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Abstract
Model-driven engineering (MDE) addresses central aspects of robotics software development. MDE could enable domain
experts to leverage the expressiveness of models, while implementation details on different hardware platforms would be
handled by automatic code generation. Today, despite strong MDE efforts in the robotics research community, most evidence
points to manual code development being the norm. A possible reason for MDE not being accepted by robot software
developers could be the wide range of applications and target platforms, which make all-encompassing MDE IDEs hard
to develop and maintain. Therefore, we chose to leverage a large corpus of open-source software widely adopted by the
robotics community to extract common structures and gain insight on how and where MDE can support the developers to
work more efficiently. We pursue modeling as a complement, rather than imposing MDE as separate solution. Our previous
work introduced metamodels to describe components, their interactions, and their resulting composition. In this paper, we
present two methods based on metamodels for automated generation of models from manually written artifacts: (1) through
static code analysis and (2) by monitoring the execution of a running system. For both methods, we present tools that leverage
the potentials of our contributions, with a special focus on their application at runtime to observe and diagnose a real system
during its execution. A comprehensive example is provided as a walk-through for robotics software practitioners.

Keywords ROS · Models · MDE · Robotics

1 Introduction

Robots are increasingly software-intensive systems. Many
innovations in the field are algorithmic in nature and thus
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typically implemented in software. Application domains
for robotic solutions are proliferating [32], making stock
hardware platforms repurposable by means of software. Fur-
thermore, the wider digitization trend affects manufacturing
through flagship initiatives such as Industry 4.0 and puts
an emphasis on robots and other mechatronic equipment
as actors in a software-centric scenario [6]. Hence, robotics
software engineering is a distinctly recognized field, with
dedicated publishing venues, technical committees [5], and
educational curricula [8]. In the years leading up to the estab-
lishment of the field, software engineering approaches with
proven track records in other domains have been applied
to robotics with various degrees of technical maturity and
uptake by practitioners. These include model-based tech-
niques, such as model-based software product lines (SPLs
applied to robotics software, e.g., [21,31]) and model-driven
engineering integrated development environments (MDE
IDEs, e.g., [45]). Meanwhile, more traditional approaches
broadly falling under the category of software frameworks
have also been proposed [19,30,39,44]. Among them, the
Robot Operating System (ROS [10]) gained widespread
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acceptance in research and service robotics, with increasing
signs of adoption in the industrial domain [47]. As devel-
opers of robot software using traditional frameworks for
production-grade use cases, and as researchers in model-
driven engineering approaches for robotics software, we
identified possible ways to bring some advantages of model-
based techniques into standard robotics software engineering
practice. A user study documented in [45] reveals that “using
an integrated IDE for development is not yet standard”
and “reuse is made on the level of libraries, but very few
component-based approaches are applied”. Our experience
while consulting on topics centered on robotics software
engineering for several organizations worldwide confirms
this finding. Aiming at completely replacing manual code
development with an all-encompassing MDE IDE has, from
our point of view, historically proved difficult to impossible,
given the large variety of application use cases and of target
platforms to support. We thus instead aim at enabling devel-
opers to use model-based techniques as a complement, while
leveraging large, preexisting codebases, such as the corpus
of open-source ROS hand-written components (more than
3000 [9]), as base for new systems. Given its open-source
nature and its federated development process, the sharing
culture within the ROS community encouraged modulariza-
tion of the software in order to facilitate the interoperability
with software artifacts developed by others. ROS is the de
facto standard in robotics research, with a big user base [29]
(pp. 5–6, 18–20, 24, -25). Even the International Federation
ofRobotics (IFR) in 2019 estimates its use to program service
robotics applications in 70% of the cases.

ROS spreads quickly exactly due to the ease of use and
minimal constraints, which means that it leaves ample room
for errors and ambiguities. Some of them can be easily
detected with a MDE approach, specifically: (1) many errors
(e.g., message type mismatches) which are not detected until
runtime; (2) proliferation of overlapping interfaces, whose
consolidation is not enforced by the ROS architecture despite
the many efforts within the community for their consolida-
tion. For the ROS concrete case, but also a characteristic of
large ecosystems, many developers are used to code manu-
ally, and therefore, much of the existing available code was
manually written. In order to address this community, we
focus our efforts, at a first instance, on automatically gener-
ating architectural models of the corresponding source code,
via static analysis. As a second strategy, also to improve the
understanding of large ROS systems, whose source code is
not necessarily always available, we complement this with a
runtime monitor, which automatically extracts the model of
the running system it is started with.

After an analysis of the results and the use of the approach
to analyze real use cases, we identified not only the short-
comings of our approach, but we also found an interesting
and promising new application domain: the diagnosis of

robotics systems at runtime. For this paper, in comparison
with our previous publication [33], we introduce, as novel
contribution, new features to mitigate partly or completely
the limitations found for both previous efforts, i.e., (1) the
techniques to extract models and (2) the metamodels defini-
tion, and also we show our first contributions to leverage our
efforts to monitor large ROS systems during their execution.

The paper is structured as follows: The next section will
cover related work, while the following one will summa-
rize previous metamodeling efforts directly applicable to the
contribution later presented. Section 4 presents the basis
of this paper: two approaches to automatically generate
architectural models from existing ROS software artifacts,
respectively, through static analysis of source code and run-
time system monitoring. Section 5 describes our publicly
available cloud infrastructure for extractingmodels frompro-
vided source code repositories, and a first database of models
which was built from open-source ROS components.

To complement the description of the approaches, in Sect.
6, we compare the pros and contras of both extraction meth-
ods and present one of the main novel contributions of this
paper, a tool to auto-combine the results obtained by both
methods. This tool is based on lessons learned since our first
experiments with model extractors [33]. Section 7 presents
our second main new contribution: An adaptation of our
metamodels to cover additional relevant runtime informa-
tion required for performance analysis at system level and
first experiments about how our models and infrastructure
can be used to diagnose the performance of a running system
during its execution.

Finally, Sect. 8 details, based on an use-case example,
how our tooling can be used to extract models with the two
approaches and evaluates and compares the results and their
potentials. Using the use case, it also shows how to ease
the replacement of sub-components by identifying common
interaction patterns. The Care-O-bot 4 [37], a service robot
now engineered and commercialized by the company Mojin
Robotics, serves as example. Its source code is publicly avail-
able and hence suitable for a walk-through style tutorial,
while at the same time being representative of the complex-
ity of ROS code in commercially deployed robots. Section 9
recapitulates our contributions and lays out some directions
for future work.

2 Related work

Firstly, we describe the workwhich we build upon, the Robot
Operating System (ROS) andHAROS, a framework for static
code analysis. Then, we evaluate the existing technologies
related to our research: (1) model-driven engineering solu-
tions to program robots and specially those which produce
ROS code and (2) efforts to monitor and diagnose ROS.

123



Bootstrapping MDE development from ROS manual code: Part 2—Model generation and leveraging…

2.1 ROS—the Robot Operating System

ROS [10,39] is the software framework whose concepts
we target with our effort, given its popularity and hence
the impact which we can achieve among practitioners. It
combines software written in common languages with lit-
tle architectural constraints and has a federated development
model, leveraging common tools to easily share such com-
ponents across organizations. This resulted in fast adoption
and a large software ecosystem.

To distill the basic constituent entities from the system,
we can resort to the commonly cited analogy of ROS being
a peer-to-peer network of processes exchanging and manip-
ulating data (the computation graph). This results in ROS
systems designed as a collection of small, mostly indepen-
dent programs called nodes that run all at the same time and
can communicatewith eachother. The communicationmech-
anisms are the topic and service patterns. Complementing
these, a common ROS library offers an extra pattern, called
action, that simulates a simple state-machine structure.

The agents of this communication are messages and
services, which consist of language-independent data struc-
tures composed of primitive data types (String, Double, Int,
Boolean…). Last, collections of nodes can be started through
launch files, which can also be used to set parameters.

In 2007, the first distribution of ROS was released, and in
general, the robotics community changed significantly since
then. In 2016, the ROS 2 project has been made public, with
the main goal of adapting ROS to new needs such as improv-
ing quality of ROS code and security of ROS systems.

2.2 HAROS—static code analyzer framework for ROS

HAROS1 is a plug-in-based framework whose primary focus
is static analysis of ROS software [42]. Its initial iteration
brought general-purpose quality metrics, and coding style
compliance checks into the ROS ecosystem. More recent
versions backed HAROS with an internal metamodel that
characterizes typical source code artifacts (e.g., packages
and different kinds of source files) and runtime entities in a
ROS system [40] (e.g., nodes and topics). Such ametamodel,
coupled with source code parsing tools, enables HAROS to
reconstruct models of a ROS system via static analysis. In
particular, HAROS can reverse-engineer the ROS computa-
tion graph by parsing C++ and Python code and ROS launch
files. Extracted models can then be graphically visualized,
subject to automated analyses, or exported as raw data for
other applications. In summary, HAROS aims to provide
support for the analysis and validation of the architectural
design of ROS applications, without requiring the execution
of said applications. However, static analysis haswell-known

1 https://github.com/git-afsantos/haros.

limitations, such as values that cannot be resolved statically.
HAROS developers report this in [40], as handled by explic-
itly marking extracted entities as conditional or unknown,
rather than raising errors, and by allowing users to aid the
system in resolving some of these entities. Thus, it enables
both a wider range of analyses and a partial specification
style, where the boundaries of analysis results can be pro-
gressively pushed. Metamodeling targeting ROS systems is
separately examined in the next section.

2.3 MDE efforts on the robotics domain

Robotics systems can be seen as consisting of independent
modules and the interfaces that allow their interaction. Based
on this idea, Brugali et al. published in 2009–2010 [22,
23] a broad study about the application of component-based
software engineering for robotics where the benefits of this
approach in terms of re-usability were clearly identified.

The V3CMM-3 View Component Meta-Model [18], a
platform independent modeling language, divides the devel-
opment of robotics application into different views that cover
the structural and the behavioral aspects of a component-
based modeling language.

The main goals of this approach are the re-usability of
models and facilitation ofmodel transformations; the authors
achieved them by the introduction of the standard Unified
Modelling Language (UML) as base language.

More recent efforts applying MDE to robotics are: Smart-
Soft [43], a service-oriented component-based approach
covering the entire robot development process from defining
“services” (datatypes and their communication properties)
and “components” (computation units that consume and
produce data through “services”) to designing full systems
that are composed of those “components”. The SmartSoft
tooling generates the component’s skeleton (a wrapper for
the user code), including its interfaces and patterns for
communication, based on service, component and system
models that can be graphically edited. The Papyrus DSML
RobotML [26], based on Component-Port-Connector (CPC)
metamodel architectures, introduces a solution to design,
simulate, and deploy robot applications.

The BRICS (Best Practices in Robotics) [24] compo-
nent model (BCM) combined the model-driven approach
with the separation of concerns paradigm and introduced the
“5Cs” (Computation, Communication, Coordination, Con-
figuration, andComposition) concept. TheBRICS Integrated
Development Environment (BRIDE [25]) bridged BCM and
ROS using model-to-text (M2T) transformations to gener-
ate ROS skeleton code to be filled by an application domain
expert. This achievedBRIDE’smain goal of “explicit separa-
tion of two phases of the development process, i.e., capability
building and the system development” [25], and showed how
to fit ROS in a model-based approach. However, it main-
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tained a traditional MDE top-down approach with (partial)
code generation from models, not allowing the import of
existing, manually developed ROS systems.BRIDE and sim-
ilar efforts generating ROS “boilerplate code” through a
dedicated backend leverage MDE to ease successive man-
ual development, but do not allow for a development style
intermixing manual development and, for example, model-
supported checking of component composition. Related to
the aim of easing the interoperability of ROS with other sys-
tems, a visual modelling language was created to transform
ROS-specific message definitions to Robot Device Interface
Specification (RDIS) and vice versa, by mapping the com-
munication mechanisms [36].

Estevez et al. [27,28] present a relevant example inline
with our research to explore the advantages thatmodel-driven
engineering provides for the development of applications for
the concrete case of robotic manipulators platforms. It pro-
vides a toolchain to go from Eclipse MDE models to ROS
code for manipulation tasks.

The ongoing RobMoSys project [7] extends on Smart-
Soft [43] and promises predictable composition of both
existing and new components through MDE.

2.4 Monitoring and diagnosing of ROS applications
at runtime

The ROS diagnostics system is mainly designed to collect
information from hardware drivers and robot hardware for
analysis, troubleshooting and logging. The entire toolchain
is composed of five components from interpreters of the
collected information to graphical diagnostics visualizers.
The architecture of this stack is quite simple; it collects
all the information published in a specific message type
called diagnostic_msgs/ DiagnosticStatus [3]. This informa-
tion object contains the name of the device, its status and a
short data message. The developer of a driver is responsi-
ble for adding the publisher with this diagnostic information
when implementing the driver. Some ROS applications use
this diagnostics tool not only for hardware components but
also for software components including evenmonitoring pro-
grams. (An example related to our target experiment is the
package cob_monitoring [2].) However, the main shortcom-
ing of all these existing solutions is that they are specific for
a concrete application and not very reusable.

The model-based diagnosis and repair [46] architecture
tries to improve upon the limitations of the ROS diagnos-
tics stack. It is an observer-based system that is meant to
supervise the system running under ROS. An observer is a
general software entity that monitors a particular aspect of
the system. There are different kinds of observers depending
on what aspect or property has to be supervised. The obser-
vations are processed by a diagnostics engine, and finally,
the result is published to the global topic /diagnosis. A rule

engine is used to trigger events after processing observa-
tions or diagnoses. Unfortunately, the source code has a
GPLv3 license, the repository link is broken and the project
is unmaintained, discouraging us to use it for our scenario.
Even other introspection tools [20] monitor the metadata of
the communication between nodes and its interfaces in terms
of utilized network bandwidth, message frequency, jitter and
even latency. Though this is an important feature, this tool
does not monitor the presence of required nodes or its inter-
faces in the running system. Another discouraging aspect of
the tool is that it defines a custom ROS message type as an
output of its diagnosis, which makes it difficult to plug-in
to existing software components. However, in terms of re-
usability and integration, an optimal monitoring tool should
be characterized by its flexibility by allowing interfacingwith
such external tools seamlessly.

3 Previous work: ROSmetamodeling

Our previous works aimed to build upon the related work in
order to:

– leverage the many existing ROS components and famil-
iarity with ROS conventions among robotics software
practitioners, rather than imposing, for example, a new
MDE IDE;

– leverage model-based techniques to improve the under-
standing of manually written code through automatically
extracted models, and enable automated correctness
checks before deployment;

– systematize the definition and adoption of best practices
by examination of such models, specifically with regard
to interaction patterns (topics, services, messages): this
activity currently depends largely on manual inspection
of wiki documentation, in turn to be manually main-
tained.

– get a better understanding of the system architecture and
facilitate its evaluation during the execution.

One of the main motivations of this work is to facilitate
the composition of large systems, a task that ROS integrators
perform on a regular basis because of the availability and re-
use of off-the-shelf components. The lack of tools to validate,
create deployment artifacts and test the composition at design
time (currently a tedious trial-and-error process during the
execution of the code) represents, from our point of view,
one of the biggest shortcomings of ROS.

The contributions of this paper leverage an existing fam-
ily of three metamodels which we developed in previous
work [34]. These metamodels split the description of a
robot system into: (1) the ROS metamodel (the mono-
lithic description of ROS programs), (2) the component
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interface metamodel (the extraction of the ROS-specific con-
cepts to a generic Component-based architecture) and (3)
the system metamodel (the composition of components and
their connections). This previous work includes also three
matching Xtext DSLs, which allow the user to check and
validate against properties and constraints. All of this work
is supported by an Eclipse tooling that allows the graphi-
cal definition and the validation of the models, referred to
hereafter as “ROS tooling”.

3.1 Metamodels

3.1.1 ROSmetamodel

The ecoreROSmetamodel describes the concepts of themain
three ROS dimensions:

– the filesystem (how code is organized and stored);
– the computation graph (howsystems are split in processes
and how these interact);

– the deployment mechanism (how entities are distributed,
named, and accessed at runtime).

By layering such a minimal model on manually devel-
oped ROS nodes and their disk location (the ROS package
container), we can model also the “simple plumbing” infras-
tructure, i.e., the interaction patterns, by describing the
communication interfaces. We can further extract artifact
names as basis for describing the deployment phase.

The ROS metamodel defines the communication inter-
faces by three aspects: (1) the type of communication
(one-to-one, many-to-many or state machine pattern), (2) the
direction of the information (input or output), and (3) by the
communication object (the data structure of the messages
being exchanged: message, service or action).

3.1.2 Component interface metamodel

With the component interface metamodel, we aim to achieve
two main goals: (1) to simplify the deployment process of
ROS systems by leveraging the concept of “composition of
sub-systems” and (2) to facilitate the creation of hybrid sys-
tems (in terms of interoperability with other frameworks,
ideally component-based).

Given these goals and inspired by the ObjectManagement
Group (OMG) specification Deployment and Configuration
of Component-based Distributed Applications [38], the pre-
vious ROS metamodel (Sect. 3.1.1) was transformed to this
generic “standard” concept. That is, according to the OMG,
“a named set of provided and required interfaces that charac-
terize the behavior of a component”. To give to the reader an
overview of our component interface metamodel and simpli-
fying its implementation, the component interface represents

all the ports (inputs and outputs) of a component or system
describing them as communication interfaces, whose basic
characteristics are the communication pattern (how commu-
nication is done) and the communication object (what data
is communicated). To preserve the nature of the original
ROS code, the component interface metamodel refers to the
ROS interfaces (i.e., topics, services, and action definitions
from the ROS specific model) and only adds the definition of
namespaces for the entire component and or for each inter-
face.

3.1.3 RosSystemmetamodel

The third metamodeling tool of this family makes use of
component interface models to compose ROS nodes, sub-
systems, and systems. Such composition is achieved in ROS
through the use of launch files, in which the integrator
defines the nodes to be started, the package containing each
of them, the arguments to be parsed and their grouping in
namespaces and/or machines within which the nodes will
be started. Another common use of launch files is to define
complex name assignments. This allows to transparently
remap resource lookups for name “A” with resource lookups
(of the same type) for name “B”. Furthermore, launch files
can be (and are commonly) recursively included from other
launch or XML files that configure the nodes by passing new
arguments. This system, which currently has to be written
manually, can only be validated at runtime. The RosSystem
metamodel was created to possibly validate at design time
the respective interconnections between nodes.

For its implementation, the OMG specification “Deploy-
ment and Configuration of Component-based Distributed
Applications” [38] was also taken into consideration. Such
specification defines a connection as “either a communica-
tion path among the ports of two or more subcomponents
allowing them to communicate with each other, or (it is) a
communication path between an assembly’s external ports
and an assembly’s subcomponents that delegates the exter-
nal port’s behavior to the subcomponent’s ports”. For the
ROS case, this resulted in a list ofTopicConnections, Service-
Connections and ActionConnections. We designed for ROS
systems ametamodel that apart of the definition of these con-
nections, with their deployed name and the reference to the
sender and receipt port, also includes the component inter-
face metamodel. Figure 1 shows the class diagram of the
RosSystem metamodel.

This simple definition fits perfectly to the ROS architec-
ture and its deployment mechanisms and is powerful enough
to allow the validation of the composability of nodes and the
identification of any disparity of a communication object,
i.e., the subscriber of a topic asking for a different message
type than the one being published. The identification of such
disparity results in an error emitted at design-time by our
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Fig. 1 Class diagram of the RosSystem metamodel

ROS tooling. Without the tooling, such type checks are only
performed at runtime. There is no native design-time sup-
port in ROS. Moreover, once the interconnection of different
ROS nodes is validated, the tooling generates automatically
the deployment artifacts code (i.e., the roslaunch file and
an installation script). This avoids the need to debug errors
at runtime that are often caused by simply typing mistakes
and ensures the successful connections between the defined
components.

3.2 ROS tooling

The ROS tooling is being developed, improved and tested
for real use cases by the German-funded research project
SeRoNet [14]. For this project, different institutions (from
research centers to robotics OEM companies) joined their
efforts to create a platform that unifies the development
of robotics software supporting different middlewares like
OPC-UA [16], ROS or SmartSoft. We constantly inte-
grate new applications, as a collection of plug-ins, into the
SeRoNet tooling. These applications build upon our set of
metamodels and the correspondingDSLs.These demonstrate
the benefits of the combination of ROS andMDE techniques
[35]. Among others benefits, we can mention:

– Diffuse ROS best practices. Promoting (with auto com-
plete functions) the use of common specification patterns
and the use of ROS naming conventions.

– Validation of system connections at design time. The
grammar of our DSL for the definition of systems incor-
porates rules (for disparity of communication objects or
agents) to evaluate the composition of systems.

– Auto-generation of valid code; from the definition of a
single node to the composition of subsystems

– Introspection at design-time to improve the understand-
ing of what will happen at runtime; graphical tools can
simulate the runtime performance of the system without
executing it.

– Interoperability with other frameworks; through model-
to-model techniques we demonstrate the auto-generation
of bridges from ROS to other frameworks.

4 Automatedmodel generation from ROS
software artifacts

4.1 Method 1: static code analysis

For the code analysis, we use the framework HAROS [41].
This powerful tool was designed with the main objective of
early detection of problems during the software development
phase, to give the user a diagnosis of the quality of the code.
Supporting an extensive list of options, HAROS can be con-
figured to check custom error types. For our concrete case,
the analysis of the ROS code, it integrates the Bonsai [15]
interface that extracts a simplified (but expressive enough for
our purpose) syntax tree of the programs.

For the purposes of this work, we created a plug-in that
builds a model (conforming with the ROS metamodel in
Sect. 3.1.1) out of the simplified syntax tree of the ROS C++
and Python code that the parsing and extraction functions of
HAROS yield. It extracts the name of the package that con-
tains the node, the name of the artifact that runs the node, the
name of the node itself, and the list of the communication
interfaces of the node (topics, services and actions) connect-
ing it to other nodes in the system, respectively, annotated
with message types. HAROS actually extracts a consider-
ably larger amount of information, which, however, is not
needed and thus not being processed by our plug-in.

The mentioned plug-in is publicly available2 and can be
used for the generation of two different types of models
(Sect. 3):

– ComponentmodelThismodel is generated froma single
ROS node, identified by a ROS package and the name of
the node with in the package

– RosSystem model This model describes a complete
(sub) system and all its constituents. It is generated from
a single ROS launch file and the packages and files ref-
erenced from that launch file.

In the first case, generating a model representing a single
ROS node, the scanner takes as input the name of a node and
the ROS package that contains the node. The automatically
generated result is a ROS model (Sect. 3.1.1) for a node in
Xtext grammar. By importing it into the ROS tooling, it can
be visualized and integrated with other nodes.

For the second case, generating a model representing a
full RosSystem that consists of multiple nodes, the extractor

2 https://github.com/ipa320/ros-model-cloud.
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Fig. 2 Architecture overview of the approach using HAROS to extract
the models. One parser analyzes a launch file to discover the system-
level structure, i.e., RosSystemmodel and component interface models.
A second parser extracts the ROS model from all discovered nodes

takes as input the name of a launch file that describes the
system and the name of the ROS package that includes the
launch file. The HAROS launch files parser can extract the
names of the packages used in the system and the names of
nodes that compose the full system. With the list of node
names and packages, we recursively call the extraction of
models of single nodes to obtain all the required models of
dependency packages. The parser also extracts the names-
pace where each node is started (instances of the source code
classes) within a system, which we need for the Compo-
nentInterfacemetamodel (Sect. 3.1.2). The generatedmodels
of individual nodes and the extracted connectivity informa-
tion are then combined into the full RosSystem model (Sect.
3.1.3). Figure 2 shows a schematic diagram of this approach.

Part of the technical contribution of this publication is the
improvement of HAROS for the support of ROS actions.

HAROS, being an analysis framework that heavily relies
on source code parsers and static analysis, comeswith its own
set of limitations. One of the most obvious limitations is lan-
guage support:HAROSonly supportsC++andPython,while
ROS is a multilingual framework with client libraries for
C++, Python, Lisp, Java, JavaScript, and more. Although a
significant limitation, HAROS is sufficient for our use cases,
considering that C++ and Python are the main client libraries
used in the community, representing 85% of the available
code base [9], while other bindings are more experimental.

Another significant limitation of HAROS is static analysis
itself. As stated in Rice’s theorem, any non-trivial semantic
property of a program is undecidable. In this context, this
may translate to ROS topic and service names that cannot
be fully resolved, for instance, when their values are com-
puted dynamically. This issue can be mitigated if developers
follow coding guidelines—making the source codemore pre-
dictable, easier to fit into a pattern. The ROS community has
proposed some code quality guidelines, but these are largely
ignored, resulting in a heterogeneous code base, despite some

recurring patterns (Sect. 2.2). With the advent of ROS 2—
which comes with its own set of guidelines and enforcing
tools out of the box [12]—we expect better overall perfor-
mance, precision and recall from model extraction based on
static analyses. At the time of writing, support for ROS2 is
still an ongoing effort for HAROS, which is able to han-
dle ROS2 workspaces but lacks parsing support for the new
client libraries.

4.2 Method 2: runtime systemsmonitoring

With static analysis being the most convenient approach to
extract models from source code, we also pursued the goal
of automated generation of models from ROS artifacts for
already deployed, running systems. The idea is to monitor a
runningROS systemand inspect the communication between
all its executing programs in order to extract the nodes, com-
ponents, and system models, to then import them into the
metamodels ecosystem of the ROS tooling. With this com-
plementary approach, we cover the following use cases:

– Non-open-source software (OSS) Although ROS code is
often OSS, the ROS framework is also used for com-
mercial applications where, due to business reasons or
licensing matters, the source code is not available and
the end user can only run the pre-compiled binary code.

– Unsupported ROS distributions The model extractor was
developed for the newest ROS distribution. However,
since the first ROS release (March 2010), the framework
evolved in different distributions (13 in total at the time
of this writing) with only the last 3 being maintained.

For this contribution, we use a simple introspection
method: we analyze all the running nodes and their calls
through the ROS master (i.e., the central broker for commu-
nications between nodes).

As explained in Sect. 3, the starting point of our architec-
ture is a definition of a node based on two criteria: (1) the
file system level and (2) the computational level. Unfortu-
nately, with the current implementation of the runtimemodel
extractor (using exclusively ROS framework sources) we
cannot obtain the first item, i.e., we are not able to extract the
information about how the software is saved, distributed, or
organized on the disk. A future improvement of this approach
combining the information we get from ROS (the current
monitor) with the one that a Linux tool to manage processes
provide (i.e., path to the executable file) could help to obtain
further information and complete the model.

In order to comply with the architecture and to allow
interoperability and full integration of models generated
automatically through the runtime inspection method, the
analysis at runtime generates in addition to the systemmodel
an artificial (fictitious) instance of the ROS model for each
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Fig. 3 Extracting models using the runtime model extractor. Only the
system and component interface model can be deduced using ROS’
introspection methods

node found by tracing the computation graph as available
from the ROS master node. This allows to generate the full
model as depicted in Fig. 2 although the runtime monitor can
only “see” the system level including node interconnectivity,
see Fig. 3. For the ROS model, a fictitious ROS package is
defined to hold all the nodes and their interface descriptions.
In this generated model, we see one of the limitations of this
approach: the runtime monitor cannot differentiate the infor-
mation of two of the ROS dimensions: the deployment and
thefilesystem level.More specifically, it cannot disambiguate
whether a node was launched on a specific namespace, or
whether the original source code already identified the inter-
faces within a particular namespace infrastructure.

All the code related to the runtime model extractor is pub-
licly available3 and documented.

This method is very useful to inspect and get an overview
of a system, but from the qualitative point of view, it is not the
most informative analysis method. First, because this moni-
tor can observe only a specific execution at a certain point in
time, therefore it does not capture, for example, a very com-
mon programming strategy in ROS, where a topic is being
subscribed to within the call of a service client. Also ana-
lyzing an already running system does not match one of
the main motivations of our work: The analysis of software
composition at design time performed to avoid errors and
thus problems at runtime. On the other hand, this method
opens a new door for the analysis and diagnostics of systems
at runtime based on modeling languages.

Later in this paper, in Sects. 6 and 7, we will show our
efforts made to mitigate the drawbacks of this approach and
to leverage its potential at runtime.

3 https://github.com/ipa-nhg/ros_graph_parser.

Additionally, to further expand on this method there are
other approaches under consideration, like creating a wrap-
per for the ROS master to capture all the traffic, or even to
intervene at the transport level, by running a monitor in par-
allel during execution and intercepting any call to the master.

5 Leveragingmodels in manual ROS code
development

With the tools for the auto-generation ofmodels implemented
and integrated successfully with the metamodels and ROS
tooling, our next step is to exploit these tools in two phases.
Firstly, by providing a cloud system for convenient and,
potentially, large-scale analysis of ROS code (given a quick
enough uptake from the ROS community), and secondly, by
collecting generated models in a database to allow for com-
parisons and, ultimately, systematization of the adoption of
common patterns and practices. Both tools use the static code
analysismethod, sincewith the runtime introspectionwe can-
not extract filesystem information (part of this information
is mixed with the one related to deployment on the result-
ing models), which makes it unfeasible to use this method to
detect common patterns of interaction.

5.1 Cloud tools for automatedmodel generation

We use the metamodels defined with a platform-independent
language and with accompanying tooling developed in Java
within an Eclipse environment. In addition, to generate the
models, a local installation of HAROS and its libraries and
ROS packages is required. Seeing this as a limitation and
entry barrier for some users, we decided to provide a cloud
solution. The system can be accessed through a web inter-
face to generate models from publicly available code (hosted
on Git version-control systems, the most commonly used
platform to share code for the ROS community). The web
interface runs a Docker container [4] with a pre-configured
image, that already contains all the required Linux libraries,
ROS packages and HAROS. This image also sets up and pre-
pares the workspace and the extractor script. We made also
public4 this docker image and the source code of the con-
figuration for the analysis. This Docker-based architecture
allows also the triggering of multiple jobs in parallel on sev-
eral Docker containers. This feature (supported by the web
interface) was a strong motivator for the cloud solution. By
allowing large-scale analysis of packages, this concept can
be used to extract common patterns over large codebases, to
then advise users about “de-facto” standards, and produce a
good base set of re-usable models for the ROS tooling.

4 https://github.com/ipa320/ros-model-cloud.
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5.2 Extracting best practices frommodels

The advantages of ROS in terms of fast-prototyping and
federated development (such as simple txt-based message
definition, robust, yet simple to use communication libraries,
no dependence on specific IDEs) were clearly the factors
promoting its wide expansion, but at the same time these
characteristics spurred its growth without a common defini-
tion of specifications and interfaces.

The increasing adoption of ROS in professional domains
highlights the need of conventions and best practices as state-
ments to assure, on the one hand, a minimum threshold of
software quality and, on the other hand, to allow the easy
integrability of the different modules and systems. However,
there exists no tool or even common documentation (beyond
what users spontaneously share over a wiki) collecting all
this knowledge in a formal format. Neither exists a quantita-
tive global study analyzing the use of the different patterns
to define a proper set of best practices. As can be expected,
within the community there are common working groups
(for applications like manipulation, task planning, naviga-
tion, etc.) where some common specifications are defined
like de-facto standards, but without a fixed common format
or specifications DSL. With the structures to formalize ROS
interfaces in place (Sect. 3.1.1), a tool for automatic large-
scale analysis available (Sect. 5.1) and awareness of the need
for common specifications, we put efforts toward an extra
technical contribution to analyze a diverse set of drivers for
different devices types to create a common set of specifica-
tions. This is performed in two separate steps:

1. Identification of commonly used communication objects
(the messages types of the communications between
nodes) and their provision as a basic dictionary. This dic-
tionary is publicly available5 and will be automatically
loaded to any new ROS project created within the ROS
tooling.

2. Identification of common patterns. In collaboration with
the EU H2020 project ScalABLE 4.0 [13], we created
a growing database of specifications (patterns for typi-
cally used robotics components, e.g., actuator controller,
sensors, I/O devices…) by analyzing systematically the
models of diverse drivers for types of devices.6 For this
concrete project’s use case, the component specifications
aim to help the configuration and use of a task orchestra-
tor.

To complement this set of models, we contributed a new
wizard to the ROS tooling to compare one by one the inter-
faces of two models (the target one and a standard one or a

5 https://github.com/ipa320/RosCommonObjects.
6 https://github.com/ScalABLE40/scalable_component_model.

custom specification). This feature returns as a result a list of
potential errors that may hinder the integration of the com-
ponent with other generic standardized modules, like:

– theuseof uncommonmessages (communicationobjects).
This issue produces amismatch between both sides of the
communication channel.

– the absence of a required interface. This issue prevents
the establishment of the communication.

The experiment section contains an example demonstra-
tion of this feature (Sect. 8.1.2)

6 Evaluation of the extracted information
and combination of bothmethods

The first part of the section evaluates the results obtained by
both methods and their reliability when they are applied to
real ROS robot systems; in other words, we aim to answer
the following research question:

RQ1 How complete is the information we can automat-
ically obtain (from code-to-model extraction methods) to
describe a large Robot Operating System application as a
set of modular and reusable components and the interaction
interfaces among them? Is there incorrect information?

For our approach, this question is directly related to the
following one: is the automatically extracted information
enough tomake a good use of ourMDEROSTooling?Which
provides us benefits like validation of the composition, auto-
generation of deployment artifacts or interoperability with
other frameworks.

Then, in the second part of this section, we introduce a
newcontribution.A feature that allows the combinationof the
outcomes obtained by both methods and, therefore, produces
as result a complete model, in terms of expressiveness and
amount of interfaces.

6.1 Comparison of static and runtimemodel
extraction

We assume that our metamodels, defined from the three ROS
pillars (i.e., (a) the filesystem, (b) the computation graph,
and (c) the deployment information) and successfully used
for the design and deployment of real systems are valid to
describe a robotic application and secondly that the goal of
the extractors is to instantiate them completely.

Both extractor methods are conceived with the same
purpose in mind: to auto-generate models. However, the con-
cepts employed are very different. The static analysis of code
allows early detection of errors, while the runtime model
extractor cannot prevent execution issues. It can, however,
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give the user a good understanding of the (current) behavior
of a system.

In [33], we analyzed themodels auto-generated using both
our methods (the static analysis of the code and the intro-
spection at runtime of the application) on real robot systems.
Considering the known limitations of both methods based on
their design, the comparison can be shortly summarized by:

– With static code analysis, we are able to get all the
information to completely instantiate all the fields of the
ROS models (Sect. 3.1.1), which are the basis of our
set of metamodels and, consequently, the basis of all the
applications of our models in terms of validation, com-
posability and interoperability. On the other hand, the
static analysis performs worse out on the rate of inter-
faces found (detecting 10 to 50% less interfaces than
the runtime monitor), mainly because of the dynamically
assigned values on the code.

– With runtime monitoring, we are not able to completely
instantiate the models (this method misses the filesystem
information), and its biggest disadvantage is that in case a
node failed and diedwewill not be able to detect it, which
makes the models obtained via this method potentially
unreliable. But, in comparison with the static analysis,
we get a very large amount of data (up to the 90% of the
interfaces running on the system).

The immediate conclusion of this analysis is that while
one fails on the data volume, the other fails in expressiveness.
Then, if we want to get the entire model as the most evident
improvement we can perform to combine both approaches.
Hereunder, we present a recent technical contribution that
analyses and merges the result of both methods to obtain a
more exhaustive model.

6.2 Solution: combination of the twomethods

Considering the pros and contras and identifying the com-
plementary advantages of each extraction method, we define
different strategies (supporting different use cases) to appro-
priately combine the result of both methods. With this
solution, we obtain a more precise model that the separate
ones or a “simple” merge of the results that will produce a
bunch of duplicated data. Before we identify the character-
istics and potential uses of each strategy, we have to remark
that, on the one hand, this feature will be used at design time
but using the results of a previous analysis of the execution
of a system. The runtime data can indifferently come from
the real target system, from its simulated version or even
from a run on a different machine of a set of the desired
components. On the other hand, this solution considers only
components, because it is the only reliable informationwe are
able to extract from the runtimemonitoring method. Also we

assume an iterative design and development process, where
we can subject early drafts of the to-be-developed system
to runtime monitoring and integrate obtained insights into
the further development process. This is a realistic scenario,
since the federated development process and sharing culture
in the ROS software ecosystem frequently have new devel-
opers build on preexisting (sub)systems.

We first define the distinct sets of component interface
models we can obtain by comparing the extraction results of
both extractors:

– Set A Components from static and not in runtime
analysis: these are the components foundduring the static
analysis but not present during the runtime extractions.
It could contain components that were not started on our
system or died before we recorded the data.

– Set B Components from runtime and not in static
analysis: these are component found running on the sys-
tem but not detected by the static analyzer, probably
because the source codewas not available for the analysis
or not supported by HAROS. This includes component
interfaces dynamically generated at runtime.

– Set Cnames Common components in both analyses:
these are common components found in both analyses.
Note that Cnames only hold component names, as there
are actually two sets CA and CB holding potentially
(but not necessarily) different models mA(c) ∈ CA and
mB(c) ∈ CB describing the same components c.

– Set D Common components, all interfaces from both
models: these are the same components as described by
C, but with a redefinition of their list of interfaces as the
sum of the interfaces from both analyses:D = {mA(c)⊕
mB(c) | c ∈ C}. Note that this set is already the result of
a first merging step common to both strategies.

The two merging strategies considered are: Strategy A:
Inclusive merge. This computes the union set of the three
sets A B and D above. This is the less restrictive one and
it is optimal for an exhaustive debug of systems, but it is
the less recommended strategy to diagnose systems at run-
time, since it will likely contain duplicated components and
interfaces for those cases where the static analyzer was not
able to extract correctly the names of the interfaces. Strategy
B: Enriching merge. With this strategy, we will complement
the result of the static analysis by adding to its components
the missed interfaces, which will increase considerably the
amount of data information without corrupting the models
with fictitious (filesystem) information. Formally this com-
putes the union of A and D. That means that the resulted
model supports all our tools and features (e.g., it can be used
to deploy the entire system).We can imagine that this strategy
can be used for alternative purposes; for example, without a
previous static analysis, the user can just define a system as a
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list of components (only the names) and let this feature to fill
out the interfaces of each component, which is a great and
easy method to define new robot specifications.

In Sect. 8, the reader can find a detailed analysis of the
metrics of the data from all the strategies obtained by a real
experiment with a large system.

7 Runtime target: model adaptation and
leveragingmodels at runtime

In this section, we analyze the usability and validity of our
metamodels to reach the new target goals for this paper: allow
the detection of errors not only at design but also at runtime.

First of all, we have to evaluate the usability of our models
to describe the peculiarities of a ROS at runtime. In other
words, we aim to answer the following research question:

RQ2 Can a component-based MDE approach with the
same metamodel cover all the peculiarities that character-
ize a Robot Operating System application at design and at
runtime? What relevant information has to be considered to
analyze also a system during its execution?
If we apply the previous research question to our research
and our previous efforts, we have to reconsider here if our
metamodels are complete enough to cover the necessary
information or if we missed relevant runtime particularities.

Based on this evaluation, our next action was the adap-
tation of the metamodels to solve the found shortcomings.
Finally, we present our first features, that thanks to the rest
of our approach and the new adaptation and combination of
models, leverage our effort to monitor and diagnose ROS
systems at runtime.

7.1 Suitability for runtime analysis

We have demonstrated in previous publications [33,34] the
validity of our metamodels to design ROS robot applica-
tions, and we have consolidated our concept with all the
complementary tools (see Sect. 3.2) that shows to the ROS
community the benefits of the use of MDE technologies.
Although the main target of all our efforts until now was
design time, now that we covered this first phase of the
software development, we recently started to explore the
potentials of our research during the execution of the sys-
tem.

Our first novel contribution is a tool to diagnose a running
application using our models , which helps us also to find the
deficiencies of the metamodels by using static analysis code
results to check ROS system at runtime. Unsurprisingly, this
pointed out a deficiency of our models to deal with one of
the most conflictive tools of ROS, the parameters and the
parameter server [11]. This shared and multivariable dictio-
nary can be used to exchange data between all the programs

with access to the ROS master. These data can be exchanged
dynamically and at runtime, and there is no need to define
them at design time. Even more a parameter in ROS can be
defined without the specification of its type attribute (i.e.,
Boolean, String…), which gives freedom to the user to set
any value during the execution of the program. Depending on
the software architecture design, these parameters can influ-
ence the behavior of the system considerably and so far there
is not a optimal approach to validate them.

The new ROS 2 version has set more restrictions to the
developers concerning the definition of parameters, which,
from our point of view, is an appropriate action and a step
forward on code quality and systems validation.

7.2 Metamodels adaptation to support runtime
systems

Themigration of our full tooling to ROS 2 is de facto the next
step of our work. ROS 2 is already consolidated in terms of
available software packages and the community of users sup-
porting it. The extension of the metamodels to support ROS
2 will be minimal. In fact, we have already successfully inte-
grated some code generators. Then, and because in ROS (or
ROS 1) we miss completely a proper definition of parame-
ters, we have adapted our metamodels to be able to support
the description of the parameters and validate their values at
runtime in the sameway that ROS 2 expects to use them. And
lastly, we updated the monitor extractor at runtime to support
this newmodel extension and be able to automatically extract
all the shared information of the parameter server dictionary.

This new extension allows the user to describe also param-
eters at design time and to set to them a type and a default
value. We also give to the user the option to re-define the
value of the parameter at the application specific level, like
ROS does at runtime or design time using its deployment
artifacts. In parallel, we added to our DSLs validators the
appropriate rules to check the correctness of the redefinition
of parameters. In the next section,we introduce the first lever-
age tools that we created to validate this new extension of our
metamodels.

7.3 Leveragingmodels at runtime

After the study of the current state of the art to diagnose
ROS systems during their execution, we found the use of
MDE as a good fit for this domain, since it can simplify and
significantly optimize error debugging and even facilitate the
integration of error-handling techniques.

The final goal of our efforts is to develop a diagnosis and
monitoring framework whose main objective is the integra-
tion of existing open-source ROS based tools as observers.
This framework is directly linked to the ROS models, using
them to (1) evaluate continually if the components and inter-
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faces running on the system are the expected ones (we called
this tool ROS Graph observer) and (2) to select from the
models the sensitive properties to be monitored during the
design of the application and auto-generate the deployable
code for its inspection (we called this feature properties
observer). Although the property observers do not address
the functional-safety-concerns regarding robotics software
[17], these property observers, which are independent of the
application program written in Python, can be used to diag-
nose system-level properties bymonitoring component-level
properties.

The basis of the ROS Graph observer is our runtime
introspection parser and extractor, which can return at any
time the list of the current nodes running on our systems,
the interfaces that connect them and all the parameters set
together with their values. All this information is obtained
as formally structured through our metamodels. We built a
generic system diagnostics tool (the rosgraph_monitor) upon
it that does not require an application-specific configuration.

Figure 4 shows a simplified overview of the approach.
First, we give to the rosgraph_monitor a desired.rossystem
model specification file of our desired system, which con-
tains the list of the nodes, interfaces, and /or parameters that
we expect to be running on our robot, and second we call
periodically the ros_graph_parser to output the current sta-
tus current.rossystem of the system. Finally, we interpret and
compare for both models (1) the nodes (components), (2)
the interfaces contained within them (component ports) and
the established connections and (3) the type of the parame-
ters and their fixed values. Lastly, it outputs the result of this
analysis.

For a full integration of ROS and our Xtext languages, we
implemented a pyparsing-based interpreter that makes all the
information contained on our models accessible from ROS
native code. Also, the result of the analysis is published as
a common ROS topic that can be interpreted and visualized
with the common ROS diagnostics tools or sent to an error-
handling tool to deal with the fail and reconfigure the system.

The de facto use of this feature is to verify if a set of essen-
tial components have been started and are running. Printing
an error in case one of them died or does not present the
expected interfaces. This approach simplifies significantly
the diagnosis of a system at runtime, without the need of
the development of a new specific diagnostic program for
each component or having this part embedded on the driver.
Moreover, we discovered other uses of this feature; currently,
we use it to quickly and easily detect if a robot setup has all
the requirements (in terms of interfaces) to perform a con-
crete task and if it is compatible with other existing software
libraries. For these cases, the desired RosSystem file, that we
use as input, describes through our models format the spec-
ifications for a concrete software application and the ROS
Graph observer will evaluate if the current running system

Fig. 4 Architecture overview of the ROS graph observer approach. The
flow of the information begins with the runtime running system and its
model equivalent obtained thanks to the ros_graph_parser, comparing
this data with the desired.rossystem; this solution publishes a diagnos-
tic_msg with the status of the current execution

fulfills the requirements. If it does not, a detailed diagnos-
tics message will list the missing interfaces. This can also
be extended to proof parameters and parameters values for a
more precise study of compatibility.

The previously described tool checks whether the compo-
nents, their ports, their connections, and the parameters that
we expect during the design of our application are present
during its execution, but we can move one step forward. At
runtime, the values of the objects of the exchanged infor-
mation are also available, we just have to subscribe to the
running interfaces, and our models contain a formal descrip-
tion of the type of this information. Upon this, we recently
developed a new plug-in for our Tooling that allows the user
to set at design time the thresholds for a number or the con-
crete expected value of the information objects. This plug-in
will auto-generate, as outcome, a ROS python node that will
publish a diagnose error if the value of one object property
infringes the user-defined range.

For example, thanks to our metamodels, we know that
an arm driver expects as command an array of Floats that
represent the desired position for each joint. With this new
plug-in, the user can select the armcommand interface and set
the maximum and minimum values for the position of each
joint. The auto-generated observer, executed together with
the rest of the application, will publish an error message if
one joint position command exceed the limits. Even more,
the generated code is implemented in such way that it can be
easily extended to, not only publish the diagnosticsmessages,
but also call other functions, like in this case could be stop
or reject the move command action.
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This novel contribution aims to be a first step to bridge our
MDE efforts with error-handling and self-adaptation tech-
nologies. We propose here an approach where using a single
metamodel we can describe the desired specifications of the
system and generate its full deployment artifacts together
with a set of properties observers. The observers’ outputs
could feed an error-handling software, that, analyzing the
data, can identify and react to behavior anomalies.

8 Use case example

All the tools and concepts presented in this paper are being
improved, tested and evaluated on real demonstrators in the
context of the ongoing project SeRoNet.

In order to practically demonstrate the concrete technical
contributions of this paper, we report in this section a use case
based on the commercially deployed service robot Care-O-
bot4 or cob4 (Fig. 5). Given its complexity, we can consider
it an adequately representative example for service robotics
applications.

The goal of this section is both to highlight the advantages
and convenience of our toolswhen applied to the typical tasks
that a robotics software engineer performs and to point out the
limitations of the different approaches, to be possibly tackled
as future work. So, in order to facilitate the understanding
of the next subsections and the vocabulary used to describe
the experiments, we firstly list the set of publicly available
repositories from which to source the companion material:

Fig. 5 Care-O-bot4 full robot. Developed by Mojin Robotics

– ROS Tooling This repository contains the ROS tool-
ing infrastructure and also serves as the storage for
documentation. By tooling, we mean the Eclipse envi-
ronment and the full Java and ecore implementation of
the metamodels, as well as the Xtext and Xtend grammar
implementations, a set of wizards for the graphical repre-
sentations and the support tools to automatically import,
create or modify the models.7

– ROS Cloud tool This repository contains the backend
code of the web interface publicly available to extract
models (i.e., ros-model.seronet-project.de).Wemade this
repository public for the cases where the source code is
not hosted online. Furthermore, all the script tools used
to extract models are available within this repository.8

– ROS Graph parser This repository holds the ROS pack-
age used for the monitoring and extraction of models at
runtime.9

– ROS Graph monitor This repository holds the ROS node
that parse and compare a desired specification model
of a system and the actual runtime status from the
ros_graph_parser. And then publish a diagnostic mes-
sage as result of the comparison.10

– ROS Experiments This repository contains the results
of different analysis, including the full results of the
experiment explained in this section corresponding to the
version cob4-25.11

To perform the system experiments, we used the soft-
ware description of the drivers that manage the hardware of
the cob4-25. We selected the most characteristic modules of
which a real robot consists of (for the mechanic and sensing
point of view) and provide interfaces to run a complete appli-
cation. Listing some of them, we have included for instance
the basewith threewheels: the joystick to teleoperate it; three
2D laser scanners used to navigate the environment; three
3D cameras for visualization tasks; components like light,
mimic control, and sound for general robot–user interaction.
Figure 5 shows the real aspect of one of the robot of the series.

This section is divided into four parts: first we focus the
experiment on the static code analysis to auto-extract mod-
els and show an example of its benefits together with the
web cloud infrastructure to analyze and find a component
replacement for our robot, second we show how our auto-
extraction methods perform the analysis for a complete large
ROS system and compare the obtained results; then, third,
we explore the use, with the two strategies, of our new fea-
ture to combine both methods. Finally, fourth, we introduce

7 https://github.com/ipa320/ros-model.
8 https://github.com/ipa320/ros-model-cloud.
9 https://github.com/ipa-led/ros_graph_parser.
10 https://github.com/ipa-hsd/rosgraph_monitor.
11 https://github.com/ipa-nhg/ros-model-experiments.
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our first experiments using models to diagnose a ROS large
system at runtime.

8.1 Components model extraction through static
code analysis

8.1.1 ROSmodel extraction through static code analysis

The first step to import models into the ROS tooling is to
statically analyze the atomic, self-contained software entities
in ROS, that is, the nodes. To perform this step, we invoked
the HAROS framework providing as input the name of the
package that contains, in this case, theC++code and the name
of the node. To cover all the possible cases, we provide to
the user different methods: the cloud web interface, a locally
running extraction script (this requires a local installation of
HAROS) and the provided pre-configured Docker container.

For this concrete walk-through tutorial, we opted for the
cloud solution, giving as input (the information of one of the
scanners node):

– Git repository github.com/ipa320/cob_driver
– Package cob_sick_s300
– Node name cob_sick_s300

The code in Lst. 1 shows the result of the analysis. Import-
ing the auto-generated model to the ROS tooling, we can
visualize the driver of this scanner as shown in Fig. 6

PackageSet { package {
CatkinPackage cob_sick_s300 { artifact {

Artifact cob_sick_s300 {
node Node { name cob_sick_s300

publisher {
Publisher { name ’scan’

message ’sensor_msgs.LaserScan’},
Publisher { name ’scan_standby’

message ’std_msgs.Bool’},
Publisher { name ’/diagnostics’

message ’diagnostic_msgs.
DiagnosticArray’}}}}}}}}

Listing 1 sick_s300.ros file in Xtext format generated automatically by
the cloud tool

8.1.2 Leveraging static code analysis to extract common
specifications: component replacement use

To show the potential of large-scale code analysis made pos-
sible by our cloud system, we choose a typical use case in
robotics: a system integrator in need of replacing one of the
components of a system. The process of replacing a robot
component starts with an evaluation of the alternatives in
the market, firstly, in terms of hardware (physical dimen-
sions and electronic requirements), and secondly, in terms
of compatible software. In our case, we will focus on 2D

Fig. 6 Tooling visualization of the auto-generated model for a Sick
s300 scanner driver

laser scanners (specifically, those for which a ROS driver
exists), which can potentially replace the SICK S300 laser
on the current setup of the Care-O-bot. The ROS wiki pro-
vides an open catalog of supported sensors [1]. From this
list, we filtered those whose software is not up-to-date or not
publicly available. We obtain a final list of seven scanners to
be evaluated. In order to know which of them are compatible
with the rest of our system, we have obtained the model for
each of them using our cloud tooling for the extraction (i.e.,
http://ros-model.seronet-project.de) with the following input
list:

HLS-LFCD LDS:

– Git github.com/robotis-git/hls_lfcd_lds_driver
– Package hls_lfcd_lds_driver
– Node name hlds_laser_publisher

Hokuyo:

– Git github.com/ros-drivers/hokuyo_node
– Package hokuyo_node
– Node name hokuyo_node

Pepperl Fuchs r2000:

– Git github.com/dillenberger/pepperl_fuchs
– Package pepperl_fuchs_r2000
– Node name r2000_node
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Fig. 7 Teraranger Evo
auto-generated model imported
on the tooling which shows an
error because of the use of a
non-common ROS message
pattern for a publisher interface

Rplidar:

– Git github.com/Slamtec/rplidar_ros
– Package rplidar_ros
– Node name rplidarNode

Sick Safety Scanners:

– Git github.com/SICKAG/sick_safetyscanners
– Package sick_safetyscanners
– Node name sick_safetyscanners_node

Teraranger Evo:

– Git github.com/Terabee/teraranger_array/
– Package teraranger_array
– Node name teraranger_evo

Neato XV-11:

– Git github.com/rohbotics/xv_11_laser_driver
– Package xv_11_laser_driver
– Node name neato_laser_publisher

Having obtained the auto-generated models (ros-model–
experiments/scanner_comparison) , we imported all of them
into the tooling.

Thefirst check is the evaluationof the use of standardmes-
sages. This check was not passed by the Teraranger Evo (as
shown in Fig. 7) and by the Sick Safety Scanners because both
use non-generic message types (i.e., the use custom-defined
ones) for the communication. The use of communication
objects not included in the ROS tooling dictionary can be
solved by updating it , but this is only recommended after a
systematic evaluation of existing software and matched pat-
terns.

Validate the file: hlds_laser_publisher.ros
for the specifications model: Laser2DScan.ros
OK:
- OK: Publisher for message type sensor_msgs/

LaserScan found: scan -> scan

Listing 2 Result, generated by the tooling, of the comparison of the
hlds_laser_publisher with the common specification pattern for a 2D
Laser scanner

In the case of the scanners, through a previous anal-
ysis of several nodes we already distilled a de facto

“standard” specification model from commonly used code
(scan_comparison/Spec/Laser2DScan.ros). The second part
of this test is to compare all the automatically obtained mod-
els with this generic specification by using the comparison
models tool (Sect. 5.2). All the analyzed package except the
Teraranger Evo passed this check; Lst. 2 shows the output
we obtained for all the drivers that fulfilled the requirement
of publishing their output through the standard message type
sensor_msgs/LaserScan. Lst. 3 shows the result of an unsuc-
cessful check.

Validate the file: teraranger_evo.ros
for the specifications model: Laser2DScan.ros
ERRORS:
- ERROR: missed a publisher for message type:

sensor_msgs/LaserScan

Listing 3 Result, generated by the tooling, of the comparison of the
teraranger_evo with the common specification pattern for a 2D Laser
scanner

The third part of this test is to compare the models
obtained automatically with the model of the current scanner
mounted on the Care-O-bot, the SICK S300. The model of
this driver is shown in Lst. 1. Unsurprisingly, none of the
nodes passed the test, whose result is shown in Lst. 4. As
for Care-O-bot, there is a special best practice requirement,
that all the drivers report constantly the current status of the
hardware by publishing a diagnostics message. The lack of
the diagnostics message will produce a warning for the Care-
O-bot. The other error pointed by the test is due to the SICK
S300 having non-common standby mode which can be pub-
lished by its driver. However, this property is not needed, and
its absence is not considered an error and neither a warning.

Validate the file: hokuyo_node.ros
for the specifications model: sick_s300.ros
ERRORS:
- ERROR: missed a publisher for message type:
std_msgs/Bool
- ERROR: missed a publisher for message type:
diagnostic_msgs/DiagnosticArray
OK:
- OK: Publisher for message type sensor_msgs/

LaserScan found: scan -> scan

Listing 4 result of the comparison of the hokuyo_node with the
sick_s300 model generated by the tooling
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Thanks to the static code analysis, the open-source nature
of ROS and the tools we developed upon our metamodels to
check and compare models, we demonstrated how the use
of a MDE approach for ROS common software simplifies
significantly the identification of common design patterns.

8.2 Automatic extraction of ROS large system
models

8.2.1 Systemmodel extraction through static code analysis

The previous section analyzed only one of the nodes that
compose the full robot. Performing such an operation inde-
pendently for every single node is a tedious task. To facilitate
the analysis of a system composition, we use the launch file
parser of HAROS. Practically speaking, launch files, written
in XML format, are used in ROS to start together several
programs.

Figure 8 showsanoverviewof the approach runningonour
cloud system within a Docker container. First of all, we have
to locate the source code of all the ROS software required
to run our system. Typically, ROS system integrators install
a released stable version of the dependencies in binary form
but for this analysis we need a local build of the full source
code and all its dependencies. To automate the solution of
this issue, we created a script that first asks ROS for all
the dependencies of the target package (command rospack
depends-indent) and second obtains for each single package
the GitHub URL that holds the source code (command roslo-
cate info). Once we have this information, we checked out
all the source code to our workspace and compile all these
packages each package in an isolated environment , option
recommended as the cloned packages can likely have differ-
ent make system variants (catkin and non-catkin). When the
build completes, we combine all the isolated builds, mak-
ing our workspace ready to be analyzed with HAROS. The
launch files in ROS are very powerful and can be used to
manage and potentially fully redefine the behavior of a robot.
This also means that they are very complex and hard to be
fully supported by any automated tooling. Even more, when
we consider a Care-O-bot whose launch file architecture is
defined to support all the possible combinations of modules
and configurations. Ultimately, this results in themain launch
file being translated into an entangled combination of launch
andXMLfiles, with recursive inclusions and parsing of argu-
ments and parameters. To streamline this analysis, we created
a script (ros-model-experiments/tools/roslaunch-dump) that,
given the original root launch file, is able to create a new one
that resolves all the namespaces (ns), names of the param-
eters and the monolithic includes of single nodes and their
parameters.

Having this obtained launch file, the next step is to use the
HAROS launch parser to detect the name of the packages and

name of nodes, and the namespace that organizes the nodes.
With this information, together with a successful build of
all the packages, we invoke the source code extractor (same
code than in the previous step of the experiment) to generate
automatically:

– a set of component models (.ros files), including the
model of the Sick S300, i.e., Lst. 1) ros-model-experi-
ments/cob4-25/cob4-25_static/rosnodes

– a RosSystem model file that contains all the compo-
nents with their list of remapped interfaces and its
references to the original ROS model. A short part
of this file is shown in Lst. 5 ros-model-experiments/-
cob4-25/cob4-25_static/cob4-25_experiment.rossystem

RosSystem { Name cob4-25
RosComponents ( ....
ComponentInterface { name ’/base_laser_right/

driver’ NameSpace ’/base_laser_right/’
RosPublishers{

RosPublisher ’/base_laser_right/scan_raw’ {
RefPublisher ’cob_sick_s300.cob_sick_s300
.cob_sick_s300.scan’},

RosPublisher ’/base_laser_right/scan_standby’
{ RefPublisher ’cob_sick_s300.

cob_sick_s300.cob_sick_s300.scan_standby
’},

RosPublisher ’/diagnostics’ { RefPublisher ’
cob_sick_s300.cob_sick_s300.cob_sick_s300

./diagnostics’}}....}}}

Listing 5 Sample of the RosSystem model generated by the static code
analyzer

Examining the result, we found three concrete launch file
structure limitations:

– The name of the interfaces is parsed as input argument.
An example of this issue is the node
scan_unifier_node of the package cob_scan_unifier. To
solve this problem, we made a small modification to the
original source code to obtain statically the name of the
interfaces. However, this case should be supported and
the code not modified.

– The type and name of the interfaces are parsed as param-
eters. This issue is made evident by a very concrete and
commonROS framework: ros_control. This software can
be called with a list of arguments that set the type of the
controller to be started (i.e., joint_trajectory_controller,
velocity_controller, position_controller..), getting thevalue
of these arguments the controller manager set at run-
time for all its commands the name and the type of the
interfaces. This case is impossible to be supported by a
static code analyzer. Tomomentarily solve this issue, also
knowing that once the type of controller is defined the
delivered interfaces are fix, we defined a special plug-in
for our extractor that checks the arguments of the con-
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Fig. 8 Diagram of the approach
of system model extraction
through static code analysis

troller_manager node using a predefined template for the
ros_control model.

For a complete quantitative analysis of the result, the next
step of our experiment is the introspection of the system
at runtime, and the comparison of results obtained by both
methods.

8.2.2 Systemmodel extraction through runtimemonitor

For this part of the experiment, we used the hardware of the
real robot (Fig. 5) and started all the components used for
the previous section analysis, in order to obtain comparable
results.

Starting the same launch file and initializing all actua-
tors (i.e., base, torso, sensorring and both arms) to make
their commands available, we called our ROS graph parser
(Sect. 4.2) to extract the model of the system. The result of
this experiment is two files:

– the fictitious component model. A .ros file model with
a single ROS package containing all the nodes running
on the system and the interfaces that these nodes offer
to the rest of the network cob4-25/cob4-25_runtime/
rosnodes/dump.ros.

– a RosSystem model file containing a component defi-
nition for all the previously found nodes and referenc-
ing all the interfaces of the ROS model file. A short
excerpt of this file is shown in Lst. 6 cob4-25/cob
4-25_runtime/cob4-25.rossystem

RosSystem { Name ’cob4-25’
RosComponents (....
ComponentInterface { name ’/base_laser_right/

driver’
RosPublishers {

RosPublisher ’/base_laser_right/scan_standby’
{RefPublisher ’dump_pkg./
base_laser_right/driver./base_laser_right
/driver./base_laser_right/scan_standby’},

RosPublisher ’/base_laser_right/scan_raw’ {
RefPublisher ’dump_pkg./base_laser_right/
driver./base_laser_right/driver./
base_laser_right/scan_raw’},

RosPublisher ’/diagnostics’ {RefPublisher’
dump_pkg./base_laser_right/driver./
base_laser_right/driver./diagnostics
’}}....}}}

Listing 6 Sample of the RosSystem model generated by the runtime
monitor

A peculiarity of the result of this analysis is the addition
of a fictitious node, called parameters_node, which includes
a complete list of all the parameters set on the system during
the execution including the value of all of them. This new
feature is very useful for the debug of the system; in the
case of this Care-O-bot experiment, we found a total of 1159
parameters.

8.2.3 Comparison of system extraction through static code
analysis and runtimemonitoring

In Sect. 4, we listed the technical limitations of each
approach. Before we analyze the obtained numbers we have
to add, in favor of HAROS and the static analysis, that Care-
O-bot, the case of study, is a very complex system which
modularity enforces the definition of many of the interfaces
through arguments. The support of this configuration by a
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Table 1 Comparison of the number of components and the different
types of interfaces found by the both extraction methods

Static analysis Runtime analysis

Components 69 75

Topic Publisher 146 259

Topic Subscriber 36 105

Service Server 57 153

Service Client 20 0

Action Client 6 7

Action Server 6 11

Total interfaces 271 535

static code analysis tool is limited and hard to be totally inte-
grated.

Table 1 shows the quantitative comparison of both
approaches in terms of number of components and interfaces
found.

In total with the runtime approach, we found the 76 nodes
listed on the launch file, expected result as ROS starts all the
nodes included on a launch file automatically once it is called
andweperformed the experimentwith a fully operative robot.
However, we cannot expect that rate for the interfaces found,
for example, the case of the Service Clients, and all the inter-
faces activated within callbacks, that if not called (likely the
case) during the monitoring time, were fully ignored.

If we analyze the results for the static code analysis, we
obtained 69 components (a total rate of a 92%). This means
that for Care-O-bot we could find for the 92% of the compo-
nents an open-source code version using just the ROS distro
mechanisms. Even more important, for all of them the code
could successfully build in a clean image of the operating
system, where all the packages dependencies where found
and installed automatically and all the quality requirements
needed to analyze statically the code passed successfully.
From this data, we can extract two main conclusions, (1)
the design leveraging HAROS, the tools and the docker con-
tainer solution we propose is appropriate and valid to be used
to analyze large systems and (2) the full Care-O-bot software
stacks (that conglomerates more than 100 ROS packages) in
spite of, or maybe thanks to, its open-source nature evidence
a high grade of code quality, remember that at the end we
analyze C++ and Python code and how it is designed and
written.

If we use the obtained data to answer our RQ1: “How
complete is the information we can automatically obtain
(from code-to-model extraction methods) to describe a large
Robot Operating System application as a set of modular and
reusable components and the interaction interfaces among
them? Is there incorrect information?” we see that, firstly,
in terms of informativeness the models extracted through

the static code analysis (e.g., Lst. 1) are truthful and the
ROS metamodels structures fully fulfilled, remember that
we considered this as a premise requirement of our research
question. If we compare this model with the corresponding
“node” auto-generated by the runtime monitor, we find the
following two types of information as missing or wrong:

– we are not getting the filesystem information (i.e., the
name of the ROS package that contains this node). With-
out this information, the ROS tooling is not able to
auto-generate a valid launch file for the composition of
this component with others.

– the information related to the name of the node is wrong.
When the runtime model generator runs, the nodes and
their interfaces are already remapped. The assignment of
a namespace is done during deployment phase (i.e., for
the family of metamodels, included in the RosSystem
model file, see Lst. 5).

Secondly if we consider the usability and re-usability, these
listed issues, mainly the lack of the filesystem information,
make hard (almost useless) the reuse of the single extracted
models from the ROS Graph monitor for the composition of
new systems. The only aspect where the analysis of this file is
helpful is to find commonly used communication object types
(i.e., messages types) that upgrade the provided dictionary 1.

This conclusion, the lack of relevant data from the runtime
introspection set the new direction of our research exploring
the possibilities to combine the results of the extractionmeth-
ods and, therefore, the benefits of both.

Unsurprisingly, the ROS Graph monitor is able to find
more interfaces than the static analysis, by comparing the
number of detected interfaces through the runtime monitor
(535) and through the static code analyzer (271). A deep
analysis of the data and the cases where the static code
introspection failed answered our RQ2: “Can a component-
based MDE approach with the same metamodel cover all
the peculiarities that characterize a Robot Operating System
application at design and at runtime? What relevant infor-
mation has to be considered to analyze also a system during
its execution?”, and confirmed our suspicions; in ROS for
large, and likely modular, systems the parameters and their
set and unset at runtime play a very important role and change
completely the behavior and the interactions between the
nodes once the system is deployed. Giving some numbers,
for eight components (from a total of 35 software packages)
all their interfaces are defined by the set of parameters and
the obtainedmodels extracted analyzing their source code are
empty. Also, for a total of 18 interfaces we couldn’t deter-
mine their names, which are passed as a string parameter.
This is a very common practice in ROS for generic compo-
nents, as the use of parameters facilitates the re-usability and
easy adaptation of a node to different applications.
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After this study, we decided to update our models to sup-
port properly the definition of parameters and improve all our
runtime introspection tools for a better analysis of the ROS
parameters particularities.

8.3 Combination of the results of both extraction
methods

This step of the experiment shows how our combination
feature can be used to compose the data obtained by both
extraction methods and obtain a more precise model of a
system. Figure 9 represents the approach we used for this
demonstration, where we took as inputs the same models we
compared in the previous step, extracted automatically by
our both extraction methods and that targeted the same sys-
tem. The result will be an unique RosSystem file which data
will depend on the criteria selected by the user.

For this experiment, we used the two strategies we
explained in detail in Sect. 6.2, i.e.,

– StrategyAor inclusivemergewhich results in the unionof
the components of the static code analysis with the ones
found by the runtime monitoring tool, by the common
components this strategy merges all those found.

– Strategy B or enriching merge where all the components
from the static analysis are present and only for those
also found by the runtime analysis we add the missed
interfaces.

Fig. 9 Architecture overview of the feature to combine two models
for Sect. 8.3 case, i.e., combine models auto-generated using our two
extraction methods for the same system, the cob4-25 robot

Table 2 Comparison of the number of components and interfaces
obtained by the both model combination criteria applied to the results
from a static code analysis and the runtime monitor for the cob4-25
robot system. Complemented, marked in bold, with the data obtained
for the model obtained from the combination

Strategy A Strategy B

Components static analysis (from
previous section)

69 69

Components runtime analysis
(from previous section)

75 75

Components of the resulted
model

100 69

Duplicated components of the
resulted model

25 0

Interfaces of the resulted model 775 676

The entire results of this experiment are publicly avail-
able under ros-model-experiments/cob4-25/ . In Table 2, we
summarize them quantitatively.

If we analyze the data, we see that with the strategy A we
get many duplicated components interfaces, whose names
(likely because theywere re-assigned using a parameter from
the parameter server or the value dynamically passed through
code functions) do not correspond to the final assignment at
runtime. If the purpose of the user is to make an exhaustive
debug of the system, this result is the most complete that can
be obtained. Filtering the data of the resulting model, all the
errors introduced either during the design or at the execution
of the application can be detected.

With the strategy B, on the other hand, we successfully
completed a large portion of the interfaces missed by the
static analysis (676 in total, while by the static code anal-
ysis we only detected 271), and without having duplicated
components. Even better, for all the components of the final
resulting model we have complete information, i.e., all the
fields of our metamodels are filled including the real filesys-
tem information.

If we link the experiment results with our RQ1: “How
complete is the information we can automatically obtain
(from code-to-model extraction methods) to describe a large
Robot Operating System application as a set of modular and
reusable components and the interaction interfaces among
them? Is there incorrect information?”, we see that with the
strategy B (the enriching merge) we obtained a final RosSys-
tem model that contains 69 of the 75 components started on
the real robot and all their interfaces (that correspond to a
92% of the total) and for all of them we have all the required
information, the related to the computational graph but also
the filesystem part. This makes the resulting model compati-
ble with all our ROS tooling features and re-usable for other
applications and even valid for its composition with other
systems or frameworks.
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8.4 Leveragingmodels at runtime

8.4.1 Auto-diagnosis of a system evaluating its
computational graph at runtime

To show the use of our monitoring tool, we described
the list of the most common hardware drivers of the
Care-O-bot4 as a RosSystem model (file available under
cob4-25_desired_components.rossystem ) and used it as the
specification of the desired system for our experiment. When
all the necessary hardware is connected and is in running
state, the diagnostics publisher will contain the OK status
message like shown in Lst. 7.

status:
level: 0
name: "ROS Graph"
message: "running OK"
hardware_id: ’’
values: []

Listing 7 Diagnostics message for the rosgraph_monitor

If one of the desired nodes is not running, it is possi-
ble that the system may not function as intended. These
nodes are marked as Missing nodes with an operation level
2 (ERROR). Evaluating the common specification desired
file for the Care-O-bot4 family on the Care-O-bot4-25 ver-
sion we detected, firstly, that this robot distro does not have a
microphone driver, and therefore, the sound component is not
available. Another test we made to prove this feature was to
physically disconnect one of the robot’s cameras, which does
not allow to start the camera driver at startup. As expected,
the monitoring tool marks this also as a missing node like
can be seen in Lst. 8.

status:
level: 2
name: "sound"
message: "Missing node"
hardware_id: ’’
values: []

status:
level: 2
name: "/torso_cam3d_right/realsense2_camera"
message: "Missing node"
hardware_id: ’’
values: []

Listing 8 Diagnostics message for the rosgraph_monitor if a node is
missing, sound example

Although we strongly recommend the implementation of
diagnostics messages as output for every ROS driver, with
this experiment we demonstrate that, without the extra devel-
opment effort or a custom configuration, we are also able to
detect component failures. But more importantly, the head
camera scenario shows an use case so far unsupported; the
camera driver was never started, because it has a precondi-
tion to detect the physical hardware first, and therefore the
diagnostics message from the software driver was never pub-
lished and the error never showed, but still our solution could
detect it.

Additionally, when components not mentioned as desired
are detected in the graph, it is not an error, but if the user
needs to check the extra components started on the robot, the
monitoring frameworkmarks for these cases the components
asAdditional nodeswith an operation level 1 (WARN). These
operation level can be used in ROS to easily filter or sort the
diagnostics message by their severity.

8.4.2 Auto-evaluation of the running system and its
capabilities

For the experiments, we decided to use the common low-
level functionalities of Care-O-bot; however, on ROS there
are open-source libraries to perform high-level capabilities
that can be applicable to any robot setup to perform complex
tasks. The most common robotic capabilities are navigation,
perception andmanipulation and scenarios based on the coor-
dination of them. One of the biggest advantages of ROS is
themodularity, adaptability and re-usability of these software
components, but to run these capabilities, your robot has to
offer a concrete set of interface that the high-level function-
ality needs to get or command information. Currently the
identification of the interfaces and the check of their pres-
ence has to be done manually. With our approach, we found
away to semi-automate the process, being able to analyze the
running systemand automatically detectwhether it is suitable
to run a concrete application. Going deep into the technical
implementation, we created RosSystem models to describe
formally the specifications of a capability, for example, to
navigate a robot the ROS navigation stack requires the infor-
mation from a laser scanner, the kinematics tree of the robot
and its odometry. Once it computes of all of this data, it will
publish a velocity twist command to the base. Lst. 9 shows
the formal model for this description for the Care-O-bot4
(cob4) target.
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RosSystem { Name ’cob4-25_navigation_capability’
RosComponents (
ComponentInterface { name ’navigation’
RosPublishers {
RosPublisher ’/scan_unified’ {RefPublisher ’cob4

/../scan_unified’},
RosPublisher ’/tf’ {RefPublisher ’cob4/../tf’},
RosPublisher ’/base/odometry_controller/odometry’

{RefPublisher ’cob4/../odometry’}}
RosSubscribers {
RosSubscriber ’/base/twist_controller/command’ {

RefSubscriber ’cob4/../command’}
}}

)}

Listing 9 RosSystem model excerpt corresponding to the ROS
navigation capability specification

Using the previous model as the desired system for our
ROSGraph observer feature, we get automatically amessage
with the result of the analysis. If it fails we also point to the
missing interface or interfaces, Lst. 10 present and example
of the diagnostic output.

status:
level: 2
name: "cob4-25_navigation_capability"
message: "Capability incompatible"
hardware_id: ’’
values:

-
key: "publishers"
value: "tf"

Listing 10 rosgraph_monitor diagnostic output message when an
interface to run the Navigation capability is missing in the system

9 Conclusion and future work

The work presented in this paper aims to improve the soft-
ware quality of ROS systems in a complementary fashion
to other initiatives within the ROS community. The basic
ideas of this approach are: the exploitation of information
available at design time but mostly not used due to insuf-
ficient tooling, in order to avoid errors at runtime and the
identification of de facto standard practices. The reuse of
such practices often improves quality through better under-
standing of the developed code by other developers and
easier reuse/replacement of components. We pursued this
approach through model generation by: automatic model
extraction, both from source code through static code anal-
ysis and from binaries through runtime monitoring, and by
making available the necessary tooling both as source code
and as a cloud service, together with the starting nucleus
of a model database to be used and expanded by the ROS
community. We hope that this initial effort can contribute to
the model-based verification of manually written ROS code
and push toward a future standardization of ROS interfaces

beyond the practice of manually annotating and inspect-
ing wiki documentation. In addition to growing the models
database and involving further ROS developers, we plan
two further directions for our future work. The first is to
merge our cloud-based service for model generation with the
Eclipse tooling into a more comprehensive cloud-based IDE,
necessitating no installation and offering “IntelliSense-style”
suggestions to, for example, pick the most adequate message
format given a comparison performed in the background
between the extracted model and matches in the database.
The second is to continue our growing effort on monitoring
and diagnostics at runtime, by adding further system proper-
ties observers and integrating reasoning models to be able to
automatically handle errors during the execution of an appli-
cation.
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