckoutFull +

28 PbTimeout + PbCheckinWaiting + PbCheckinOverflow + PbCheckinReady +

29 PbExitWaiting + PbExitOverflow + PbExitReady)

30)

31 }

3.1. Language 27

3.1.3 Specifying the system

We have just went through the process of modeling the system. Now we will go through
each of the requirements we identified in subsection 3.1.1 and specify properties in Electrum
for each of them.

Formalization

Let us recap the requirements we identified previously:

1. There should never be more workers that those allowed by the configuration file.

2. If a client receives a worker, it must be blocked.

3. If a client sends a checkout request when there are available workers, provided it
doesn’t timeout, it will receive a worker.

We now have to translate this properties from English to temporal relational logic, the
specification logic of Electrum.

1. There should never be more workers that those allowed by the configuration file.

This is a typical safety property where we are expecting something bad to never happen,
in this case we expect that there should never be more workers than those allowed. The con-
figuration file has the number of workers (size) and the maximum overflow (maxOver f low)
— i.e. how many more workers can Poolboy give —, so the total number of workers allowed
by the configuration file is size + maxOver f low. Let us assume that #totalWorkers represents
the total number of workers in the system; then in LTL the property is,

�(#totalWorkers ≤ size + maxOver f low)

And reads always the total number of workers is less or equal to the initial size plus the maximum
overflow. The next requirement is a bit more complex,

2. If a client receives a worker, it must be blocked.

This is a safety property, because we are expecting that the proposition remains true through
the execution of the system. Let Rw(c) be true if and only if client c receives a worker and
B(c) is true if and only if client c is blocked.

�(∀c ∈ Client : Rw(c) =⇒ B(c))

As you can see it becomes quite simple. We now must translate all these specifications
from pure LTL to Electrum.

3.1. Language 28

3. If a client sends a checkout request when there are available workers, provided it doesn’t
timeout, it will receive a worker.

This is a liveness property because we are expecting something good to eventually happen;
in this case, the client will eventually get a worker. However, the client has to first send a
checkout request and there must be available workers and the client must not timeout. TLA+
actually has a nice symbol to represent these types of properties, they call it leads to (), but
it is only "syntactic sugar" and does not add anything new to LTL because A B is defined
as �(A ⇒ ♦B) (Lamport (2003)). With that said, we will use the purely LTL syntax; any
discerning reader will notice the similarities:

∀c ∈ Client : �(Co(c) ∧ over f low < maxOver f low ∧ ¬T(c) =⇒ ♦Rw(c))

Where Co(c) is true if and only if client c sends a checkout message, T(c) is true if and
only if client c times out, and Rw(c) is true if and only if client c received a worker.

Property specification

We will now go through each of the requirements we formalize and translate them in
Electrum. The first one is quite simple:

�(#totalWorkers ≤ size + maxOver f low)

Before we start specifying the property, we need to get the total workers in the system, for
that we will use a function (fun). A function is basically a way of reusing the same expression.
Every function must specify what it returns and can have multiple arguments.

1 fun total_workers : set Worker {

2 Poolboy.free + Client.workers

3 }

In the above example, our function has no arguments and returns a set of Worker with all
the workers being used in the system. When we say all workers in the system we mean those
workers that are available in Poolboy and those that are being used by some Client, so the
total set is the union of these two.

Now we can move on to specify the property in Electrum. We will be using an assertion
assert which is a predicate that we can later check.

1 assert maximum_workers {

2 always lte[#total_workers, add[Poolboy.size, MaxOverflow]]

3 }

We have already introduce the keyword always as being the Electrum keyword for �, so let
us move to the next specification:

3.2. Analyzing the model 29

�(∀c ∈ Client : Rw(c) =⇒ B(c))

Let us first define what receive worker (Rw) actually means: we know that a client has
received a worker if the cardinality of its set of workers has increased by one, so that is
exactly what we specify in Electrum:

1 pred receive_worker[c : Client] {

2 #c.workers’ = add[#c.workers, 1]

3 }

A client c is only blocked if and only if c in blocked:

1 assert timeout_is_safe {

2 always (

3 all c1 : Client {

4 receive_worker[c1] implies c1 in blocked

5 }

6)

7 }

∀c ∈ Client : �(Co(c) ∧ over f low < maxOver f low ∧ ¬T(c) =⇒ ♦Rw(c))

Now the last one is also pretty straightforward, we can use the definition of receive_worker
we used previously. The full property is as follows:

1 assert client_gets_worker {

2 always (

3 all c1 : Client {

4 (c1 in (ClientSendCheckout.cli - Timeout.c)

5 and lt[Poolboy.overflow, MaxOverflow])

6 implies (eventually receive_worker[c1])

7 }

8 }

Line 4 of the above listing may be a bit confusing so let us break it down. What we are
saying is client c1 is the client who sent the checkout (take a look at the definition of
ClientSendCheckout in Appendix A) but does not have any Timeout messages.

3.2 analyzing the model

In the last section, we have defined three main properties that are to be verified in Electrum.
However, we have not shown how to actually analyze them. In this section we will examine
how one can analyze a model in Electrum.

3.2. Analyzing the model 30

There are two main ways to analyze a model. Electrum can give us instances that satisfy a
given formula with the command run, or present us with counter-examples that contradict
some formula with the command check.

3.2.1 Validation

As we explained before, the run command will give us some traces that satisfy a given
formula. If no formula is given Electrum will just give us a random valid trace.

1 run {}

We can click "Execute" so that Electrum calculates a valid trace, and "Show" to present us a
GUI with a graphviz representation of the various signatures an their relations with other
signatures spanning multiple time instances. This representation can be themed to best suit
the model.

We can force a trace to have a specific number of signatures by adding scopes. For
instance, suppose say that we want a valid trace where top-level signatures have a maximum
cardinality of 3 except for the set Client which has exactly 2. In Electrum we could request
such a trace as follows:

1 run {} for 3 but exactly 2 Client, 14 Event

If no scope is given, it defaults to 3. We can have even more control over the cardinality of
our signatures. For example,

1 run {} for 3 but exactly 2 Client, 3..4 Worker, 6 Time, 14 Event

Here we are saying that all signatures have a cardinality of 3 except Client, which has a
cardinality of 2, and Worker, which has a cardinality between 3 and 4. Time is a reserved
keyword that represents the size of the path, which is very useful for bounded model
checking.

It is also possible to name runs. Suppose we want an instance that, in its initial state, has
2 available workers:

1 run initial_size_two{

2 Poolboy.size = 2

3 }

We can even write whole formulas inside a run. Suppose we want a trace where some
client will eventually receive a worker. We can reuse the predicate receive_worker and
specify the run as follows:

1 run eventually_receive {

2 some c : Client | eventually receive_worker[c]

3 }

3.2. Analyzing the model 31

Finally, it is possible in Electrum to force a sequence of steps in a trace using the operator
;. For instance, if we want a trace where some client first issues a checkout, then receives a
worker and finally checks it back in, we can specify that trace as:

1 run specific_trace{

2 some ClientSendCheckout ;

3 some PbCheckoutReady ;

4 some ClientSendCheckin

5 }

The run above only specifies that in the first state some ClientSendCheckout event occurs,
then in the next state we have PbCheckoutReady and finally, in the next third step, we have
ClinetSendCheckin. There is nothing explicitly stating that the client issuing the checkout is
the same as the one checking in. However, since in this model only one event can occur at a
time (remember the declaration of Event), the client must be the same since no other client
has workers to checkin.

3.2.2 Verification

In the last section we translated a set of properties from ordinary English into Electrum. To
recap, we specified maximum_workers, client_gets_worker, and timeout_is_safe. We now are
going to verify if our model satisfies those formulas.

In order to check any formula we use the keyword check. Like we did with run, we can
define scopes and other constraints. So, if we want to check assertion maximum_workers, we
write

1 check maximum_workers

We can run it by going to "Execute" > "Check maximum_workers", on the right-hand side
panel we can read "Executing "Check maximum_workers"" and, after done executing, something
like No counter-example found. Assertion may be valid.. This does not prove that maximum_workers
is valid in our model, only that Electrum could not find any counter-examples. We can try
checking with a different scope, but Electrum still cannot find any counter-examples, which
is a pretty good indication that our model, most likely, satisfies maximum_workers.

Now consider the property client_gets_worker that we defined previously. Although the
property is well specified and our model, in theory, does not break it, nevertheless Electrum
gives us a counter-example. Let us take a look at it. In Figure 3 we can see a themed
representation of the first state as provided by Electrum.

The full trace is as follows:

TIME 0: Client2 sends a checkout

TIME 1: Client1 sends a checkout

3.2. Analyzing the model 32

Figure 3: Electrum’s representation of the first state

TIME 2: Poolboy reads the last checkout and gives Client1 a worker

TIME 3: Client1 checks in the received worker

TIME 4: Poolboy reads the checkin message from Client1

TIME 5: loops back to time 1

Note that Client2 will never get a worker because its message will never be read. Starvation
is a classical problem when verifying liveness properties in distributed systems.

In the real word, this is not an issue with Poolboy because the mailbox is implemented
with a queue. However, we abstracted that in our model so as to not limit other practical
solutions that too are able to guarantee a starvation-free run.

We are not interested in finding a solution for this problem, but we need to force the
model to only show us fair and realistic executions. Therefore, we will limit the model
behaviour by adding the following fact:

Every message that it is sent will eventually be read.

This is called a fairness constraint and it is specified in Electrum as follows:

1 fact ensure_fairness {

2 always (all m : Message {

3 sendMessage[m] implies (eventually readMessage[m])

4 })

5 }

If we check the property again, we will find that electrum gave us another counter-example.
In this new example starvation is still a problem. Instead of the message remaining unread
in the mailbox, Poolboy now reads the mailbox and, because it is full, keeps Client2 waiting
forever. To solve this, we need to extend our fairness constraint to force every waiting client
to get served. The complete Electrum fact now becomes:

3.3. Backend overview 33

1 fact ensure_fairness {

2 always (all m : Message {

3 sendMessage[m] implies (eventually readMessage[m])

4 })

5

6 always (all c : Client {

7 c in Poolboy.waiting implies (eventually c not in Poolboy.waiting)

8 })

9 }

Finally, if we check the liveness property Electrum will not give us any counter-example.

Counter-examples

Finally we need to check assertion timeout_is_safe.
This will actually give us a counter-example which may be realistic. In the counter-

example, a client issues a checkout and immediately times out, Poolboy first reads the
checkout message and sends a worker to the client. Here it broke the property.

This is the exciting part in model checking and why model checking is useful. It is possible
that Poolboy might have the same problem so we need to put effort in testing that scenario
or looking carefully at the source code. If Poolboy is found to have that problem then it
must be fixed; on the other hand, if Poolboy is found to not have this problem, then our
model is not accurately representing the system and must be changed. In this case, Poolboy
really did have a timeout problem. Thompson resolved this issue by keeping track of the
clients that timeout and removing them from the waiting queue.

3.3 backend overview

In the past sections we have been talking about how to specify, analyze, and verify a system
with Electrum. Now, in this section, we will take a look under the hood to understand how
Electrum itself works.

Electrum Analyzer

Alloy Analyzer

Pardinus

Kodkod

SAT solvers

Electrod SMV
Model Checkers

Figure 4: Electrum’s architecture

3.3. Backend overview 34

The Electrum Analyzer is tool that is responsible for the analysis of the specifications and
render instances. It is built on top of Alloy’s Analyzer which shares many of the same
features.

Alloy’s Analyzer uses Kodkod to analyze and provide visual traces, Electrum on the other
hand, uses Pardinus, an expansion of Kodkod with temporal relational logic. Pardinus
— likewise Kodkod — has a plug-in architecture, which allows us to integrate with other
solvers and model checkers. This way, it is possible for the Electrum Analyzer to support
both automatic bounded model checking using SAT and unbounded model checking with
SMV. Pardinus thus serves as a middleman between the Analyzer and various solvers
and model checking tools, thus making it easier for the Analyzer to provide a uniform
representation of instances and counter-examples.

When given a linear temporal relational logic specification, Pardinus will first convert it to
relational logic.

The complete model checking engine of Pardinus uses a tool called Electrod to convert
temporal relational logical formulas of Electrum into plain temporal logic so that they can be
model checked by SMV. This is done by deducing the system transitions from the Electrum
model and represent them in a TRANS section of SMV, as well as other initial conditions and
invariants that are possible to derive from the model.

If SMV is successful in finding a trace, then Electrod will pass it to Pardinus which in turn
will pass it to Electrum Analyzer to be shown as a graphviz representation of the instance.

4

LT S M I N

LTSmin is a language-independent model checking tool capable of both symbolic and explicit-
state analysis. Equipped with multi-core algorithms, it is capable of LTL checking with
partial order reduction and symbolic checking for µ-calculus. Its highly versatile nature is
thanks to a modular architecture, in which various language front-ends are connected to a
model checking core through an interface called Partitioned Next-State Interface (PINS).

In the following chapter, we will describe in greater detail the PINS architecture and
explain the various components that make generic model checking possible. Later we will
take a brief look on how it is possible to implement a new language front-end with a bit of
C glue code through the DLopen interface. Finally, we will take a look at the innovative way
in which partial order reduction is implemented in LTSmin.

4.1 pins architecture

PINS aims to generalise model checking systems in such a way such that it could be used
by very different modelling languages. Therefore, by its very nature, when implementing a
front-end to a modelling language it is necessary to implement a few obligatory functions as
well as other complementary functions needed for other high performance algorithms.

When we introduced modelling in section 2.1 we explained how a model could be
represented by a Kripke structure with:

1. A set of all possible states

2. A set of initial states

3. The transition relation

4. A labelling function

It should then come as no surprise that most of these elements are mandatory functions for
LTSmin, namely:

1. InitialState Returns the initial state of the model

35

4.1. PINS architecture 36

2. NextState Returns the successor(s) state(s)

3. StateLabel The labelling function

In LTSmin, a state is represented by a state vector with N slots. Actions are grouped
into transition groups, typically grouping instantiations of the same action with different
parameters, which must also be specified; as well as the names and types for each slot in the
state vector, transition group and label.

All of these are required for any sort of model checking. But — either for more complex
analysis like timed systems or probabilistic models, or to enable high performance algorithms
— more information must be provided. In their paper Kant et al. (2015) divide this extra
information in a few levels of extensions (A1 to A∞) according to their usage. We will only
take a look at levels A1 and A2, as the usage of A3 is beyond the scope of this thesis. Table
1 sums up all the extra information as well as the usage for each layer.

The first level we explore is A1, the read and write dependency level. Information about
these dependencies allow for projections over the state vector, improving performance for
both caching, state compression, and symbolic tools; it is also needed to calculate partial
order reduction. An action is said to be read independent from a slot in the state vector if the
action is possible for any value of the slot and the resulting state is the same. Intuitively, an
action is said to be write independent from a slot in the state vector if the slot is not changed
by the action.

The second level down is A2, necessary to calculate partial order reduction. It adds
more dependency information on transition guards, labels, and actions. Transition guards
are a subset of all labels; for each transition group, we associate a set of guards — the
preconditions for the group to be enabled — which are evaluated conjunctively, that is, all
guards must be enabled for the group to be as well. A label is independent from a slot in the
state vector if changing the slot value does not change the valuation of the labelling function.
As we noted in 2.4, the notion of independence between actions is crucial to partial order
reduction. This independence is called accordance in the terminology used in LTSmin, and a

Level Used for Function Description
B0

Basic model checking
InitialState Returns the initial state

B0 NextState Returns the next state
B0 StateLabel Labelling function
A1 Optimizations and

partial order reduction
ReadMatrix Read dependency matrix

A1 WriteMatrix Write dependency matrix
A2

Partial order reduction
GuardMatrix Guard/transition group matrix

A2 StateLabelM State label dependency matrix
A2 DoNotAccord Actions dependency matrix
A∞ Other usages GetMatrix Predefined X×Y matrix

Table 1: Overview table of the extensions

4.2. Specifying in PINS 37

dependency relation is passed to PINS by a DoNotAccord matrix. We will have a detailed
definition of this relation in section 4.3; for now the definition for independence of actions,
described before, should suffice.

PINS also allows for other generic matrices to be added and used by GetMatrix. This
can be used to improve precision of partial order reduction, although we will ignore it in
our development.

This is all the information necessary to calculate partial order reduction. In the next
section we will describe a leader election algorithm and we will take a look at how to specify
it in PINS with C code via the dlopen interface.

4.2 specifying in pins

Before we try to understand how to translate a language front-end into PINS, we must first
figure out how to model a system. Since we also want to test the partial order reduction
optimizations of LTSmin, it is best to choose an example with a lot of asynchronous message
passing where many actions are independent of one another, in such a way that would
maximize the number of interleavings. One such system is the ring leader election which
we will describe in the following subsection.

4.2.1 Showcase Ring leader election example

In order to test the performance of partial order reduction of LTSmin, we chose to model a
system with multiple independent actions that would, without any reduction, generate a
myriad of identical traces. For that reason, we have found that a ring election would be the
ideal system to model. We chose to specify a ring election where all processes are arranged
in a ring and each sends messages to one neighbour (say, to the right) and receives message
from the other neighbour (from the left). The full algorithm is described in Algorithm 1.

In our model we will have a fixed number of processes. Each process has an inbox in
which it receives messages from other processes; the maximum value they know of; the
notion of whether it knows the leader or not; and its current stage – or state –, which tells us
if the process is either sending a message or waiting to receive one.

We will now define the initial state and every action that can occur in this system.

Initial state

In the initial state, each inbox is empty, the maximum id known by each process is its own
id, no process knows the leader and every process is ready to send.

4.2. Specifying in PINS 38

Algorithm 1 Ring election algorithm for a generic process i

1: procedure Elect

2: id← getId()
3: max ← id
4: knowLeader ← f alse
5: sendi+1(id)
6: while receivei(mid) do
7: if mid > max then
8: max ← mid
9: sendi+1(max)

10: else if mid = max ∧ ¬knowLeader then
11: knowLeader ← true
12: sendi+1(max)

Sending

When the process is ready to send, it sends the maximum value it knows of to its neighbour
and waits until it has received a new value.

Receiving

The id received by the process can be either smaller than, greater than, or equal to, its
maximum id. If a process receives an id that is smaller than its maximum, it just discards
the message and awaits a new message. If the received id is greater than the maximum,
then the maximum is replaced and propagated. Finally, if the received id is the same as the
maximum, that means that we have found our leader a we must propagate the news to our
neighbour.

4.2.2 Modelling ring leader election in C

Dynamic loading (DL) allows for libraries to be loaded during a program execution. It
is, therefore, a very useful technique for implementing extensions to other programs. In
UNIX systems, the dlopen API is able to open libraries and prepare them for later use. 1

LTSmin takes advantage of this feature in order to support other language front-ends for
PINS; although we can, just as easily, take advantage of this feature to specify any model.
For the case of this example, we will use the model we just established, and are now going
to specify it in C. First we will take a look at the file structure. Later we will be adding the
information that we have previously described in section 4.1.

1 http://tldp.org/HOWTO/Program-Library-HOWTO/dl-libraries.html

http://tldp.org/HOWTO/Program-Library-HOWTO/dl-libraries.html

4.2. Specifying in PINS 39

File structure

As it is to be expected, we can have as much files as we want; however, to try to keep
it simple, we will have just the dlopen implementation in C, as well as a C file where
functions such as InitialState and NextState are declared. We will refer to the dlopen
implementation C file as simply the dlopen implementation file (dlopen-impl.c), and to the
C file and his header as the specification file (spec.c) and header file (spec.h). Depending on
what we are modelling, further files can be added as we will later see.

Defining the state, actions and types

As we noted earlier, in PINS the state is represented by a state vector with a fix size of slots.
Therefore, in defining the state, we must also specify what each slot represents in our model.

Before we define the state, we must define the existing types of our model. The lts-type.h

file in the ltsmin library declares a couple of types that can be used. In this example, we
need an int type, an action type for each transition, and a bool type for each label and
for the know_leader. We must also declare the size of our state vector, for that we declare a
function in the specification file state_length.

1 lts_type_t ltstype=lts_type_create();

2

3 // set the length of the state

4 lts_type_set_state_length(ltstype, state_length());

5

6 // add an "int" type for a state slot

7 int int_type = lts_type_put_type(ltstype, "int", LTStypeSInt32 , NULL);

8

9 // add an "action" type for edge labels

10 int action_type = lts_type_put_type(ltstype, "action", LTStypeEnum, NULL);

11

12 // add a "bool" type for state labels

13 int bool_type = lts_type_put_type (ltstype, "bool", LTStypeBool, NULL);

First, because we intend to create a parameterized model, we will declare in our header
file a fixed number of processes, in this case 4.

1 #define N 4

Although the primary elements in our model are the processes, we must shun from
having a slot with all the information regarding a single process, as that would concentrate
too much information on a single slot and it would not allow us to make use of valuable
high-performance algorithms as partial order reduction. Instead, we will have a slot for each
component — i.e., the inbox, the maximum value, the state, and the knowledge of a leader —
of each process. We will assume that all process ids are sequential and that they are in the
interval [1, N], in that way we can later use the 0 to represent nothing (akin to the null value

4.2. Specifying in PINS 40

of programming languages). The inbox will allow processes to send and receive messages
from other processes. For now, because LTSmin does not have a "set type" we will have to
introduce it later.

We will define function macros in our header file so we can refer to the slot in the state
vector later.

1 #define NR_VARS 4

2

3 #define INBOX(proc) ((proc - 1) * NR_VARS)

4 #define MAX(proc) ((proc - 1) * NR_VARS + 1)

5 #define KNOW_LEADER(proc) ((proc - 1) * NR_VARS + 2)

6 #define STATE(proc) ((proc - 1) * NR_VARS + 3)

In the dlopen implementation file we are required to set a name for each slot and its type.

1 for (int i=1; i <= N; i++) {

2 sprintf(name, "inbox_%d", i);

3 lts_type_set_state_name(ltstype, INBOX(i), name);

4 lts_type_set_state_typeno(ltstype, INBOX(i), int_type);

5

6 (...)

7 }

Similarly, state label types and action types must also be specified. The full specification can
be found on appendix B.

The action type must also be populated with the different possible action names:

1 for (int i = 1; i <= N; i++) {

2 sprintf(name, "send_%d", i);

3 pins_chunk_put(m, action_type, chunk_str(name));

4

5 (...)

6 }

Finally, we validate the type and set it.

1 lts_type_validate(ltstype);

2 GBsetLTStype(m, ltstype);

Initial state, next state and state label

In the initial state every inbox is set to 0, Since we have not yet declared the "set type" for
now we will ignore the initial value of inbox, we will add it when introducing the set type.
The maximum value is set to the process id. We declare the initial state function in the
specification file.

4.2. Specifying in PINS 41

1 int initial[NR_VARS * N];

2 int* initial_state(void* model) {

3 for(int i = 1; i <= N ; i ++) {

4 initial[MAX(i)] = i;

5 initial[KNOW_LEADER(i)] = 0;

6 initial[STATE(i)] = STATE_SEND;

7 }

8

9 return initial;

10 }

Finally, we set it as the initial state in the dlopen implementation file.

1 int* initial = initial_state(m);

2 GBsetInitialState(m, initial);

Before we define the next state function, we must first define the various actions that can
occur. We divide each action in two functions: the preconditions (called labels) and the
postconditions (used in order to calculate the next state). The next state function, declared
in the specification file, takes an action group, the state, and a callback function and its
arguments. For each possible action we call a function that must calculate the next state.

1 int next_state(void* model, int group, int* src, TransitionCB callback, void* args);

In addition to the action label functions, we need to define a goal function that represents
the property we want to verify. In this case, our goal is that every process knows the leader,
therefore the label goal function is as follows:

1 int label_goal(int* src) {

2 int i;

3 for(i = 1; i <= N && src[KNOW_LEADER(i)]; i++);

4 return i > N;

5 }

Finally, we define the state label function that, for a given label and a state, returns
whether the label is valid in that state. It simply uses the previously defined label functions.
For simplicity we assume that each action has only a single guard, in that way the event
reference (the integer that references the event) is the same for its label. With this in mind,
we declare the state label function in our specification file.

1 int state_label(void* model, int label, int* src);

And set it in the dlopen implementation file

1 GBsetStateLabelLong(m, (get_label_method_t) state_label);

4.2. Specifying in PINS 42

Introducing sets

LTSmin has no default set type, nonetheless it does allow for a generic chunk type to be used.
We declare the set type in the dlopen implementation file.

1 int set_type = lts_type_put_type(ltstype, "set", LTStypeChunk, NULL);

The chunk type can be any serializable type; we used an external set library and defined
auxiliary getters and setters for the state vector in our specification file.

1 SSET get_sset(void* model, int* src, int idx);

2 int set_sset(void* model, int idx, SSET set);

Now we can use the above functions whenever we want to take (or put) sets in the state
vector. For instance, the initial value for inbox is now:

1 initial[INBOX(i)] = set_sset(model, INBOX(i), sset_init());

Dependency matrices

In our specification file, we define the dependency matrices as we described in the previous
section 4.1; in the case below, we relate each action with the slots in the state vector read by
it.

1 /* Read Matrix

2 * inbox max know state

3 * SEND 0 1 0 1

4 * RECV_SMALL 1 1 0 1

5 * RECV_EQ 1 1 0 1

6 * RECV_GRT 1 1 0 1

7 */

8 int rm[NR_ACTIONS * N][NR_VARS * N] = { 0 };

9 void set_read_matrix() {

10 for(int p = 1; p <= N; p++) {

11 rm[SEND(p)][MAX(p)] = 1;

12 rm[SEND(p)][STATE(p)] = 1;

13

14 rm[RECV_SMALL(p)][INBOX(p)] = 1;

15 rm[RECV_SMALL(p)][MAX(p)] = 1;

16 rm[RECV_SMALL(p)][STATE(p)] = 1;

17

18 rm[RECV_EQ(p)][INBOX(p)] = 1;

19 rm[RECV_EQ(p)][MAX(p)] = 1;

20 rm[RECV_EQ(p)][STATE(p)] = 1;

21

22 rm[RECV_GRT(p)][INBOX(p)] = 1;

23 rm[RECV_GRT(p)][MAX(p)] = 1;

24 rm[RECV_GRT(p)][STATE(p)] = 1;

4.2. Specifying in PINS 43

25 }

26 }

27

28 int* read_matrix(int row) {

29 return rm[row];

30 }

Afterwards, we set them in the dlopen implementation file by copying and setting
them. PINS includes some functions to interact with dependency matrices (dm). First, a
dependency matrix must be created with dm_create. Then its values are set [to true] by the
dm_set function. Besides the write and read matrices, a combined matrix is also defined
which, intuitively, combines the values of both matrices.
1 set_read_matrix();

2 matrix_t *rm = malloc(sizeof(matrix_t));

3 dm_create(rm, group_count(), state_length());

4 for (int i = 0; i < group_count(); i++) {

5 int* aux = read_matrix(i);

6 for (int j = 0; j < state_length(); j++) {

7 if (aux[j]) {

8 dm_set(cm, i, j);

9 dm_set(rm, i, j);

10 }

11 }

12 }

13 GBsetDMInfoRead(m, rm);

This process is similar for other matrices, except for GuardMatrix which is a bit different.
Guard matrix relates each transition group with the guards used by it. As we said before,
for simplicity we say that each transition group has only one guard which is referenced by
the same integer as the action. Therefore, the C code declared in the dlopen implementation
is pretty straightforward: For each group there is only one guard with the same reference as
the group.
1 guard_t** guards = malloc(group_count() * sizeof(guard_t*));

2 for(int i = 0; i < group_count(); i++) {

3 guards[i] = malloc(sizeof(guard_t) + sizeof(int));

4 guards[i]->count = 1;

5 guards[i]->guard[0] = i;

6 }

7 GBsetGuardsInfo(m, guards);

Having completed the model, we are now ready to analyze it. We will see how in the next
subsection.

4.3. Guard-based partial order reduction 44

4.2.3 Analysing with LTSmin

We now have three C files (plus the additional set library files), we compile them to object
files as:

1 gcc -c -I/usr/local/include/ltsmin -I. -std=c99 -fPIC spec.c

2 gcc -c -I/usr/local/include/ltsmin -I. -std=c99 -fPIC dlopen-impl.c

And generate a shared object.

3 gcc -shared -o spec.so dlopen-impl.o spec.o

We can now pass this shared object to PINS as well as any property we want to check and
a file where the counter-example trace will be written. In this case, we want to check that
eventually every process will get to know the leader forever. Since we defined goal to be the
label that is true if every process knows the leader, we can simply call:

1 pins2lts-seq spec.so --ltl="<> goal" --trace=solution.gcf

It is also possible to check for invariants. For example, if we want to check that the goal is
never achieved, we can call

1 pins2lts-seq espec.so --invariant="! goal" --trace=solution.gcf

Because we know that goal is eventually possible, the invariant is violated and a counter-
example is printed to solution.gcf. We can pretty-print solution.gcf by running:

1 ltsmin-printtrace solution.gcf

It is also possible to use partial order reduction by adding the flag por, although we do
not yet have the do not accord matrices set up so no reduction must be possible. We will
define the do not accord matrix after explaining the partial order reduction algorithm in
subsection 4.3.3.

1 pins2lts-seq espec.so --invariant="! goal" --trace=solution.gcf --por

LTSmin implements a quite unique partial order reduction algorithm which abstracts
away the notion of processes. We will explore this algorithm in the following section.

4.3 guard-based partial order reduction

Most partial order reduction algorithms are based on the notion of processes. Some
techniques construct program graphs, others rely on internal ordering of the actions of
processes. In pursuing a truly language independent model checker, Laarman et al. (2016)
developed a partial order reduction algorithm – based on stubborn sets – that is process
agnostic. Instead of depending on program counters, their algorithm uses a guard-based
approach. Throughout this section we will describe this guard-based partial order reduction.

4.3. Guard-based partial order reduction 45

4.3.1 A stubborn approach

The main idea of partial order reduction is to calculate only a representative subset of the
enabled transitions to explore in a state, thus not generating the whole state graph. This
guard-based algorithm is centred on stubborn sets introduced by Valmari. To understand
what stubborn sets are, we first need to define a couple of concepts.

As we hinted at in section 2.4, all partial order reduction techniques crucially rely on
independence between actions. In guard-based POR, this concept is called accordance; We
define accordance as:

Definition 1. (Accordance) Two transitions t and t′ are said to accord if one of the following
criteria is true:

1. Their shared variables are disjoint from the write sets;
2. t and t′ are never co-enabled;
3. t and t′ do not disable each other and their actions commute.

With this, a do not accord set (DNA) is defined as the set of transitions pairs that do not
accord. We also use DNAt to represent the set of transitions that do not accord with t.

In guard-based partial order reduction, the necessary enabling and disabling sets are also
a key concept.

Definition 2. (Necessary enabling/disabling set)

1. The set Nt is said to be a necessary enabling set for transition t if and only if for t to be
enabled, at least one transition in Nt must first occur.

2. Conversely, the set Nt is said to be a necessary disabling set for transition t if and only if,
for t to be disabled at least one transition in Nt must first occur.

A stubborn set is thus defined as:

Definition 3. (Stubborn set) A set Ts is said to be stubborn in state s if, for all t ∈ Ts:

1. If there is some enabled transition in s, then Ts must be non-empty;
2. If t is disabled in state s, then there is a transition in Ts capable of enabling it;
3. If t is enabled in s, then all other transitions that do not accord with t are also in Ts.

Now the partial order algorithm is pretty much any algorithm capable of generating a
subset of transitions in a state that matches Definition 3. Algorithm 2 shows us exactly that,
by guaranteeing that each new transition added to the set satisfies the conditions above.

In Algorithm 2, en(s) is the set of all enabled transitions in state s, and f ind_nes(t, s) is a
function that returns a set with all the necessary enabling sets Nt (there can be many sets
for the same transition). We will later see how to calculate the necessary enabling set, for
now, let us showcase how the algorithm works.

4.3. Guard-based partial order reduction 46

Algorithm 2 Algorithm to calculate the stubborn set Ts

1: procedure stubborn(s)
2: Twork ← {t} such that t ∈ en(s)
3: Ts ← ∅
4: while Twork 6= ∅ do
5: choose t ∈ Twork
6: Twork ← Twork \ {t}
7: Ts ← Ts ∪ {t}
8: if t ∈ en(s) then
9: Twork ← Twork ∪DNAt \ Ts

10: else
11: Twork ← Twork ∪N \ Ts where N ∈ f ind_nes(t, s)
12: return Ts

s

sg

t1

t2

t3

t4

t5

t6

t7

Figure 5: Stubborn set in a mock example.

Take a look at Figure 5 which represents
a partial run of the guard-based partial or-
der reduction algorithm. For now, t5 is the
only transition in the stubborn set Ts. Now
assume that t5 and t3 do not accord. In
that case, following the algorithm, t3 will be
added to Ts but, since it is not enabled at
state s, some necessary enabling transition
must occur, for instance t2, which is added
to Ts. And, in turn t1 is added to Ts. Sup-
pose DNAt1 = {t5}, in that case, t5 would
be added to the stubborn set, but since it is
already there, no change is required. Hence,
we end up with the complete set. It shall now be clear how the algorithm is able to secure the
conditions of the stubborn set, although we are still missing how to calculate the necessary
enabling set; we shall look at exactly that in the next subsection.

4.3.2 Calculating necessary enabling sets

When introducing the algorithm to calculate the stubborn sets, we assumed the existence
of a function f ind_nes(t, s) which, given a transition t and a state s, returns the set of all
necessary enabling set of t in s. We will now learn how such set can be calculated.

Before we begun reasoning on necessary enabling sets for transitions, we must first reflect
on necessary enabling sets for guards. The definition may seem familiar.

4.3. Guard-based partial order reduction 47

Definition 4. (Necessary enabling set for guards) The set Ng is said to be a necessary enabling
set for guard g if and only if, for g to be true, at least one transition in Ng must first occur.

The first question we must ask is "what makes a transition enabled?". The transition is only
enabled if all of its guards are satisfied. This means that, for any transition to be enabled, at
least a currently disabled guard must become enabled. Therefore, for any transition t and
guard g, if g is one of the guards of t then Ng is also a Nt.

LTSmin statically computes a necessary enabling set for each guard by just considering
those transitions that write on variables read by the guard. And f ind_nes(t, s) can thus just
be some Ng for some guard g of transition t disabled in state s.

Although using a necessary enabling set is enough to calculate f ind_nes(t, s), it often
ends up generating large stubborn sets. Take the example presented in Figure 6 where two
concurrent processes and their transitions are presented. Suppose both t1 and t5 do not
accord with t6. Initially both t1 and t6 are enabled and, since they do not accord with each
other, both will end up in the stubborn set. Now, because they do not accord, t6 adds the
currently disabled t5. Working backwards, t5 adds t4, et cetera. In the end, we finish with a
large stubborn set with t6, t1, t5, and everything in between.

Observe that, to enable a disabled transition one must first disable a transition that cannot
be co-enabled with it. For instance, in the above example, t5 and t1 cannot be co-enabled, t1

must be disabled to enable t5. Therefore, a necessary disabling set for t1 is also a necessary
enabling set for t5. In that example, since t1 is a necessary disabling transition of t1 (it disables
itself), t1 is a necessary enabling transition for t5. If we now follow the algorithm, we end up
with a stubborn set with just t1, t5 and t6.

...

t1 t6

t7t2

t5

Figure 6: Two transition systems of two concurrent processes.

4.3. Guard-based partial order reduction 48

4.3.3 Defining the DNA matrix for ring leader election

When looking at the definition of accordance of transitions, it is possible to understand
which transitions accord in our model. We already understand that transitions referring
to the same node can never be co-enabled, thus all transition for the same node accord.
Regarding transitions of different nodes, they only do not accord if they write on variables
of other nodes; the only transition that writes on the slots that are read by other processes is
the SEND transition. This way, it very simple to understand that SEND from one process
does not accord with the receiving actions of its neighbour. Thus, we have a do not accord
such as:

1 int dnam[NR_ACTIONS * N][NR_ACTIONS * N] = { 0 };

2 void set_dna_matrix(int row) {

3 for(int p = 1; p <= N; p++) {

4 dnam[SEND(p)][RECV_SMALL(NEXT(p))] = 1;

5 dnam[SEND(p)][RECV_EQ(NEXT(p))] = 1;

6 dnam[SEND(p)][RECV_GRT(NEXT(p))] = 1;

7

8 dnam[RECV_SMALL(NEXT(p))][SEND(p)] = 1;

9 dnam[RECV_GRT(NEXT(p))][SEND(p)] = 1;

10 dnam[RECV_EQ(NEXT(p))][SEND(p)] = 1;

11 }

12 }

13

14 int* do_not_accord_matrix(int row) {

15 return dnam[row];

16 }

4.4. Results 49

Time (seconds) Nr. of States
nr nodes w/o POR w/ POR w/o POR w/ POR
4 0 0 152 125

5 0 0,01 425 309

6 0,02 0,03 1732 1147

7 0,07 0,07 3032 1707

8 0,18 0,15 7917 3897

9 0,52 0,37 20527 8777

10 1,76 1,18 53024 19547

11 6,67 2,7 136753 43119

12 20,58 8,12 352627 94341

Table 2: Tests for property eventually everyone knows the leader

4.4 results

Having extended the rest of the model to allow for partial order reduction, we can now
test the improvements of LTSmin. We will look to check the optimizations in time and the
reduction of the overall state space for different sized rings. The results we got are shown
on Table 2.

This shows promising results but we must keep in mind that this was a manually written
model and that a syntactic analysis might not be as precise as our definition of the do not
accord.

5

TA I N O : A N E L E C T R U M E S Q U E F R O N T- E N D F O R LT S M I N

In order to test the viability of implementing LTSmin’s partial order reduction in Electrum,
we have decided to implement a new language front-end: Taino named after the lost tribe
that inhabited what is today the Caribbean. This new language is based on Electrum syntax;
however, due to some restraints of PINS, the semantics will be a bit different.

In this chapter we will present the new language and its differences to standard Electrum
already described in Chapter 3. We will also be proposing a new event syntax for Electrum
based on the action layer suggested by Brunel et al. (2018). Later we will show how we can
compile a Taino specification to PINS via the dlopen interface. Finally we will present some
initial results of this approach.

5.1 the language

The specification language for Taino is a subset of Electrum extended with a new event
syntax. One can declare signatures and relations for signatures. In order to better show
how to specify Taino models, we will present a model for a leader election protocol already
described in subsection 4.2.1.

5.1.1 Modelling ring leader election

In our system we have nodes with a state which describe whether the node is going to
receive or send a message. Each node also has the successor node, the maximum value
received, and an inbox which is a set of messages. Since each message simply consists of a
number, we can represent a message by that number itself; therefore, the inbox can be just
be a set of integers.

We define the signature Node and other signatures as:

1 enum State { Send, Receive }

2

3 sig Int {}

4

50

5.1. The language 51

5 sig Node {

6 var max : one Int,

7 succ : one Node,

8 var inbox : set Int,

9 var state : one State

10 }

The above declarations are fairly simple to understand as we already described signatures
when we presented the Electrum language. Note that we do not declare Node to be variable,
since the number of Nodes in the system will not change.

Furthermore, our model also needs to represent the elected nodes. In this case, we make a
variable signature:

1 var sig elected {}

At present, Taino does not have hierarchy of signatures, which shall not be a problem for
this model. In fact, because of the way we translate atoms to C — which we will explore
later —, every set is a set of integers. For now, we will simply assume that every element in
the elected set will be a node.

Declaring signatures in Taino is identical to doing so in Electrum. However, even though
Electrum has the notion of time, there is no explicit way to declare events happening in the
system. Such omission was also noticed by Brunel et al. (2018), they proposed a new action
layer to describe a transition from one state to another. As they note, this action layer is
purely syntactic sugar and can easily be converted to regular Electrum. In Taino, we also
define a way to represent a transition in the system. However, it does not simply provide an
easier and cleaner way of writing a specification; this notion of events is crucial to PINS and
therefore to calculate partial order reduction.

An event is parameterizable, meaning some events are related to particular atoms of the
system. For instance send is an event of a particular Node. We declare it as:

1 event send[n : Node] {

2 n.state = send

3

4 n.succ.inbox’ = n.succ.inbox + n.max

5 n.state’ = receive

6 }

The full declaration of send might seem fairly similar to that in Electrum. But whilst in
Electrum there is a need to declare the frame conditions — i.e., the variable relations that do
not change —, in Taino it is assumed that nothing changes besides those relations explicitly
stated in send. So, in this case, only n.succ.inbox and n.state change, everything else in the
system remains static. Furthermore, the Taino modelling language is a lot restricted when
compared to Electrum; a relation can never be referenced alone, it must always be projected
over some atom of its domain.

5.1. The language 52

Taino does not yet support the keyword some, therefore the receiving events must be
parameterized with the received message, and the pre-condition must check whether such
message is actually part of the node’s inbox or not. We can see this in action in the definition
of receiveEqual.

1 event receiveEqual[n : Node, m : Int] {

2 n.state = Receive

3 m in n.inbox

4 n.max = m

5

6 elected’ = elected + m

7 n.inbox’ = n.inbox - m

8 n.state’ = Send

9 }

Besides the event declaration, we also introduce a new declaration that is not available
in regular Electrum. This is the init declaration where the initial state of the system is
specified. This keyword is also introduced to simplify the transition to PINS. Because of some
restrictions of LTSmin, it is not possible to define multiple initial states and the definition of
init must be deterministic. Although in theory this restriction could be overcome by adding
a non-deterministic transition from a blank state to all possible initial states.

In Taino, the initial state is declared as follows:

1 init {

2 no elected

3

4 Node$1.max = 1

5 Node$1.succ = Node$2

6 no Node$1.inbox

7 Node$1.state = Send

8

9 (. . .)
10 } for 4 Node, 4 Int

Node\$1 refers to an atom of the signature Node, it simply refers to the first node. If there
are multiple definitions for the same relation Taino will stick to the last defined, except if
the relation is constant in which case the first definition is the one that remains. This has to
do with the way the init is translated to LTSmin which will be revealed in the next section.
Please note that the semantics of the scope definition is slightly different to that of Electrum;
in Taino we are stating that there are exactly four nodes and four ints in this model.

Finally, we will write predicates to check our goal. In this case, we want to check that
eventually forever one (and only one) Node will be elected. We do this by defining a
predicate and then checking it. As we already mentioned, most model checkers have a
different language for describing the system and for specifying properties over the system.

5.2. Translating to LTSmin 53

Although both Alloy and Electrum are exceptions to this rule, LTSmin is not; which makes
it impossible to use LTL operators inside predicates, events, facts, or functions. We allow for
LTL properties to be declared inside the check and, contrary to Electrum, Taino only allows
for one check to be declared. A check must always reference the predicate to be tested and
can also have temporal operators.

1 pred only_one_elected {

2 one elected

3 }

4

5 check {

6 eventually always only_one_elected

7 }

The full specification can be found at Appendix C, and it shall be quite simple to anyone
familiarized with the syntax of Electrum or Alloy. Now, in the following section, we show
how this model is translated into LTSmin.

5.2 translating to ltsmin

Translating a highly abstract modelling language to LTSmin requires us to reason about
very minute details and confront the hard differences between these two tools. During
this section we will be describing how we can store the Taino notion of the state in the
state vector of LTSmin and introduce a mode of indexation. We later use these concepts
to initialise the state and to define a next state function. Finally we will show how we can
retrieve dependency information purely from a static analysis of the modelling language.

5.2.1 Defining the state

The most important element we must reason about is the state; which, due to being arguably
the least flexible element of PINS, requires a lot of attention. Recall that for PINS the state is
a fixed size vector of values.

We must find a way such that we can transpose the Taino/Electrum notion of state to
this fixed sized vector. The relations and signatures which are not variable need not be
considered as they can be expressed as C macros, enumerators, or functions. For instance,
because static signatures do not change over time, they are not represented in the state, but
are rather represented by an enum. Variable sets can be described by equating each set
with a slot in the state vector; in the ring leader election, for instance, the elected set can be
represented by just a slot in the vector. We are still left with the problem of defining the state
for variable relations. At first it is tempting to equate each relation to each slot on the state

5.2. Translating to LTSmin 54

vector. For instance, we would have a slot for max that would be a set of relations, something
like, following the notation presented when we introduced Electrum,

max = {〈Node1, 1〉, 〈Node2, 2〉, . . . , 〈Noden, n〉}

This seems like a reasonable suggestion, but it would mean that every action on max,
even if taken by different nodes, would change the same slot in the state vector. Take event
receiveGreater1 for instance. We understand that events receiveGreater of two different
nodes are completely independent as they only access the part of the relation belonging
to each respective node. However, when the complete relation max is in a single slot, this
means that any event changing it is conflicting with any other event also accessing it. Thus,
if we have a slot of the state vector dedicated to each relation, we could not take advantage
of partial order reduction, as pretty much no event would accord with each other. A finer
partition must be established to ensure that partial order reduction can still be applied.

Take a look at the definition of max again. Even though the relation is marked as variable,
the only part of it which really changes is the right-hand part. We can therefore omit the
left-hand element of the relation and store the value of max for each Node in different state
slots. We apply this rationale to every relation declared in the model, thus we have a state
akin to the one depicted in Figure 7. We make it easier to refer to a specific slot in the state
vector, by combining C macros with enumerators. This makes the translation from one
language to the other much smoother. In the following example, we are defining all state
slots in an enum for a scope of two nodes to make the example smaller.

1 typedef enum state_names {

2 NODE1_MAX,

3 NODE1_INBOX,

4 NODE1_STATE,

5 NODE2_MAX,

6 NODE2_INBOX,

7 NODE2_STATE,

8 ELECTED,

9 STATE_LENGTH

10 } STATE_VAR;

11

12 #define size_of_Node 3

13

14 #define Node(i) (NODE1_MAX + ((i-1) * size_of_Node))

15 #define max(i) (Node(i) + 0)

16 #define inbox(i) (Node(i) + 1)

17 #define state(i) (Node(i) + 2)

18 #define elected ELECTED

1 see Appendix C.

5.2. Translating to LTSmin 55

Node$1.max

Node$1.inbox

Node$1.state

Node$2.max

Node$2.inbox

Node$2.state

elected

Figure 7: Representation of the state vector

The resulting configuration of the state reveals the restriction to the Taino join operator
(.) which is used to refer to specific slots in the state vector and does not have the full
expressiveness of the set operator of Electrum and Alloy. This, at least in this implementation,
severely restricts the expressiveness of an Taino when compared to Electrum.

5.2.2 Initial state

Having understood the definition of the state in LTSmin, figuring out how to set it initially
is not much more complex. Take a look at the definition of init in our model (Appendix C).
First, the elected set is declared to be empty, this simply means that we have to initialise
its slot with an empty set. As for simple attributions as is the case of max, the value on the
analogous slot of the state vector is set to that in the model.

Although the definition of the initial state is pretty straightforward, not everything
declared inside the body of init belongs to the state vector. You may also have noticed that
constants are also defined as well as the scopes for each signature.

As for scopes, we can just use enumerators to refer to specific atoms, in such a way that
Node$1 would translate to NODE1, hence a scope for four nodes translates to:

1 typedef enum Node{

2 NODE1 = 1,

3 NODE2,

4 NODE3,

5 NODE4

6 } NODE_T;

In the case of constant relations, as in succ, a function is defined that receives the left-hand
side of the "join operator" (.) and returns the corresponding value. Taino does not allow
for constant relations of different multiplicities. The succ constant relation can thus end up
looking something like:

1 int succ(int i){

2 switch(i) {

3 case NODE1:

4 return NODE2;

5.2. Translating to LTSmin 56

5 case NODE2:

6 return NODE3;

7 case NODE3:

8 return NODE4;

9 case NODE4:

10 return NODE1;

11 }

12 return 0;

13 }

In this way, we can later refer to the slot for the inbox of the successor of Node$1

(Node$1.succ.inbox) as inbox(succ(NODE1)). The restrictions of this "join operator" may
now be clearer, as it is purely used to index the state vector and not as a join of two sets.

5.2.3 Defining Next state

The indexation by enumerators and C macros described in the previous subsections are
now very useful to translate events into actual LTSmin. But we also need to enumerate all
transitions possible, for that we will through each event and parameterize it to create an
enum.

1 typedef enum trans_labels {

2 RECEIVEEQUAL_NODE1_INT1,

3 RECEIVEEQUAL_NODE1_INT2,

4 (...)

5 RECEIVEEQUAL_NODE4_INT1,

6 RECEIVEEQUAL_NODE4_INT2,

7 (...)

8 SEND_NODE4,

9 LABEL_GOAL

10 } TRANSITIONS;

You can see that the number of transitions grows exponential to the number of parameters
for each event.

In Taino the pre-conditions and post-conditions of each event are described together,
LTSmin however isolates transitions from its guards. Therefore, each event translates to two
functions: one for the label and another for the transition itself. In Taino, we assume that
each transition only has one guard which is the conjunction of all pre-conditions.

For a specific example, let us look at event receiveGreater. It generates the following label
function:

1 int label_receive_greater(void* model, int* src, int n, int m){

2 // n.state = Receive

3 int p1 = src[state(n)] == RECEIVE_T;

4

5.2. Translating to LTSmin 57

5 // m in n.inbox

6 SET n_inbox_set = get_set(model, src, inbox(n));

7 int p2 = set_exists(n_inbox_set, m);

8 set_free(n_inbox_set);

9

10 // gt[m, n.max]

11 int p3 = gt(m, src[max(n)]);

12

13 return p1 && p2 && p3;

14 }

The comments are added here to better show what relates to the Taino specification.
Note that functions like get_set allocate the set in memory and set_free ensures that the
memory is safely freed as soon as it is no longer needed; this is the reason for declaring a
temporary n_inbox_set.

The label function uses the snake case version of the event name given in the model with a
label_ prefix, this is the standard for all label functions of events. Apart from the reference
to the model and to the state vector (src), the label function also receives the arguments of
the event, in this case the node n and message m which are represented by integers.

The function that calculates the next state for this event is not much more complex, in
fact it takes advantage of the label function to confirm that the event is going to happen.
The mindset behind the translation of the post-conditions is that it simply changes the state
vector with new values. This is why the syntax for events in Taino is so restrictive, it expects
to assign new values to slots in the state vector. Besides the arguments that are received
by the label function, this function also receives the destination state vector – i.e., the state
vector of the following state – and a copy vector (cpy) which tells PINS which slots in the
state vector have not changed and can thus be copied. This copy vector is used by PINS to
perform some optimizations.

1 int specm_receive_greater(void* model, int* src, int* dst, int* cpy, int n, int m){

2 int succs = 0;

3 SET n_inbox_dst;

4 SET m_set;

5 SET n_inbox_set;

6

7 if (label_receive_greater(model, src, n, m)) {

8 // n.max’ = m

9 dst[max(n)] = m;

10

11 // n.inbox’ = n.inbox - m

12 n_inbox_set = get_set(model, src, inbox(n));

13 m_set = set_init_one(m);

14 n_inbox_dst = set_difference(n_inbox_set, m_set);

15 set_free(n_inbox_set);

5.2. Translating to LTSmin 58

16 set_free(m_set);

17 dst[inbox(n)] = set_set(model, inbox(n), n_inbox_dst);

18 set_free(n_inbox_dst);

19

20 // n.state’ = Send

21 dst[state(n)] = SEND_T;

22

23 cpy[max(n)] = 0;

24 cpy[inbox(n)] = 0;

25 cpy[state(n)] = 0;

26

27 succs++;

28 }

29 return succs;

30 }

The comments were also added to highlight the translation from the Taino model to C.
Like the label function, this function also ensures that all allocated memory is freed as soon
as it is no longer needed.

Taino does not yet support non-determinism in actions; but in order to support it, instead
of these three vectors, the function should receive three vectors of vectors (for each resulting
state) and return the number of successor states (succ) – which is incremented as each new
successor state is constructed. Here, because we do not have non-determinism, the succ

variable is incremented just once.
You can see the powerful application of the indexation scheme we have been describing, it

not only makes the translation easier, it also ensures the resulting C code is human readable.
With these functions, the NextState function of LTSmin, simply checks for which action

is happening and calls the respective event function with its arguments.

5.2.4 Calculating dependency matrices

As we noted when we introduced LTSmin back in chapter 4, the dependencies are crucial to
calculate partial order reduction, so we must ensure that we can get all information needed
by a syntactic analysis.

It is very clear how to get the information needed to calculate read and write dependencies
with events. Each event is composed of various expressions. Thus, to calculate read
dependencies, one must only look for the elements of the state vector which are in the
expression, ignoring the ones with an apostrophe ’. Whilst for write dependencies we
simply look to the expressions with the apostrophe.

With is information, it is possible to generate a function that sets the read and write
dependency matrices, like the excerpt below:

5.3. The Taino project 59

1 int wm[LABEL_GOAL][STATE_LENGTH] = { 0 };

2 void set_write_matrix() {

3 wm[RECEIVEEQUAL_NODE1_INT1][ELECTED] = 1;

4 wm[RECEIVEEQUAL_NODE1_INT1][NODE1_INBOX] = 1;

5 wm[RECEIVEEQUAL_NODE1_INT1][NODE1_STATE] = 1;

6 wm[RECEIVEEQUAL_NODE1_INT2][ELECTED] = 1;

7 wm[RECEIVEEQUAL_NODE1_INT2][NODE1_INBOX] = 1;

8 wm[RECEIVEEQUAL_NODE1_INT2][NODE1_STATE] = 1;

9 ...

10 }

The calculation for accordance is significantly more complex. Recall the definition of
accordance (Definition 1), where for two transitions t and t′ to accord one of the following
criteria must be met:

1. Their shared variables are disjoint from the write sets;
2. t and t′ are never co-enabled;
3. t and t′ do not disable each other and their actions commute.

At first, we tried calculating if two events do not accord by just looking at their shared
variables (criteria 1). However, this definition was not accurate enough and, due to the
recursive nature of the stubborn set algorithm (Algorithm 2), would wrongly identify too
many according events as not according. This lead to no partial order reduction being
possible for a simple example like this ring leader election.

We later were able to introduce a very simple analysis to check if two events can be
co-enabled. We do this by solely looking at pre-conditions that check for two different values
in the slot vector. For instance, we can say that, send and receiveEqual are never co-enabled
for the same node as the pre-condition for send is n.state = send, whilst in receiveEqual

we have n.state = receive. This, admittedly naïve, analysis was sufficient to define a more
precise accordance between two events for this model.

As for the third criteria, we assumed that if two events did not share the same variables,
then they could never disable each other, although a method to assert if two events commute
is also essential, and requires deeper investigation.

5.3 the taino project

Taino is written in Haskell and it is responsible to translate the Taino modelling language
to LTSmin. This is achieved in three steps: first, the original Taino model is parsed into an
abstract syntax tree (AST); this AST is then converted into a more flexible data structure that
can be queried to write the three different files (spec.c, spec.h, and dlopen.c). This schema
is represented in Figure 8.

5.4. Results 60

Parser Evaluator spec.c

spec.h

dlopen.c

Taino
model

Figure 8: Representation of the Taino architecture

Time (seconds) Nr. of states
nr nodes w/o POR w/ POR w/o POR w/POR
4 0.01 0.01 160 133

5 0.03 0.05 441 325

6 0.09 0.14 1215 836

7 0.23 0.42 3132 1846

8 0.64 1.02 8045 4025

9 2.31 2.78 20783 9033

10 8.18 11.23 53536 20056

11 29.59 35.46 137777 44143

12 105.35 97.45 354675 96389

Table 3: Tests for property always at most one elected

The parser was implemented using megaparsec2, which takes de taino model and builds
an abstract syntaxt tree. Later, the evaluator splits the abstract syntax tree in the various
elements of the model: signatures, enums, events, init, predicates, et cetera. This in turn
makes it easier to generate the three files needed. Lastly, we have three models each
responsible to generate each file (spec.c, spec.h, and dlopen.c).

5.4 results

We tested our implementation by checking different properties and different models of
the ring leader election. We checked to see how much state reduction we could get out
of LTSmin guard-based algorithm, and to see how that reduction would translate into a
hopefully shorter time to check the properties.

We have run tests on three properties:

1. Always at most one elected;
2. Eventually always one elected;
3. As soon as everyone agrees on the leader, all mailboxes should be empty.

2 https://hackage.haskell.org/package/megaparsec

5.4. Results 61

Time (seconds) Nr. of states
nr nodes w/o POR w/ POR w/o POR w/POR
4 0.01 0.02 263 209

5 0.03 0.05 737 505

6 0.11 0.16 2005 1181

7 0.37 0.49 5359 2709

8 1.25 1.49 14169 6129

9 4.69 5.86 37213 13713

10 23.03 17.07 97349 30389

11 85.76 77.6 254049 66781

12 275.11 225.04 662245 145673

Table 4: Tests for property eventually always one elected

The first two properties should be true, LTSmin will not be able to find a counter-example
and will have to search the entire state space. The third property will not be true in our
model, and LTSmin should find a counter-example relatively easily; we do not expect partial
order reduction to be much of an improvement.

Table 3 shows the results for the first property. Even though partial order reduction was
able to drastically reduce the number of states, the necessary overhead of calculations for
such reduction did not compensate. On Table 3 only with twelve nodes did the reduced
state space begun to compensate for the overhead of calculations.

For the second property, which results can be found in Table 4. Again, only with ten
nodes does partial order reduction begin to have a positive impact.

Finally, because LTSmin is able to immediately find a counter-example for property 3, the
partial order reduction overhead is simply counter-productive. Table 5 shows how much
impact the partial order reduction overhead has.

Time (seconds)
nr nodes w/o POR w/ POR
4 0 0.01

5 0 0.02

6 0.01 0.04

7 0.01 0.06

8 0.01 0.11

9 0.02 0.18

10 0.02 0.27

11 0.03 0.4
12 0.05 0.58

Table 5: Tests for the emptiness of the mailboxes when everyone agrees on the leader

5.4. Results 62

These results show that great reductions in the state-space do not translate directly into a
better performance. This is specially true in smaller examples with a small scope where the
effects of state-explosion are not very perceptible.

6

C O N C L U S I O N

With the work done and the results gathered, it is now time to look back on the progress we
have made and reflect on its significance.

Throughout this chapter we will take some conclusions on the outcome of the whole
investigation and reason about the results we have got. We must also look forward and
envision what comes next, what work is there still to do and what can grow out of all of this
research.

6.1 conclusions

Throughout the course of this investigation, we have learned about the various partial
order reduction algorithms and their accompanying model checkers. We have studied both
dynamic and static partial order reduction algorithms and found their limitations, and we
have learned about a novel guard-based partial order reduction which does not need the
notion of process and their program counters.

We have successfully implemented an Electrum-like language front-end for LTSmin, and
we have described syntactic analysis to calculate dependencies on a language of this type.
We have also shown how a relational model can be expressed in a single state vector, as well
as the changes to the syntax of Electrum that need to be made in order to consider having
partial order reduction, namely events need to be specified explicitly.

However, we have observed that partial order reduction is only effective for state spaces
with a large amount of values, and that only with a very detailed analysis can the reduction
be possible. Further, we now understand that the overhead of calculations needed for partial
order reduction is much grater that what we have anticipated.

6.2 prospect for future work

Although we have concluded that partial order reduction does not bring a lot of gains for a
small number of variables in the model, this work still opens a lot of doors for the future,

63

6.2. Prospect for future work 64

as we are not taking full advantage of the algorithm and there are very large models for
Electrum where partial order reduction would be helpful. And the gains from the manual
model presented back on section 4.4, shows that it is possible to mitigate the overhead
produced by the state-space reduction.

There are two main approaches to achieve better usage of partial order reduction and
to reduce its necessary overhead of calculations. The first is to develop a more advanced
technique to calculate the do-not-accord relation, and the second is to reduce the size of the
necessary enabling sets.

As for a more advanced technique to calculate the do-not-accord relation, we suggest
that a finner syntactic analysis should be studied. Such analysis must be able to look at
pre-conditions with different cardinalities of the same set and opposing comparisons, to
determine if two events may be co-enabled; as well as distinguish commutative actions, for
example adding a value to a set.

As to reduce the size of necessary enabling sets, first we should aim to reduce the number
of overall transitions. In our case study, the ring leader election, a some keyword would
be helpful since it would remove an event argument and drastically reduce the number of
transitions in the system. However that would bring non-determinism to model, the effects
of which still need to be studied. Secondly, we propose to attribute multiple guards for each
event instead of a single guard.

B I B L I O G R A P H Y

R. Alur, R. K. Brayton, T. A. Henzinger, S. Qadeer, and S. K. Rajamani. Partial-order
reduction in symbolic state space exploration. In Orna Grumberg, editor, Computer Aided
Verification, pages 340–351, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg. ISBN
978-3-540-69195-2.

Stavros Aronis, Bengt Jonsson, Magnus Lång, and Konstantinos Sagonas. Optimal dynamic
partial order reduction with observers. In Dirk Beyer and Marieke Huisman, editors, Tools
and Algorithms for the Construction and Analysis of Systems, pages 229–248, Cham, 2018.
Springer International Publishing. ISBN 978-3-319-89963-3.

Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The MIT Press, 2007.
ISBN 0-201-85469-4.

Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Symbolic model
checking without bdds. In W. Rance Cleaveland, editor, Tools and Algorithms for the
Construction and Analysis of Systems, pages 193–207, Berlin, Heidelberg, 1999. Springer
Berlin Heidelberg. ISBN 978-3-540-49059-3.

Julien Brunel, David Chemouil, Alcino Cunha, Thomas Hujsa, Nuno Macedo, and Jeanne
Tawa. Proposition of an action layer for electrum. In Michael Butler, Alexander Raschke,
Thai Son Hoang, and Klaus Reichl, editors, Abstract State Machines, Alloy, B, TLA, VDM, and
Z, pages 397–402, Cham, 2018. Springer International Publishing. ISBN 978-3-319-91271-4.

J. Richard Büchi. On a Decision Method in Restricted Second Order Arithmetic, pages 425–
435. Springer New York, New York, NY, 1990. ISBN 978-1-4613-8928-6. doi: 10.1007/
978-1-4613-8928-6_23. URL https://doi.org/10.1007/978-1-4613-8928-6_23.

E. Clarke, O. Grumberg, and K. Hamaguchi. Another look at ltl model checking. In David L.
Dill, editor, Computer Aided Verification, pages 415–427, Berlin, Heidelberg, 1994. Springer
Berlin Heidelberg. ISBN 978-3-540-48469-1.

E Emerson and Edmund M. Clarke. Using branching time temporal logic to synthesize
synchronization skeletons. Science of Computer Programming, 2:241–266, 12 1982. doi:
10.1016/0167-6423(83)90017-5.

Cormac Flanagan and Patrice Godefroid. Dynamic partial-order reduction for model
checking software. SIGPLAN Not., 40(1):110–121, January 2005. ISSN 0362-1340. doi:
10.1145/1047659.1040315. URL http://doi.acm.org/10.1145/1047659.1040315.

65

https://doi.org/10.1007/978-1-4613-8928-6_23
http://doi.acm.org/10.1145/1047659.1040315

bibliography 66

Jaco Geldenhuys, Henri Hansen, and Antti Valmari. Exploring the scope for partial order
reduction. In Zhiming Liu and Anders P. Ravn, editors, Automated Technology for Verification
and Analysis, pages 39–53, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. ISBN
978-3-642-04761-9.

Gerard J. Holzmann. The model checker spin. IEEE Trans. Softw. Eng., 23(5):279–295, May
1997. ISSN 0098-5589. doi: 10.1109/32.588521. URL https://doi.org/10.1109/32.588521.

Daniel Jackson. Software Abstractions. The MIT Press, 2006. ISBN 0-262-10114-9.

Gijs Kant, Alfons Laarman, Jeroen Meijer, Jaco van de Pol, Stefan Blom, and Tom van Dijk.
Ltsmin: High-performance language-independent model checking. In Christel Baier and
Cesare Tinelli, editors, Tools and Algorithms for the Construction and Analysis of Systems, pages
692–707, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg. ISBN 978-3-662-46681-0.

Saul Kripke. Semantical considerations on modal logic. 1963.

Alfons Laarman, Elwin Pater, Jaco van de Pol, and Henri Hansen. Guard-based partial-order
reduction. International Journal on Software Tools for Technology Transfer, 18(4):427–448, Aug
2016. ISSN 1433-2787. doi: 10.1007/s10009-014-0363-9.

Leslie Lamport. Specifying Systems: The TLA+ Language and T ools for Hardw are and Soft w are
Engineer. Addison-Wesley, 2003. ISBN 0-321-14306-X.

Nuno Macedo, Julien Brunel, David Chemouil, Alcino Cunha, and Denis Kuperberg.
Lightweight specification and analysis of dynamic systems with rich configurations.
In 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering, pages
373–383, 2016.

Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Norwell, MA,
USA, 1993. ISBN 0792393805.

Chris Newcombe. Why amazon chose tla + . In Yamine Ait Ameur and Klaus-Dieter Schewe,
editors, Abstract State Machines, Alloy, B, TLA, VDM, and Z, pages 25–39, Berlin, Heidelberg,
2014. Springer Berlin Heidelberg. ISBN 978-3-662-43652-3.

Amir Pnueli. The temporal logic of programs. pages 46–57, 09 1977. doi: 10.1109/SFCS.1977.
32.

R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing, 1(2):
146–160, 1972. doi: 10.1137/0201010.

Andrew Thompson. Quickchecking poolboy for fun and profit,
2012. URL https://vagabond.github.io/programming/2012/01/21/

quickchecking-poolboy-for-fun-and-profit.

https://doi.org/10.1109/32.588521
https://vagabond.github.io/programming/2012/01/21/quickchecking-poolboy-for-fun-and-profit
https://vagabond.github.io/programming/2012/01/21/quickchecking-poolboy-for-fun-and-profit

bibliography 67

Antti Valmari. Stubborn sets for reduced state space generation. In Grzegorz Rozenberg,
editor, Advances in Petri Nets 1990, pages 491–515, Berlin, Heidelberg, 1991. Springer Berlin
Heidelberg. ISBN 978-3-540-46369-6.

Moshe Vardi and Pierre Wolper. An automata-theoretic approach to automatic program
verification (preliminary report). pages 332–344, 01 1986.

A
P O O L B O Y S P E C I F I C AT I O N

1 open util/integer

2 open util/boolean

3

4 one var abstract sig Event {}

5 abstract sig Actor {}

6 abstract sig Message {}

7

8 one sig MaxOverflow in Int {}

9

10 var sig alive in Actor {}

11 var sig blocked in alive {}

12

13 sig Worker extends Actor {}

14

15 sig Client extends Actor {

16 var workers : set Worker

17 }

18

19 one sig Poolboy {

20 var free : set Actor, -- Every free actor poolboy has

21 var overflow : one Int, -- The number of overflow workers poolboy gave

22 var waiting : set Client, -- Clients waiting for workers

23 var mailbox : set Message, -- Mailbox common to every actor ****

24 size : one Int -- The initial size of free

25 }

26

27 fun unused_workers : set Worker {

28 Worker - (Client.workers + Poolboy.free + alive) - (Poolboy.mailbox & Exit).a

29 }

30

31 ------------------ MESSAGES -----------------------

32

33 sig Checkout extends Message {

34 c : Client, -- Client issuing the checkout

35 b : Bool -- Blocking or non blocking

68

69

36 }

37

38 sig Checkin extends Message {

39 c : Client, -- Client issuing the checkin

40 a : Actor -- Checkin actor

41 }

42

43 sig Exit extends Message {

44 a : Actor -- The actor exiting

45 }

46

47 sig Timeout extends Message {

48 c : Client

49 }

50

51 pred sendMessage[m : Message] {

52 m not in Poolboy.mailbox

53 mailbox’ = mailbox + Poolboy->m

54 }

55

56 pred readMessage[m : Message] {

57 m in Poolboy.mailbox

58 mailbox’ = mailbox - Poolboy->m

59 }

60

61 -------------------- EVENTS --

62

63 var sig ClientSendCheckout extends Event {

64 var cli : Client,

65 var blk : Bool

66 } {

67 cli in (Client & alive) - blocked

68

69 some msg : Checkout {

70 msg.c = cli

71 msg.b = blk

72 sendMessage[msg]

73 }

74

75 blocked’ = blocked + cli

76 }

77

78 var sig ClientSendCheckin extends Event {

79 var cli : Client,

80 var act : Actor

81 } {

82 cli in (Client & alive) - blocked

70

83 act in cli.workers

84

85 some msg : Checkin {

86 msg.c = cli

87 msg.a = act

88 sendMessage[msg]

89 }

90 workers’ = workers - cli->act

91 }

92

93 var sig ClientSendTimeout extends Event {

94 var cli : Client

95 } {

96 cli in blocked

97

98 some msg : Timeout {

99 msg.c = cli

100 sendMessage[msg]

101 }

102

103 blocked’ = blocked - cli

104 }

105

106 var sig ActorExit extends Event {

107 var act : Actor

108 } {

109 act in Worker -- non byzantine

110 act in alive

111

112 some msg : Exit {

113 msg.a = act

114 sendMessage[msg]

115 }

116

117 alive’ = alive - act

118 blocked’ = blocked - act

119 workers’ = workers - Client->act

120 }

121

122 var sig PbCheckoutReady extends Event {} {

123 some free

124

125 some msg : Checkout {

126 readMessage[msg]

127

128 some w : Poolboy.free {

129 w in alive

71

130 free’ = free - Poolboy->w

131 workers’ = workers + msg.c->w

132 }

133

134 blocked’ = blocked - msg.c

135 }

136 }

137

138 var sig PbCheckoutOverflow extends Event {} {

139 no free

140 lt[Poolboy.overflow, MaxOverflow]

141

142 some msg : Checkout {

143 readMessage[msg]

144

145 some w : unused_workers {

146 alive’ = alive + w

147 workers’ = workers + msg.c->w

148 }

149

150 blocked’ = blocked - msg.c

151 }

152 Poolboy.overflow’ = add[Poolboy.overflow, 1]

153 }

154

155 var sig PbCheckoutFull extends Event {} {

156 no free

157 (lte[MaxOverflow, 0] or gte[Poolboy.overflow, MaxOverflow])

158

159 some msg : Checkout {

160 readMessage[msg]

161 isTrue[msg.b] implies Poolboy.waiting’ = Poolboy.waiting + msg.c

162 else (waiting’ = waiting and blocked’ = blocked - msg.c)

163 }

164 }

165

166 var sig PbTimeout extends Event {} {

167 some msg : Timeout {

168 readMessage[msg]

169 Poolboy.waiting’ = Poolboy.waiting - msg.c

170 }

171 }

172

173 var sig PbCheckinWaiting extends Event {} {

174 some msg : Checkin, cli : Poolboy.waiting {

175 readMessage[msg]

176

72

177 Poolboy.waiting’ = Poolboy.waiting - cli

178 workers’ = workers + cli->msg.a

179 blocked’ = blocked - cli

180 }

181 }

182

183 var sig PbCheckinOverflow extends Event {} {

184 no waiting

185 gt[Poolboy.overflow, 0]

186

187 some msg : Checkin {

188 readMessage[msg]

189 alive’ = alive - msg.a

190 }

191 Poolboy.overflow’ = sub[Poolboy.overflow, 1]

192 }

193

194 var sig PbCheckinReady extends Event {} {

195 no waiting

196 Poolboy.overflow = 0

197

198 some msg : Checkin {

199 readMessage[msg]

200 Poolboy.free’ = Poolboy.free + msg.a

201 }

202 }

203

204 var sig PbExitWaiting extends Event {} {

205 some msg : Exit, cli : Poolboy.waiting {

206 readMessage[msg]

207

208 some w : unused_workers {

209 alive’ = alive + w

210 workers’ = workers + cli->w

211 }

212

213 Poolboy.waiting’ = Poolboy.waiting - cli

214 blocked’ = blocked - cli

215 }

216 }

217

218 var sig PbExitOverflow extends Event {} {

219 no waiting

220 gt[Poolboy.overflow, 0]

221

222 some msg : Exit {

223 readMessage[msg]

73

224 Poolboy.free’ = Poolboy.free - msg.a

225 }

226

227 Poolboy.overflow’ = sub[Poolboy.overflow, 1]

228 }

229

230 var sig PbExitReady extends Event {} {

231 no waiting

232 Poolboy.overflow = 0

233

234 some msg : Exit, w : unused_workers {

235 readMessage[msg]

236 Poolboy.free’ = Poolboy.free - msg.a + w

237 alive’ = alive + w

238 }

239 }

240

241 ---------------- UPDATE FACTS --

242

243 fact updated {

244 always (blocked’ != blocked

245 implies some ClientSendCheckout + ClientSendTimeout + ActorExit +

246 PbCheckoutReady + PbCheckoutOverflow + PbCheckinWaiting + PbExitWaiting)

247

248 always (workers’ != workers

249 implies some ClientSendCheckin + ActorExit + PbCheckoutReady +

250 PbCheckoutOverflow + PbCheckinWaiting + PbExitWaiting)

251

252 always (alive’ != alive

253 implies some ActorExit + PbCheckoutOverflow + PbCheckinOverflow +

254 PbExitWaiting + PbExitReady)

255

256 always (free’ != free

257 implies some PbCheckoutReady + PbCheckinReady + PbExitOverflow + PbExitReady)

258

259 always (overflow’ != overflow

260 implies some PbCheckoutOverflow + PbCheckinOverflow + PbExitOverflow)

261

262 always (waiting’ != waiting

263 implies some PbCheckoutFull + PbTimeout + PbCheckinWaiting + PbExitWaiting)

264

265 always (mailbox’ != mailbox

266 implies some ClientSendCheckout + ClientSendCheckin + ClientSendTimeout + ActorExit +

267 PbCheckoutReady + PbCheckoutOverflow + PbCheckoutFull + PbTimeout + PbCheckinWaiting +

268 PbCheckinOverflow + PbCheckinReady + PbExitWaiting + PbExitOverflow + PbExitReady)

269 }

270

74

271 ---------------- FACTS --

272

273 fact init {

274 Poolboy.overflow = 0

275 gte[MaxOverflow, 0]

276 Poolboy.free = alive & Worker

277 Poolboy.size = #Poolboy.free

278 no waiting

279 no workers

280 no blocked

281 no mailbox

282 }

283

284 --

285

286 fact ensure_justice {

287 always (all m : Message {

288 sendMessage[m] implies (eventually readMessage[m])

289 })

290

291 always (all c : Client {

292 c in Poolboy.waiting implies (eventually c not in Poolboy.waiting)

293 })

294 --eventually always no waiting

295 }

296

297 pred workers_available {

298 some Poolboy.free or

299 lt[Poolboy.overflow, MaxOverflow]

300 }

301

302 pred receive_worker[c : Client] {

303 #c.workers’ = add[#c.workers, 1]

304 }

305

306 assert maximum_workers {

307 always lte[#total_workers, add[Poolboy.size, MaxOverflow]]

308 }

309 check maximum_workers for 6

310

311 assert client_gets_worker {

312 all c1 : Client {

313 always (

314 (c1 in (ClientSendCheckout.cli - Timeout.c) and lt[Poolboy.overflow, MaxOverflow])

315 implies (eventually receive_worker[c1]))

316 }

317 } check client_gets_worker

75

318

319 assert timeout_is_safe {

320 always (

321 all c1 : Client {

322 receive_worker[c1] implies c1 in blocked

323 }

324)

325 } check timeout_is_safe

326

327 fun total_workers : set Worker {

328 Poolboy.free + Client.workers

329 }

330

331

332 run eventually_receive {

333 some c : Client | eventually receive_worker[c]

334 } for 4 but 14 Event

335

336 run specific_trace{

337 some ClientSendCheckout ;

338 some PbCheckoutReady ;

339 some ClientSendCheckin

340 } for 4 but 3 Event

341

342 run {

343 eventually some PbExitWaiting

344 } for 4 but 14 Event

B
LT S M I N M O D E L

b.1 specification file header (spec .h)

1 #ifndef RING_H

2 #define RING_H

3

4 #include "sSet.h"

5 #include <ltsmin/pins.h>

6

7 #define N 6

8 #define NR_VARS 4

9 #define NR_ACTIONS 4

10

11 #define INBOX(proc) ((proc - 1) * NR_VARS)

12 #define MAX(proc) ((proc - 1) * NR_VARS + 1)

13 #define KNOW_LEADER(proc) ((proc - 1) * NR_VARS + 2)

14 #define STATE(proc) ((proc - 1) * NR_VARS + 3)

15

16 #define NEXT(proc) ((proc % N) + 1)

17 #define PREV(proc) (((proc + (N-2)) % N) + 1)

18

19 // transition labels

20 #define SEND(i) ((i-1) * NR_ACTIONS)

21 #define RECV_SMALL(i) ((i-1) * NR_ACTIONS + 1)

22 #define RECV_EQ(i) ((i-1) * NR_ACTIONS + 2)

23 #define RECV_GRT(i) ((i-1) * NR_ACTIONS + 3)

24

25 // label values

26 #define LABEL_GOAL (NR_ACTIONS * N)

27

28 /**

29 * @brief calls callback for every successor state of src in transition group "group".

30 */

31 int next_state(void* model, int group, int *src, TransitionCB callback, void *arg);

32

33 /**

76

B.1. Specification file header (spec.h) 77

34 * @brief returns the initial state.

35 */

36 int* initial_state(void* model);

37

38 /**

39 * @brief returns the read dependency matrix.

40 */

41 void set_read_matrix();

42 int* read_matrix(int row);

43

44 /**

45 * @brief returns the write dependency matrix.

46 */

47 void set_write_matrix();

48 int* write_matrix(int row);

49

50 /**

51 * @brief returns the state label dependency matrix.

52 */

53 void set_label_matrix();

54 int* label_matrix(int row);

55

56 /**

57 * @brief returns the guard dependency matrix.

58 */

59 void set_dna_matrix();

60 int* guard_matrix(int row);

61

62 /**

63 * @brief returns the do not accord matrix.

64 */

65 int* do_not_accord_matrix(int row);

66

67 /**

68 * @brief returns whether the state src satisfies state label "label".

69 */

70 int state_label(void* model, int label, int* src);

71

72 /**

73 * @brief returns the number of transition groups.

74 */

75 int group_count();

76

77 /**

78 * @brief returns the length of the state.

79 */

80 int state_length();

B.2. Specification file (spec.c) 78

81

82 /**

83 * @brief returns the number of state labels.

84 */

85 int label_count();

86

87 /**

88 * @brief returns the number of guards.

89 */

90 int guard_count();

91 int* label_indices();

92

93 void get_guard_all(void* model, int* src, int g, int* labels);

94 SSET initial_inbox(int proc);

95 #endif

b.2 specification file (spec .c)

1 #include "spec.h"

2

3 #include <ltsmin/pins-util.h>

4

5 /******************************

6 * RING ELECTION

7 * This is a model for a ring

8 * election for N nodes

9 ******************************/

10

11 // state values

12 static const int STATE_SEND = 0;

13 static const int STATE_RECEIVE = 1;

14

15 int ring_send(void* m, int from, int to, int* src, int* dst, int* cpy);

16 int receive_equal(void* m, int proc, int* src, int* dst, int* cpy);

17 int receive_greater(void* model, int proc, int* src, int* dst, int* cpy);

18 int receive_smaller(void* model, int proc, int* src, int* dst, int* cpy);

19

20 int label_goal(int* src);

21 int label_send(int p, int* src);

22 int label_receive_smaller(void* m, int p, int* src);

23 int label_receive_equal(void* m, int p, int* src);

24 int label_receive_greater(void* m, int p, int* src);

25

26 SSET get_sset(void* model, int* src, int idx) {

27 lts_type_t lts_type = GBgetLTStype(model);

B.2. Specification file (spec.c) 79

28 int set_type = lts_type_get_state_typeno(lts_type, idx);

29 chunk chunk_inbox_from = pins_chunk_get (model, set_type, src[idx]);

30

31 SSET ret = sset_deserialize(chunk_inbox_from.data, chunk_inbox_from.len);

32 int test[1024], size = sset_to_list(ret, test, 1024);

33

34 return ret;

35 }

36

37 int set_sset(void* model, int idx, SSET set) {

38 char data[1024];

39 lts_type_t lts_type = GBgetLTStype(model);

40 int set_type = lts_type_get_state_typeno(lts_type, idx);

41 int length = sset_serialize(set, data, 1024);

42

43 int id = pins_chunk_put(model, set_type, chunk_ld(length, data));

44

45 int test[1024], size = sset_to_list(set, test, 1024);

46

47 return id;

48 }

49

50 int group_count() {

51 return NR_ACTIONS * N;

52 }

53

54 int state_length() {

55 return NR_VARS * N;

56 }

57

58 int label_count() {

59 return NR_ACTIONS * N + 1;

60 }

61

62 int guard_count() {

63 return NR_ACTIONS * N;

64 }

65

66 int next_state(void* model, int group, int* src, TransitionCB callback, void* args) {

67 int i, succs = 0;

68 int dst[state_length()], cpy[state_length()];

69 int action[1];

70

71 memcpy(dst, src, state_length() * sizeof(int));

72 memset(cpy, 1, state_length() * sizeof(int));

73

74 transition_info_t transition_info = { action, group };

B.2. Specification file (spec.c) 80

75

76 action[0] = group;

77

78 for(i = 1 ; i <= N && !succs; i++) {

79 if (group == SEND(i)) {

80 succs = ring_send(model, i, NEXT(i), src, dst, cpy);

81 } else if (group == RECV_SMALL(i)) {

82 succs = receive_smaller(model, i, src, dst, cpy);

83 } else if (group == RECV_EQ(i)) {

84 succs = receive_equal(model, i, src, dst, cpy);

85 } else if (group == RECV_GRT(i)) {

86 succs = receive_greater(model, i, src, dst, cpy);

87 }

88 }

89

90 if (succs) {

91 callback(args, &transition_info, dst, cpy);

92 }

93

94 return succs;

95 }

96

97 int initial[NR_VARS * N];

98 int* initial_state(void* model) {

99 for(int i = 1; i <= N ; i ++) {

100 //initial[INBOX(i)] = 0; // inbox proc_i

101 initial[INBOX(i)] = set_sset(model, INBOX(i), sset_init());

102 initial[MAX(i)] = i; // max proc_i

103 initial[KNOW_LEADER(i)] = 0; // know_leader proc_i

104 initial[STATE(i)] = STATE_SEND; // state proc_i

105 }

106

107 return initial;

108 }

109

110 SSET initial_inbox(int proc) {

111 return sset_init();

112 }

113

114 /* Read Matrix

115 * inbox max know state

116 * SEND 0 1 0 1

117 * RECV_SMALL 1 1 0 1

118 * RECV_EQ 1 1 0 1

119 * RECV_GREATER 1 1 0 1

120 */

121 int rm[NR_ACTIONS * N][NR_VARS * N] = { 0 };

B.2. Specification file (spec.c) 81

122 void set_read_matrix() {

123 for(int p = 1; p < N; p++) {

124 rm[SEND(p)][MAX(p)] = 1;

125 rm[SEND(p)][STATE(p)] = 1;

126

127 rm[RECV_SMALL(p)][INBOX(p)] = 1;

128 rm[RECV_SMALL(p)][MAX(p)] = 1;

129 rm[RECV_SMALL(p)][STATE(p)] = 1;

130

131 rm[RECV_EQ(p)][INBOX(p)] = 1;

132 rm[RECV_EQ(p)][MAX(p)] = 1;

133 rm[RECV_EQ(p)][STATE(p)] = 1;

134

135 rm[RECV_GRT(p)][INBOX(p)] = 1;

136 rm[RECV_GRT(p)][MAX(p)] = 1;

137 rm[RECV_GRT(p)][STATE(p)] = 1;

138 }

139 }

140

141 int* read_matrix(int i) {

142 return rm[i];

143 }

144

145 /* Write Matrix

146 * inbox max know state inbox_next

147 * SEND 0 0 0 1 1

148 * RECV_SMALL 1 0 0 0 0

149 * RECV_EQ 1 0 1 1 0

150 * RECV_GREATER 1 1 0 1 0

151 */

152 int wm[NR_ACTIONS * N][NR_VARS * N] = {0};

153 void set_write_matrix() {

154 for(int p = 1; p <= N; p++) {

155 wm[SEND(p)][STATE(p)] = 1;

156 wm[SEND(p)][INBOX(NEXT(p))] = 1;

157

158 wm[RECV_SMALL(p)][INBOX(p)] = 1;

159

160 wm[RECV_EQ(p)][INBOX(p)] = 1;

161 wm[RECV_EQ(p)][KNOW_LEADER(p)] = 1;

162 wm[RECV_EQ(p)][STATE(p)] = 1;

163

164 wm[RECV_GRT(p)][INBOX(p)] = 1;

165 wm[RECV_GRT(p)][MAX(p)] = 1;

166 wm[RECV_GRT(p)][STATE(p)] = 1;

167 }

168 }

B.2. Specification file (spec.c) 82

169

170 int* write_matrix(int row) {

171 return wm[row];

172 }

173

174 int lm[NR_ACTIONS * N + 1][NR_VARS * N] = {0};

175 void set_label_matrix(int row) {

176 for (int p = 1; p <= N; p++) {

177 lm[SEND(p)][STATE(p)] = 1;

178

179 lm[RECV_SMALL(p)][STATE(p)] = 1;

180 lm[RECV_SMALL(p)][INBOX(p)] = 1;

181 lm[RECV_SMALL(p)][MAX(p)] = 1;

182

183 lm[RECV_EQ(p)][STATE(p)] = 1;

184 lm[RECV_EQ(p)][INBOX(p)] = 1;

185 lm[RECV_EQ(p)][MAX(p)] = 1;

186

187 lm[RECV_GRT(p)][STATE(p)] = 1;

188 lm[RECV_GRT(p)][INBOX(p)] = 1;

189 lm[RECV_GRT(p)][MAX(p)] = 1;

190

191 lm[LABEL_GOAL][KNOW_LEADER(p)] = 1;

192 }

193 }

194

195 int* label_matrix(int row) {

196 return lm[row];

197 }

198

199 int gm[NR_ACTIONS * N][NR_ACTIONS * N + 1] = { 0 };

200 int* guard_matrix(int row) {

201 gm[row][row] = 1;

202

203 return gm[row];

204 }

205

206 int dnam[NR_ACTIONS * N][NR_ACTIONS * N] = { 0 };

207 void set_dna_matrix(int row) {

208 for(int p = 1; p <= N; p++) {

209 dnam[SEND(p)][RECV_SMALL(NEXT(p))] = 1;

210 dnam[SEND(p)][RECV_EQ(NEXT(p))] = 1;

211 dnam[SEND(p)][RECV_GRT(NEXT(p))] = 1;

212

213 dnam[RECV_SMALL(NEXT(p))][SEND(p)] = 1;

214 dnam[RECV_GRT(NEXT(p))][SEND(p)] = 1;

215 dnam[RECV_EQ(NEXT(p))][SEND(p)] = 1;

B.2. Specification file (spec.c) 83

216 }

217 }

218

219 int* do_not_accord_matrix(int row) {

220 return dnam[row];

221 }

222

223 int li[NR_ACTIONS * N + 1] = { 0 };

224 int* label_indices() {

225 for (int i = 0; i < NR_ACTIONS * N + 1; i++) {

226 li[i] = i;

227 }

228

229 return li;

230 }

231

232 void get_guard_all(void* model, int* src, int g, int* labels) {

233 for (int i = 0; i < NR_ACTIONS * N + g; i++) {

234 labels[i] = state_label(model, i, src);

235 }

236 }

237

238 int state_label(void* model, int label, int* src) {

239 if (label == LABEL_GOAL) {

240 return label_goal(src);

241 }

242

243 for (int p = 1; p <= N; p++) {

244 if (label == SEND(p)) {

245 return label_send(p, src);

246 } else if (label == RECV_SMALL(p)) {

247 return label_receive_smaller(model, p, src);

248 } else if (label == RECV_EQ(p)) {

249 return label_receive_equal(model, p, src);

250 } else if (label == RECV_GRT(p)) {

251 return label_receive_greater(model, p, src);

252 }

253 }

254

255 return 0;

256 }

257

258

259 int label_goal(int* src) {

260 int i;

261

262 for(i = 1; i <= N && src[KNOW_LEADER(i)]; i++);

B.2. Specification file (spec.c) 84

263

264 return i > N;

265 }

266

267 int label_send(int proc, int* src) {

268 return (src[STATE(proc)] == STATE_SEND);

269 }

270

271 int label_receive_smaller(void* m, int proc, int* src) {

272 int i, elems[100], max_proc = src[MAX(proc)];

273 SSET inbox_proc = get_sset(m, src, INBOX(proc));

274 int size = sset_to_list(inbox_proc, elems, 100);

275 for(i = 0; i < size && elems[i] >= max_proc; i++);

276

277 return (src[STATE(proc)] == STATE_RECEIVE &&

278 size > 0 && i < size);

279 }

280

281 int label_receive_equal(void* m, int proc, int* src) {

282 SSET inbox_proc = get_sset(m, src, INBOX(proc));

283 int max_proc = src[MAX(proc)];

284

285 return (src[STATE(proc)] == STATE_RECEIVE &&

286 sset_in(inbox_proc, max_proc));

287 }

288

289 int label_receive_greater(void* m, int proc, int* src) {

290 int i, elems[100], max_proc = src[MAX(proc)];

291 SSET inbox_proc = get_sset(m, src, INBOX(proc));

292 int size = sset_to_list(inbox_proc, elems, 100);

293 for(i = 0; i < size && elems[i] <= max_proc; i++);

294

295 return (src[STATE(proc)] == STATE_RECEIVE &&

296 size > 0 && i < size);

297 }

298

299 int ring_send(void* m, int from, int to, int* src, int* dst, int* cpy) {

300 int succs = 0;

301

302 if (label_send(from, src)) {//src[STATE(from)] == STATE_SEND) {

303 SSET inbox_to = get_sset(m, src, INBOX(to));

304

305 inbox_to = sset_add(inbox_to, src[MAX(from)]);

306

307 dst[INBOX(to)] = set_sset(m, INBOX(to), inbox_to);

308

309 dst[STATE(from)] = STATE_RECEIVE;

B.2. Specification file (spec.c) 85

310

311 cpy[INBOX(to)] = 0;

312 cpy[STATE(from)] = 0;

313

314 succs++;

315 }

316

317 return succs;

318 }

319

320 int receive_equal(void* m, int proc, int* src, int* dst, int* cpy) {

321 int succs = 0;

322

323 // MAX_i \in INBOX_i

324 SSET inbox_proc = get_sset(m, src, INBOX(proc));

325 int max_proc[1] = { src[MAX(proc)] };

326

327 // if (src[STATE(proc)] == STATE_RECEIVE && sset_in(inbox_proc, max_proc[0])) {

328 //if (src[STATE(proc)] == STATE_RECEIVE && src[INBOX(proc)] == src[MAX(proc)]) {

329 if (label_receive_equal(m, proc, src)) {

330 dst[KNOW_LEADER(proc)] = 1;

331 // inbox’ = inbox - { max }

332 sset_difference(&inbox_proc, sset_from_list(max_proc, 1));

333 dst[INBOX(proc)] = set_sset(m, INBOX(proc), inbox_proc);

334 dst[STATE(proc)] = STATE_SEND;//sset_cardinality(inbox_proc) == 0 ? STATE_SEND :

STATE_RECEIVE;

335

336 cpy[KNOW_LEADER(proc)] = 0;

337 cpy[INBOX(proc)] = 0;

338 cpy[STATE(proc)] = 0;

339

340 succs++;

341 }

342

343 return succs;

344 }

345

346 int receive_greater(void* m, int proc, int* src, int* dst, int* cpy) {

347 int succs = 0;

348

349 int i, elems[100], max_proc = src[MAX(proc)];

350 SSET inbox_proc = get_sset(m, src, INBOX(proc));

351 int size = sset_to_list(inbox_proc, elems, 100);

352 for(i = 0; i < size && elems[i] <= max_proc; i++);

353

354 //if (src[STATE(proc)] == STATE_RECEIVE && size > 0 && i < size) {

355 if(label_receive_greater(m, proc, src)) {

B.3. Dlopen implementation file (dlopen.c) 86

356 int new_max_proc[1] = { elems[i] };

357 dst[MAX(proc)] = new_max_proc[0];

358 sset_difference(&inbox_proc, sset_from_list(new_max_proc, 1));

359 dst[STATE(proc)] = STATE_SEND; //sset_cardinality(inbox_proc) == 0 ? STATE_SEND :

STATE_RECEIVE;

360 dst[INBOX(proc)] = set_sset(m, INBOX(proc), inbox_proc);

361

362 cpy[MAX(proc)] = 0;

363 cpy[INBOX(proc)] = 0;

364 cpy[STATE(proc)] = 0;

365

366 succs++;

367 }

368

369 return succs;

370 }

371

372 int receive_smaller(void* m, int proc, int* src, int* dst, int* cpy) {

373 int succs = 0;

374

375 int i, elems[100], max_proc = src[MAX(proc)];

376 SSET inbox_proc = get_sset(m, src, INBOX(proc));

377 int size = sset_to_list(inbox_proc, elems, 100);

378 for(i = 0; i < size && elems[i] >= max_proc; i++);

379

380 if (label_receive_smaller(m, proc, src)) {

381 //src[STATE(proc)] == STATE_RECEIVE && size > 0 && i < size) {

382 int e[1] = { elems[i] };

383 SSET rem = sset_from_list(e, 1);

384

385 sset_difference(&inbox_proc, rem);

386

387 dst[INBOX(proc)] = set_sset(m, INBOX(proc), inbox_proc);

388

389 cpy[INBOX(proc)] = 0;

390

391 succs++;

392 }

393

394 return succs;

395 }

b.3 dlopen implementation file (dlopen.c)

1 #include <ltsmin/pins.h>

B.3. Dlopen implementation file (dlopen.c) 87

2 #include <ltsmin/pins-util.h>

3 #include <ltsmin/dlopen-api.h>

4 #include <ltsmin/ltsmin-standard.h>

5 #include <ltsmin/lts-type.h>

6

7 #include <spec.h>

8 #include "sSet.h"

9

10 #define SIZE 128

11

12 // set the name of this PINS plugin

13 char pins_plugin_name[] = "ring";

14

15

16 static void sl_group (model_t model, sl_group_enum_t group, int *state, int *labels) {

17 switch (group) {

18 case GB_SL_ALL:

19 get_guard_all(model, state, 1, labels);

20 return;

21 case GB_SL_GUARDS:

22 get_guard_all(model, state, 0, labels);

23 return;

24 default:

25 return;

26 }

27 }

28

29 void pins_model_init(model_t m) {

30 char name[SIZE];

31

32 // create the LTS type LTSmin will generate

33 lts_type_t ltstype=lts_type_create();

34

35 // set the length of the state

36 lts_type_set_state_length(ltstype, state_length());

37

38 // add an "int" type for a state slot

39 int int_type = lts_type_put_type(ltstype, "int", LTStypeSInt32 , NULL);

40

41 // add an "action" type for edge labels

42 int action_type = lts_type_put_type(ltstype, "action", LTStypeEnum, NULL);

43

44 // add a "bool" type for state labels

45 int bool_type = lts_type_put_type (ltstype, "bool", LTStypeBool, NULL);

46

47 // add an "int" type for a state slot

48 int set_type = lts_type_put_type(ltstype, "set", LTStypeChunk, NULL);

B.3. Dlopen implementation file (dlopen.c) 88

49

50 // set state name & type

51 for (int i=1; i <= N; i++) {

52 sprintf(name, "inbox_%d", i);

53 lts_type_set_state_name(ltstype, INBOX(i), name);

54 lts_type_set_state_typeno(ltstype, INBOX(i), set_type);

55

56 sprintf(name, "max_%d", i);

57 lts_type_set_state_name(ltstype, MAX(i), name);

58 lts_type_set_state_typeno(ltstype, MAX(i), int_type);

59

60 sprintf(name, "know_leader_%d", i);

61 lts_type_set_state_name(ltstype, KNOW_LEADER(i), name);

62 lts_type_set_state_typeno(ltstype, KNOW_LEADER(i), int_type);

63

64 sprintf(name, "state_%d", i);

65 lts_type_set_state_name(ltstype, STATE(i), name);

66 lts_type_set_state_typeno(ltstype, STATE(i), int_type);

67 }

68

69 // edge label types

70 lts_type_set_edge_label_count(ltstype, 1);

71 lts_type_set_edge_label_name(ltstype, 0, "action");

72 lts_type_set_edge_label_type(ltstype, 0, "action");

73 lts_type_set_edge_label_typeno(ltstype, 0, action_type);

74

75 // state label types

76 lts_type_set_state_label_count (ltstype, label_count());

77

78 for (int i = 1; i <= N; i++) {

79 sprintf(name, "label_send_%d", i);

80 lts_type_set_state_label_name (ltstype, SEND(i), name);

81 lts_type_set_state_label_typeno (ltstype, SEND(i), bool_type);

82

83 sprintf(name, "label_receive_smaller_%d", i);

84 lts_type_set_state_label_name (ltstype, RECV_SMALL(i), name);

85 lts_type_set_state_label_typeno (ltstype, RECV_SMALL(i), bool_type);

86

87 sprintf(name, "label_receive_equal_%d", i);

88 lts_type_set_state_label_name (ltstype, RECV_EQ(i), name);

89 lts_type_set_state_label_typeno (ltstype, RECV_EQ(i), bool_type);

90

91 sprintf(name, "label_receive_greater_%d", i);

92 lts_type_set_state_label_name (ltstype, RECV_GRT(i), name);

93 lts_type_set_state_label_typeno (ltstype, RECV_GRT(i), bool_type);

94 }

95

B.3. Dlopen implementation file (dlopen.c) 89

96 lts_type_set_state_label_name (ltstype, LABEL_GOAL, "goal");

97 lts_type_set_state_label_typeno (ltstype, LABEL_GOAL, bool_type);

98

99 // done with ltstype

100 lts_type_validate(ltstype);

101

102 // make sure to set the lts-type before anything else in the GB

103 GBsetLTStype(m, ltstype);

104

105 // setting all values for all non direct types

106 for (int i = 1; i <= N; i++) {

107 sprintf(name, "send_%d", i);

108 pins_chunk_put(m, action_type, chunk_str(name));

109

110 sprintf(name, "receive_smaller_%d", i);

111 pins_chunk_put(m, action_type, chunk_str(name));

112

113 sprintf(name, "receive_equal_%d", i);

114 pins_chunk_put(m, action_type, chunk_str(name));

115

116 sprintf(name, "receive_greater_%d", i);

117 pins_chunk_put(m, action_type, chunk_str(name));

118 }

119

120 // set state variable values for initial state

121 printf("Loading initial state...\n");

122 int* initial = initial_state(m);

123 /*for(int i = 0; i < N; i++) {

124 char data[1024];

125 int length = sset_serialize(sset_init(), data, 1024);

126 initial[INBOX(i)] = pins_chunk_put(m, set_type, chunk_ld(length, data));

127 } */

128 GBsetInitialState(m, initial);

129

130 // set function pointer for the next-state function

131 GBsetNextStateLong(m, (next_method_grey_t) next_state);

132

133 // set function pointer for the label evaluation function

134 GBsetStateLabelLong(m, (get_label_method_t) state_label);

135

136 // create combined matrix

137 matrix_t *cm = malloc(sizeof(matrix_t));

138 dm_create(cm, group_count(), state_length());

139

140 // set the read dependency matrix

141 set_read_matrix();

142 matrix_t *rm = malloc(sizeof(matrix_t));

B.3. Dlopen implementation file (dlopen.c) 90

143 dm_create(rm, group_count(), state_length());

144 for (int i = 0; i < group_count(); i++) {

145 int* aux = read_matrix(i);

146 for (int j = 0; j < state_length(); j++) {

147 if (aux[j]) {

148 dm_set(cm, i, j);

149 dm_set(rm, i, j);

150 }

151 }

152 }

153 GBsetDMInfoRead(m, rm);

154

155 // set the write dependency matrix

156 set_write_matrix();

157 matrix_t *wm = malloc(sizeof(matrix_t));

158 dm_create(wm, group_count(), state_length());

159 for (int i = 0; i < group_count(); i++) {

160 int* aux = write_matrix(i);

161 for (int j = 0; j < state_length(); j++) {

162 if (aux[j]) {

163 dm_set(cm, i, j);

164 dm_set(wm, i, j);

165 }

166 }

167 }

168 GBsetDMInfoMustWrite(m, wm);

169

170 // set the combined matrix

171 GBsetDMInfo(m, cm);

172

173 // set the label dependency matrix

174 set_label_matrix();

175 matrix_t *lm = malloc(sizeof(matrix_t));

176 dm_create(lm, label_count(), state_length());

177 for (int i = 0; i < label_count(); i++) {

178 int* aux = label_matrix(i);

179 for (int j = 0; j < state_length(); j++) {

180 if (aux[j]) dm_set(lm, i, j);

181 }

182 }

183 GBsetStateLabelInfo(m, lm);

184

185 // set the do not accord dependency matrix

186 set_dna_matrix();

187 matrix_t *dnam = malloc(sizeof(matrix_t));

188 dm_create(dnam, group_count(), group_count());

189 for (int i = 0; i < group_count(); i++) {

B.3. Dlopen implementation file (dlopen.c) 91

190 int* aux = do_not_accord_matrix(i);

191 for (int j = 0; j < group_count(); j++) {

192 if (aux[j]) dm_set(dnam, i, j);

193 }

194 }

195 GBsetDoNotAccordInfo(m, dnam);

196

197

198 guard_t** guards = malloc(group_count() * sizeof(guard_t*));

199 for(int i = 0; i < group_count(); i++) {

200 guards[i] = malloc(sizeof(guard_t) + sizeof(int));

201 guards[i]->count = 1;

202 guards[i]->guard[0] = i;

203 }

204 GBsetGuardsInfo(m, guards);

205

206 // set group info

207 sl_group_t* group_all = malloc(sizeof(sl_group_t) + label_count() * sizeof(int));

208 group_all->count = label_count();

209 memcpy(group_all->sl_idx, label_indices(), group_all->count * sizeof(int));

210

211 sl_group_t* group_guards = malloc(sizeof(sl_group_t) + guard_count() * sizeof(int));

212 group_guards->count = guard_count();

213 memcpy(group_guards->sl_idx, label_indices(), group_guards->count * sizeof(int));

214

215 GBsetStateLabelGroupInfo(m, GB_SL_ALL, group_all);

216 GBsetStateLabelGroupInfo(m, GB_SL_GUARDS, group_guards);

217 GBsetStateLabelsGroup(m, sl_group);

218 }

C
TA I N O R I N G L E A D E R E L E C T I O N

1 enum State { Send, Receive }

2

3 var sig elected {}

4

5 sig Int {}

6

7 sig Node {

8 var max : one Int,

9 succ : one Node,

10 var inbox : set Int,

11 var state : one State

12 }

13

14 event send[n : Node] {

15 n.state = send

16

17 n.succ.inbox’ = n.succ.inbox + n.max

18 n.state’ = receive

19 }

20

21 event receiveSmall[n : Node, m : Int] {

22 n.state = Receive

23 m in n.inbox

24 lt[m, n.max]

25

26 n.inbox’ = n.inbox - m

27 }

28

29 event receiveGreater[n : Node, m : Int] {

30 n.state = Receive

31 m in n.inbox

32 gt[m, n.max]

33

34 n.max’ = m

35 n.inbox’ = n.inbox - m

92

93

36 n.state’ = Send

37 }

38

39 event receiveEqual[n : Node, m : Int] {

40 n.state = Receive

41 m in n.inbox

42 n.max = m

43

44 elected’ = elected + m

45 n.inbox’ = n.inbox - m

46 n.state’ = Send

47 }

48

49 init {

50 no elected

51 Node$1.max = 1

52 Node$1.succ = Node$2

53 no Node$1.inbox

54 Node$1.state = Send

55

56 Node$2.max = 2

57 Node$2.succ = Node$3

58 no Node$2.inbox

59 Node$2.state = Send

60

61 Node$3.max = 3

62 Node$3.succ = Node$4

63 no Node$3.inbox

64 Node$3.state = Send

65

66 Node$4.succ = Node$5

67 no Node$4.inbox

68 Node$4.state = Send

69 Node$4.max = 4

70

71 } for 4 Node, 4 Int

72

73 pred only_one_elected {

74 one elected

75 }

76

77 check {

78 eventually always only_one_elected

79 }

	1 Introduction
	2 Model Checking
	2.1 Modelling
	2.2 Specification
	2.2.1 CTL
	2.2.2 LTL

	2.3 Verification
	2.3.1 Model checking for CTL
	2.3.2 Automata-based model checking for LTL
	2.3.3 Bounded model checking for LTL

	2.4 Partial order reduction

	3 Electrum
	3.1 Language
	3.1.1 Showcase example - Poolboy
	3.1.2 Modeling the system
	3.1.3 Specifying the system

	3.2 Analyzing the model
	3.2.1 Validation
	3.2.2 Verification

	3.3 Backend overview

	4 LTSmin
	4.1 PINS architecture
	4.2 Specifying in PINS
	4.2.1 Showcase Ring leader election example
	4.2.2 Modelling ring leader election in C
	4.2.3 Analysing with LTSmin

	4.3 Guard-based partial order reduction
	4.3.1 A stubborn approach
	4.3.2 Calculating necessary enabling sets
	4.3.3 Defining the DNA matrix for ring leader election

	4.4 Results

	5 Taino: An Electrumesque front-end for LTSmin
	5.1 The language
	5.1.1 Modelling ring leader election

	5.2 Translating to LTSmin
	5.2.1 Defining the state
	5.2.2 Initial state
	5.2.3 Defining Next state
	5.2.4 Calculating dependency matrices

	5.3 The Taino project
	5.4 Results

	6 Conclusion
	6.1 Conclusions
	6.2 Prospect for future work

	A Poolboy specification
	B LTSmin model
	B.1 Specification file header (spec.h)
	B.2 Specification file (spec.c)
	B.3 Dlopen implementation file (dlopen.c)

	C Taino ring leader election

