
Merging Cloned Alloy Models with Colorful
Refactorings

Chong Liu12 and Nuno Macedo13 and Alcino Cunha12

1 INESC TEC, Porto, Portugal
2 Universidade do Minho, Braga, Portugal

3 Faculdade de Engenharia, Universidade do Porto, Porto, Portugal

Abstract. Likewise to code, clone-and-own is a common way to create
variants of a model, to explore the impact of different features while
exploring the design of a software system. Previously, we have introduced
Colorful Alloy, an extension of the popular Alloy language and toolkit to
support feature-oriented design, where model elements can be annotated
with feature expressions and further highlighted with different colors to
ease understanding. In this paper we propose a catalog of refactorings
for Colorful Alloy models, and show how they can be used to iteratively
merge cloned Alloy models into a single feature-annotated colorful model,
where the commonalities and differences between the different clones are
easily perceived, and more efficient aggregated analyses can be performed.

Keywords: Feature-oriented design · Refactoring · Alloy · Model merg-
ing · Clone-and-own

1 Introduction

Modern software systems are often highly-configurable, effectively encoding a
family of software products, or a software product line (SPL). Feature-oriented
software development [3] is the most successful approach proposed to support the
development of such systems, organizing software around the key concept of a
feature, a unit of functionality that implements some requirements and represents
a configuration option. Naturally, software design is also affected by such concerns,
and several formal specification languages and analyses have been proposed to
support feature-oriented software design [31,4,8,26]. In particular, this team has
proposed Colorful Alloy [26], a lightweight, annotative approach for Alloy and
its Analyzer [17], that allows the introduction of fine-grained variability points
without sacrificing the language’s flexibility. Although different background colors
are used to ease the understanding of variability annotations [18], fine-grained
extensions still cause maintainability and obfuscation problems.

Refactorings [30,12] – transformations that change the structure of code but
preserve its external behavior – could be employed to address some of those
problems and generally improve the quality of variability-annotated formal models.
However, classical refactoring is not well-suited for feature-oriented development,
since both the set of possible variants and the behavior of each variant must be

2 Chong Liu and Nuno Macedo and Alcino Cunha

preserved [36], and refactoring laws are typically too coarse-grained to be applied
in this context, focusing on constructs such as entire functions or classes.

One of the standard ways to implement multiple variants is through clone-
and-own. However, as the cost to maintain the clones and synchronize changes in
replicas increases, developers may benefit from migrating (by merging) such vari-
ants into a single SPL. Fully-automated approaches for clone merging (e.g., [32])
assume a quantifiable measure of quality that is not easy to define when the goal
is to merge code, and even less so when the goal is to merge formal abstract
specifications. An alternative approach is to rely on refactoring [11], supporting
the user in performing stepwise, semi-automated merge transformations.

In this paper we first propose a catalog of variability-aware refactoring laws
for Colorful Alloy, covering all model constructs – from structural declarations
to axioms and assertions – and granularity levels – from whole paragraphs to
formulas and expressions. Then, we show how these refactorings can be used
to migrate a set of legacy Alloy clones into a colorful SPL using an approach
similar to [11]. Fine-grained refactoring is particularly relevant in this context:
design in Alloy is done at high levels of abstraction and variants often introduce
precise changes, refactoring only at the paragraph level would lead to unnecessary
code replication and a difficulty to identify variability points. The individual
refactoring laws and some automatic refactoring strategies, that compose together
several merge refactorings, have been implemented in the Colorful Analyzer. We
evaluate them by merging back Alloy models projected from previously developed
Colorful Alloy SPLs, and by merging several variants of plain Alloy models that
are packaged in its official release.

The remainder of this paper is organized as follows. Section 2 presents an
overview of Colorful Alloy. Section 3 presents some of the proposed variability-
aware refactoring laws, and Section 4 illustrates how they can be used to refactor
a collection of cloned models into an SPL. Section 5 describes the implementation
of the technique and its preliminary evaluation. Section 6 discusses related work.
Finally, Section 7 concludes the paper and discusses some future work.

2 Colorful Alloy

Colorful Alloy [26] is an extension of the popular Alloy [17] specification language
and its Analyzer to support feature-oriented software design, where elements of
a model can be annotated with feature identifiers – highlighted in the visualizer
with different colors to ease understanding – and be analyzed with feature-aware
commands. The annotative approach of Colorful Alloy contrasts with compo-
sitional approaches to develop feature-oriented languages (either for modeling
or for programming), where the elements of each feature are kept separate in
different code units (to be composed together before compilation or analysis). We
reckon the annotative approach is a better fit for Alloy (and design languages in
general), since changes introduced by a feature are often fine-grained (for example,
change part of a constraint) and not easily implemented (nor perceivable) with
compositional approaches.

Merging Cloned Alloy Models with Colorful Refactorings 3

1 fact FeatureModel {
2 2 1 some none 1 2 // 2 Hierarchical requires 1 Categories
3 3 1 some none 1 3 } // 3 Multiple requires 1 Categories
4
5 sig Product {
6 images: set Image,
7 1 catalog: one Catalog 1 ,
8 1 3 category: one Category 3 1 ,
9 1 3 category: some Category 3 1 }

10
11 sig Image {}
12 sig Catalog { thumbnails: set Image }
13 fact Thumbnails {
14 1 all c:Catalog | c.thumbnails in (catalog.c).images 1

15 1 all c:Catalog | c.thumbnails in (category.(2 inside 2 + 2 ^inside 2).c).images 1 }
16
17 1 2 sig Category { inside: one Catalog } 2 1

18 1 2 sig Category { inside: one Catalog+Category } 2 1

19 1 2 fact Acyclic { all c:Category | c not in c.^inside } 2 1

20
21 pred Scenario { some Product.images and 1 some Category 1 }
22 run Scenario for 10
23
24 assert AllCataloged { 2 all p:Product | some (p.category.^inside & Catalog) 2 }
25 check AllCataloged with 1 , 2 for 10

Fig. 1: E-commerce specification in Colorful Alloy, where background and strike-
through colors denote positive and negative annotations, respectively.

Consider as an example the design of multiple variants of an e-commerce
platform, adapted from [9], for which a possible encoding in Colorful Alloy is
depicted in Fig. 1. The base model (with no extra feature) simply organizes
products into catalogs, illustrated with thumbnail images. Like modeling with
regular Alloy, a Colorful Alloy model is defined by declaring signatures with fields
inside (of arbitrary arity), which introduce sets of atoms and relations between
them. A signature hierarchy can be introduced either by extension (extends)
(with parent signatures being optionally marked as abstract) or inclusion (in),
and simple multiplicity constraints (some, lone or one) can be imposed both on
signatures and fields. In Fig. 1 the base model declares the signatures Product
(l. 5), Image (l. 11) and Catalog (l. 12). Fields images (l. 6) and catalog (l. 7)
associate each product with a set of images and exactly one catalog, respectively;
field thumbnails (l. 12) associates each catalog with a set of images.

Additional model elements are organized as paragraphs: facts impose axioms
while assertions specify properties to be checked; predicates and functions are re-
usable formulas and expressions, respectively. Atomic formulas are either inclusion
(in) or multiplicity (no, some, lone or one) tests over relational expressions, which
can be composed through first-order logic operators, such as universal (all) and
existential (some) quantifiers and Boolean connectives (such as not, and, or or
implies). Relational expressions combine the declared signatures and fields (and
constants such as the empty relation none or the universe of atoms univ) with set
operators (such as union + or intersection &) and relational operators (such as join
� or transitive closure ^). For the base e-commerce model all catalog thumbnails

4 Chong Liu and Nuno Macedo and Alcino Cunha

Fig. 2: Feature diagram of the e-commerce specification, where empty bullets
denote optional child features.

are assumed to be images of products that appear in that catalog. This is enforced
in fact Thumbnails (l. 14), where expression c � thumbnails retrieves all thumbnails
in catalog c, catalog � c all products in c, and (catalog � c) � images all images of
the products in c.

This design of the catalog considers 3 optional features: 1 allowing products
to be classified in categories; 2 allowing hierarchical categories; and 3 allowing
products to have multiple categories. Not all combinations of these features are
valid, as depicted in the feature diagram [3] from Fig. 2: both hierarchical and
multiple categories require the existence of categories. In Colorful Alloy certain
elements can be annotated with positive c or negative c feature delimiters,
determining their presence or absence on variants with or without feature c,
respectively. Annotations can only be applied to elements of the Alloy AST,
either optional elements whose removal does not invalidate the AST – such as
declarations and paragraphs – or branches of binary expressions that have a
neutral element which can replace the annotated element – such as conjunctions,
disjunctions, intersections or unions. Annotations can be nested, which denotes
the conjunction of presence conditions. To ease the understanding, and inspired
by [18], the Colorful Analyzer employs background colors (for positive annotations)
and colored struck-through lines (for negative ones).

In the e-commerce example, feature 1 introduces a new signature Category,
but depending on whether 2 is present or not, this signature declares a different
field inside: without hierarchical categories each category is inside exactly one
catalog (l. 17); otherwise, a category can also be inside another category (l. 18).
Fields may also be annotated: with categories the catalog field of products is
removed with a negative annotation 1 (l. 7) and products are now assigned a
category through category which, depending on whether 3 is present, assigns
exactly one (l. 8) or multiple (l. 9) categories to a product. Hierarchical categories
require an additional fact Acyclic (l. 19) that forbids categories from containing
themselves, either directly or indirectly. Fact Thumbnails must be adapted when
categories are introduced, so that products are retrieved indirectly from the
categories of the catalog. Since one constraint is negatively annotated with
1 and the other positively with 1 , they are actually exclusive. In the latter,
depending on the presence of 2 either inside or its transitive closure ^inside is

Merging Cloned Alloy Models with Colorful Refactorings 5

used to retrieve all parent categories of products. This finer variability point is
introduced by annotating the branches of a union expression; when a presence
condition is not met, that branch is replaced by its neutral element, the empty
relation. Colorful Alloy does not explicitly support feature models, but the user
can restrict valid variants using normal facts. In Fig. 1 fact FeatureModel (ll. 1–3)
encodes the restrictions from the feature diagram in Fig. 2, forcing 1 to be
selected whenever 2 or 3 are: otherwise formula some none would be introduced
in the model creating an inconsistency.

Like in Alloy, run commands can be declared to animate the model under
certain properties and check commands to verify assertions, both within a specified
scope (max size) for signatures. In Colorful Alloy, a scope on features may also
be provided, to restrict the variants that should be considered by a command. In
Fig. 1 a run command is defined (l. 22) to animate predicate Scenario (l. 21):
show an instance for any variant (no feature scope is defined) where there are
products with images assigned (expression Product � images retrieves all images
of all products), and, if the variant considers categories, some must also exist.
Since no feature scope is imposed, the generated scenario may be for any of the 5
valid variants. To verify the correctness of the design for hierarchical categories,
an assertion AllCataloged is specified (l. 24) to check whether every product is
inside a catalog. The feature scope 1 , 2 of the associated check command (l. 25)
restricts analysis to the two variants that have those features selected, those for
which AllCataloged is relevant.

Some typing rules are imposed on Colorful Alloy models. Roughly, annotations
may be nested in an arbitrary order but must not be contradictory, and conditional
elements may only be used in compatible annotation contexts. Feature constraints
are extracted from simple facts such as FeatureModel making these rules more
flexible. For instance, AllCataloged refers to elements only present in 1 variants,
but since we known that 2 implies 1 , that redundant annotation may be omitted
from its declaration. This is actually an enhancement of the type system from
the original proposal [26]. Another improvement is the support for duplicated
signature and field identifiers as long as their annotation context is disjoint. Such
is the case of both Category declarations. The rule for calling such elements
was also relaxed: they may be used in contexts compatible with the union of all
the declaration’ annotations. For instance, Category can be used in any context
annotated with 1 since one of the two signatures will necessarily exist.

3 Refactoring Laws for Colorful Alloy

Variability-aware refactorings can promote the maintenance of SPLs while pre-
serving the set of variants and their individual behavior. This section proposes a
catalog of such refactorings for Colorful Alloy, which complements non variability-
aware ones previously proposed for standard Alloy [14,13]. Due to space limita-
tions, only a sample of this catalog is presented.

The refactoring laws for Colorful Alloy are presented in the form of equa-
tions between two templates (with square brackets marking optional elements),

6 Chong Liu and Nuno Macedo and Alcino Cunha

following the style from [14], under the context of a feature model F extracted
from the colorful model under analysis (as described in Section 5). When the
preconditions are met and the left or right templates matched, rules can be
derived to apply the refactoring in either direction. Throughout the section c

will denote an either positive or negative annotation for c, and c a (possibly
empty) sequence of positive or negative annotations. Models are assumed to
be type-checked when the rules are applied, so without loss of generality, in
an expression c e c we assume that the features c in the closing annotations
appear in the reverse order as those in the opening annotations, that there are
no contradictory annotations, that only supported elements of the AST are
annotated, and that duplicated identifiers have disjoint annotation contexts. We
use ann to refer to any element amenable of being annotated (possibly itself
already annotated), exp for expressions, frm for formulas, n for identifiers, ds
for (possibly-annotated) relation declarations, and scp for scopes on atoms. We
assume that the extracted feature model F is encoded as a propositional formula
over positive or negative feature annotations [10].

The first set of laws concern the feature annotations themselves, and are often
useful to align them in a way that enables more advanced refactorings.

Law 1 (Annotation reordering).

a b ann b a =F b a ann a b

This basic law originates from the commutativity of conjunction, and allows users
to reorganize feature annotations.

Law 2 (Redundant annotations).

a b ann b a =F a ann a

provided F |= a → b .

This law relies on the feature model to identify redundant annotations that can be
removed or introduced. For instance, if F imposes 2 → 1 (as in the e-commerce
SPL), then whenever a 2 annotation is present 1 is superfluous, and vice-versa
for 1 and 2 . Note that it can also be used to remove duplicated annotations.
Similar laws are defined to manage the feature scopes of commands.

The next set of refactoring laws concerns declarations. The first removes the
abstract qualifier from signature declarations.

Law 3 (Remove abstract qualifier).

a abstract sig n [ext] { . . . } a

a b sig n0 { . . . } extends n b a

. . .

a c sig nl { . . . } extends n c a

=F

a sig n [ext] { . . . } a

a b sig n0 { . . . } extends n b a

. . .

a c sig nl { . . . } extends n c a

a fact { n= b n0 b +. . .+ c nl c } a

provided l ≥ 0.

Merging Cloned Alloy Models with Colorful Refactorings 7

Our catalog contains several similar variability-aware laws, some adapted from [13],
to remove syntactic sugar from signature and field declarations (e.g., multiplicity
annotations) while preserving the behavior in all variants. These laws are used
as a preparatory step to enable the following merge refactorings.

Law 4 (Merge top-level signature).

a b sig n { ds0,. . .,dsk} b a

a b sig n { ds′0,. . .,ds
′
l} b a

=F

a sig n {

b ds0 b ,. . ., b dsk b ,

b ds′0 b ,. . ., b ds′l b } a

Law 5 (Merge sub-signature).

a b sig n extends n0 {

ds0,. . .,dsk } b a

a b sig n extends n0 {

ds′0,. . .,ds
′
l } b a

c sig n0 [ext] { . . . } c

=F

a sig n extends n0 {

b ds0 b ,. . ., b dsk b ,

b ds′0 b ,. . ., b ds′l b } a

c sig n0 [ext] { . . . } c

provided F |= a → c .

Signatures cannot be freely merged independently of their annotations, since in
Colorful Alloy they are not sufficiently expressive to represent the disjunction of
presence conditions. Signatures with the same identifier can be merged if they
partition a certain annotation context a on b , in which case the latter can
be dropped (but pushed down to the respective field declarations). Due to the
opposite b annotations the two signatures never coexist in a variant, and the
merged signature will exist in exactly the same variants, those determined by a .
Law 5 considers the merging of the signatures that extend another signature. Here,
a precondition guarantees that there are no conflicts after merging: the context
c of the parent signature n0 must be determined solely by the a portion of
the children annotations (i.e., regardless of b which will be dropped). Thus, the
signature n0 must be merged beforehand. Notice that these laws act on signatures
without qualifiers. If qualifiers were compatible between the two signatures, they
can be reintroduced after merging by applying the syntactic sugar laws in the
opposite direction.

Returning to the e-commerce example, it could be argued that the declaration
of two distinct Category signatures under 1 depending on whether 2 is also
selected or not, is not ideal. Since neither signature has other qualifiers, Law 4
can be applied directly from left to right, resulting in the single signature

1 sig Category { 2 inside: one Catalog 2 , 2 inside: one Catalog+Category 2 } 1

Notice that fields are left unmerged, which are the target of the next law.

Law 6 (Merge binary field).

a b n: set exp1 b a ,

a b n: set exp2 b a
=F a n: set b exp1 b + b exp2 b a

8 Chong Liu and Nuno Macedo and Alcino Cunha

This law allows binary fields with the same identifier to be merged, even when
they have different binding expressions, whenever they partition an annotation
context a . Similar laws are defined for fields of higher arity. Back to the e-
commerce example, the duplicated field inside introduced by the merging of
signature Category could be merged into a single field with Law 6, after applying
a syntactic refactoring law to move the one multiplicity annotation to a fact.

1 sig Category { inside: set 2 Catalog 2 + 2 Catalog+Category 2 } 1

1 2 fact{ all this:Category | one this.inside } 2 1

1 2 fact{ all this:Category | one this.inside } 2 1

Facts can be soundly merged for whatever feature annotations, since they are
all just conjuncted when running a command.

Law 7 (Merge fact).

a fact [n] { frm1 } a

b fact [n] { frm2 } b
=F fact [n] { a frm1 a and b frm2 b }

Other elements that can be used in expressions or commands can be merged
only when a feature partitions their annotation context. As examples, we show
those laws for predicates and assertions.

Law 8 (Merge predicate).

a b pred n[n0:exp0,. . .,nk:expk] {

frm1 } b a

a b pred n[n0:exp
′
0,. . .,nk:exp

′
k] {

frm2 } b a

=F

a pred n[

n0: b exp0 b + b exp′0 b ,. . .,

nk: b expk b + b exp′k b] {

b frm1 b and b frm2 b } a

Law 9 (Merge assertion).

a b assert n { frm1 } b a

a b assert n { frm2 } b a
=F

a assert n {

b frm1 b and b frm2 b } a

Commands are bounded by the feature scope rather than annotated. If two
commands act on a partition of the variants, they can be merged into a command
addressing their union. As an example, we show a law for merging run commands.

Law 10 (Merge run command).

run n scp with a , b

run n scp with a , b

c pred n[. . .] { . . . } c

=F
run n scp with a

c pred n[. . .] { . . . } c

provided F |= a → c .

Likewise Law 5, a precondition guarantees that there are no ambiguities af-
ter merging, so that the merged annotation a completely determines the the
predicate to be run. Thus, the respective predicates must be merged beforehand.

Lastly, we provide refactoring laws for formulas and expressions. This distin-
guishes our approach from other works, addressing finer variability annotations.

Merging Cloned Alloy Models with Colorful Refactorings 9

Law 11 (Merge common expression).

a ann op′ ann1 a op a ann op′ ann2 a =F ann op′ (a ann1 a op a ann2 a)

where op ∈ {+ , &, and, or} and op′ is op or its dual.

This law arises from the distributivity of operators and can be applied to both
annotated formulas and expressions. An extreme application is when we have
a ann a op a ann a , which can be refactored into ann.

Law 12 (Merge left-side inclusion).

a exp in exp1 a and b exp in exp2 b =F exp in (a exp1 a & b exp2 b)

Law 13 (Merge right-side inclusion).

a exp1 in exp a and b exp2 in exp b =F (a exp1 a + b exp2 b) in exp

These laws allow the simplification of inclusion tests over the same expression,
for whatever annotations, and arise from the properties of intersection and union.

Law 14 (Merge quantification).

a b qnt n:exp1 | frm1 b a and

a b qnt n:exp2 | frm2 b a
=F

a qnt n: b exp1 b + b exp2 b |

b frm1 b and b frm2 b a

where qnt ∈ {all, some, lone, one, no}.

This law is an example of a simple refactoring for formulas. Our catalog includes
laws for other operators, such as composition and multiplicity tests. These,
together with Law 11, allow us to merge the two facts that resulted from merging
field inside into a single fact.

1 fact{ all this:Category | one this.inside } 1

We can now apply a syntactic sugar law to move this multiplicity constraint
back into the field declaration and remove the fact, which, after an application
of Law 11, results in

1 sig Category { inside: one Catalog+ 2 Category 2 } 1

This means that each category is inside exactly one element, which can always be
a catalog, or another category if hierarchies are supported. As another example,
fact Thumbnails can be refactored into

fact Thumbnails { all c:Catalog | c.thumbnails in
(1 catalog.c 1 & 1 category.(2 inside 2 + 2 ^inside 2).c 1).images

The resulting fact is more compact, but whether it improves model comprehension
is in the eyes of the designer.

10 Chong Liu and Nuno Macedo and Alcino Cunha

sig Product {
images: set Image, catalog: one Catalog }

sig Image {}
sig Catalog { thumbnails: set Image }
fact Thumbnails { all c:Catalog |
c.thumbnails in (catalog.c).images }

pred Scenario {
some Product.images }

run Scenario for 10

Fig. 3: E-commerce base model 1 2 3 .

sig Product {
images: set Image, category: one Category }

sig Image {}
sig Catalog { thumbnails: set Image }
fact Thumbnails { all c:Catalog |

c.thumbnails in (category.inside.c).images }

sig Category { inside: one Catalog }

pred Scenario {
some Product.images and some Category }

run Scenario for 10

Fig. 4: Clone 1 2 3 introducing categories.

4 Migrating Clones into a Colorful Alloy Model

Approaches to SPL engineering can either be proactive – where an a priori
domain analysis establishes the variability points that guide the development of
the product family, reactive – where an existing product family is extended as new
products and functionalities are developed, or extractive – where the family is
extracted from existing software products with commonalities [21]. Colorful Alloy
was initially conceived with the proactive approach in mind, with annotations
being used precisely to extend a base model with the variability points addressing
each desired feature. The model in Fig. 1 could be the result of a such a proactive
approach to the design of the e-commerce platform.

With plain Alloy, to develop this design we would most likely resort to the
clone-and-own approach. First, a base model, such as the one in Fig. 3 would
be developed. This model would then be cloned and adapted to specify a new
variant adding support for categories, as depicted in Fig. 4. This model would
in turn be further cloned and adapted twice to support hierarchical or multiple
categories. A final clone would then be developed to combine these two features.
Due to space restrictions, these last three clones are not depicted, but they would
very likely correspond to something like the projections of the colorful model
in Fig. 1 over the respective feature combinations. This section first presents
an extractive approach that could be used to migrate all such plain Alloy clone
variants into a single Colorful Alloy model. Later we will also show how this
technique can be adapted for a reactive scenario, where each new clone variant is
migrated into a Colorful Alloy model already combining previous clones.

Our technique follows the idea proposed in [11] for migrating Java code clones
into an SPL: first combine all the clones in a trivially correct, but verbose, initial
SPL, and then improve it with a step-wise process using a catalog of variant-
preserving refactorings. Some of the refactorings used in [11] are similar to those
introduced in the previous section (e.g., there is a refactoring for pulling up a class
to a common feature that behaves similarly to the merge signature refactoring
of Law 4), but in the process they also use several preparatory refactorings
to deal with alignment issues: sometimes the name of a method or class is
changed in a clone, and in order to apply a merging refactoring the name in the

Merging Cloned Alloy Models with Colorful Refactorings 11

1 fact FeatureModel { 2 1 some none 1 2 and 3 1 some none 1 3 }
2
3 1 2 3 sig Product { images: set Image, catalog: one Catalog } 3 2 1

4 ...
5 run Scenario with 1 , 2 , 3 for 10
6 1 2 3 sig Product { images: set Image, category: one Category } 3 2 1

7 ...
8 run Scenario with 1 , 2 , 3 for 10
9 1 2 3 sig Product { images: set Image, category: one Category } 3 2 1

10 ...
11 run Scenario with 1 , 2 , 3 for 10
12 check AllCataloged with 1 , 2 , 3 for 10
13 1 2 3 sig Product { images: set Image, category: some Category } 3 2 1

14 ...
15 run Scenario with 1 , 2 , 3 for 10
16 1 2 3 sig Product { images: set Image, category: some Category } 3 2 1

17 ...
18 run Scenario with 1 , 2 , 3 for 10
19 check AllCataloged with 1 , 2 , 3 for 10

Fig. 5: Part of the initial migrated e-commerce colorful model.

clone should first be made equal to the original one. Although we also require
preparatory refactorings (e.g., to remove syntactic sugar from declarations), the
name alignment problem is orthogonal to the migration problem, and in this
paper we will focus solely on the latter, assuming names in different clones were
previously aligned.

To obtain the initial Colorful Alloy model it suffices to migrate every clone
to a single model, annotating all paragraphs and commands of each clone with
the feature expression that exactly describes the respective variant. For example,
for the e-commerce example, the base model of Fig. 3 would be annotated with
the feature expression 1 2 3 , since this clone does not specify any of the three
features, the clone of Fig. 4 would be annotated with the feature expression
1 2 3 , since it specifies the variant implementing only simple categories, and so
on. If some feature combinations are invalid (there are only clones for some of the
combinations), a fact that prevents the forbidden combinations should also be
added, similar to the FeatureModel of Fig. 1. For the e-commerce example, part
of the initial colorful model with all five variants is depicted in Fig. 5. Notice
that, since all of the elements of the different clones are included and annotated
with disjoint feature expressions, this Colorful Alloy model trivially and faithfully
captures all the variants, although being quite verbose.

After obtaining this initial model, the refactorings presented in the previous
section can be repeatedly used in a step-wise fashion to merge common elements,
reducing the verbosity (and improving the readability) of the model. For the
structural elements the key refactorings are merging signatures (Laws 4 and 5) and
fields (Law 6), but, as already explained, some additional preparatory refactorings
might be needed to enable those, for example reordering (or removing redundant)
feature annotations or removing multiplicity qualifiers.

For example, in the initial model of Fig. 5 we can start by merging signature
Product (and the respective fields) from clones 1 2 3 and 1 2 3 and obtain

12 Chong Liu and Nuno Macedo and Alcino Cunha

2 3 sig Product {
images: set Image, 1 catalog: one Catalog 1 , 1 category: one Category 1 } 3 2

and then merge this with the definition from clone 1 2 3 (by first removing the
redundant feature annotation 1 to enable the application of Law 4 – notice that
from the feature model we can infer that 2 implies 1) in order to obtain

3 sig Product {
images: set Image, 1 2 catalog: one Catalog 2 1 , 1 category: one Category 1 } 3

The same result would be obtained if we first merged the declarations of Product
from clones 1 2 3 and 1 2 3 , and then the one from clone 1 2 3 (in this case,
to apply Law 4 we would first need to remove the redundant annotation 2 ,
since from the feature model we can also infer that 1 implies 2). By repeatedly
merging the variants of Product we can eventually get to the ideal (in the sense
of having the least duplicate declarations) definition for this signature.

sig Product { images: set Image, 1 catalog: one Catalog 1 , 1 category: set Category 1 }
1 fact { all p:Product | 3 one p.category 3 and 3 some p.category 3 } 1

If we repeat this process with all other model elements, we eventually get a
(slightly optimized) version of the Colorful Alloy model in Fig. 1. This merging
process also has an impact on performance: for instance, the merged command
AllCataloged with feature scope 1 , 2 and atom scope 10 – which only analyses
two variants – takes 13.4s if run in the clones individually, but after the presented
merging process the command is checked 1.5x faster at 8.7s in Colorful Alloy.

A similar technique can be used to migrate a new clone into an existing
colorful model, thus enabling a reactive approach to SPL engineering. Let us
suppose we already have the ideal colorful model for e-commerce, but we decide
to introduce a new variant to support multiple catalogs when categories are
disabled (a new feature 4). The definition of Product for this clone would be

sig Product { images: set Image, catalog: some Catalog }

To migrate this clone to the existing colorful SPL we would annotate the elements
of the new variant with the feature expression that characterizes it, 1 2 3 4 ,
annotate all elements of the existing SPL with 4 (since it does not support this
new feature), refine the feature model to forbid invalid variants (adding some none

annotated with 1 4 to forbid the new feature in the presence of categories), and
then restart the refactoring process to improve the obtained model.

5 Implementation and Evaluation

We implemented our catalog of refactorings in the Colorful Alloy Analyzer4.
Individual refactorings are implemented in a contextual menu, activated by a right-
click. The Analyzer automatically detects which refactorings can be applied in a
given context. It also scans the model facts to extract feature model constraints
4 https://github.com/chongliujlu/ColorfulAlloy/

https://github.com/chongliujlu/ColorfulAlloy/

Merging Cloned Alloy Models with Colorful Refactorings 13

Fig. 6: Automatic merge strategies. Fig. 7: Contextual refactoring menu.

from statements with the shape a some none a , so that the application of laws
with preconditions on feature dependencies (Laws 2, 5 and 10) can be automated.
For efficiency reasons, the prototype implements an incomplete decision procedure
to check these preconditions, considering only simple implications directly derived
from the feature model. This does not affect the soundness of the procedure but
may fail to automatically detect some possible rule applications.

To simplify the application of the technique described in the previous section,
we also implemented some automatic refactoring strategies to merge signature
declarations and other model elements. The strategy to merge signature declara-
tions first applies syntactic sugar refactorings to align the qualifiers of the different
declarations. Then, it repeatedly applies Laws 4 and 5 to merge declarations,
trying to eliminate features one at a time. Finally, a similar process is applied to
merge field declarations with Law 6. To ensure termination, this strategy does
not attempt to remove or add redundant features (sometimes it is necessary to
add redundant features to enable further merging), being the user responsible
for applying that law if necessary (by resorting to the contextual menu). The
automatic strategies to merge the remaining paragraphs are similar. The strategy
to merge facts essentially attempts to apply laws in the simplification direction
(from left to right), until no further law is applicable. Figure 6 shows the menu
with the automatic merge refactorings for our running example. If the option to
merge signature Product is selected we will get the result in Fig. 7, where we
still have three declarations for Product. To merge these, the user must first use
the contextual menu to remove the redundant 1 from the first two declarations,
through right-clicking in Product as shown in Fig. 7. Then, by selecting again
the automatic merge signature for Product we would get the single Product

declaration (and additional fact) presented in the previous section.
Our evaluation aimed to answer the following research questions: 1) Since

in principle smaller specifications are easier to understand, how effective is the

14 Chong Liu and Nuno Macedo and Alcino Cunha

Table 1: Evaluation results.
SPL NP LI LF R DL RS US
E-commerce 5 112 31 72.3% 15 101 30
Vending 4 269 94 65.1% 10 140 19
Bestiary 16 140 22 84.3% 7 207 9
RingElection 2 91 52 42.9% 8 25 14
Grandpa 3 99 52 47.5% 11 36 9
AddressBook 3 133 106 20.3% 9 26 18
Hotel 4 324 172 46.9% 9 70 22
Average 5 267 76 54.2% 10 86 17

clone migration technique at reducing the total size of the models? 2) Is our
catalog of refactorings sufficient to reach an ideal colorful model specified by an
expert? To this purpose we considered various sets of cloned Alloy models that
fall in two categories: three examples previously developed by us using a proactive
approach with Colorful Alloy (e-commerce, vending machine, and bestiary) and
four examples developed by D. Jackson in [17] and packaged with the standard
Alloy Analyzer distribution as sample models (ring election, grandpa, address
book, and hotel), for which several plain Alloy variants exist (very likely developed
with clone-and-own). For the former examples, we generated the plain Alloy
clones by projecting the colorful model over all the valid feature combinations.

To answer question 1) we applied our clone migration techniques to all of the
examples, until we reached a point where no more merge refactorings could be
applied, and compared the size of the resulting Colorful Alloy model with the
combined size of all plain Alloy clones (measured in number of lines). The results
are presented in Table 1, where NP denotes the number of product clones in the
example, LI the initial number of lines, LF the number of lines after migration,
R the achieved reduction in lines, DL the number of distinct refactoring laws
that were used in the process, RS the number of individual refactoring steps
(including those applied during the automatic strategies), and US the number of
actions effectively performed by the user (each either a selection of an automatic
refactoring strategy or an individual refactoring from a contextual menu). In
average we achieved a reduction of around 54% lines, which is quite substantial:
the formal design of the full SPL in the final Colorful Alloy model occupies in
average half the size of all the plain Alloy clones combined, which in principle
considerably simplifies its understanding. The lowest reduction was for the address
book example (around 20%), since some of the clones had a completely different
approach to specify the system events. The average number of refactoring steps
was 86. This number has a strong correlation with the number of clones, since
the proposed merging refactorings operate on two clones at a time – if a common
element exists in n clones, we will need at least n− 1 rule applications to merge
it. The average number of steps required by the user was 17, meaning that the
proposed technique is quite usable in practice.

Merging Cloned Alloy Models with Colorful Refactorings 15

For question 2) we relied on the three examples where the clones were derived
from previously developed Colorful Alloy models. For all of them, our catalog of
refactorings was sufficient to migrate the clones and obtain the original colorful
model from which they were derived. As seen in Table 1, these examples required
a wider range of refactoring laws than the ones whose variants were developed
with clone-and-own in plain Alloy, because the original Colorful Alloy models
were purposely complex and diverse in terms of variability annotations, since
they were originally developed to illustrate the potential of the Colorful Alloy
language.

6 Related Work

Refactoring of SPLs Some work has been proposed on behavior-preserving refac-
torings for systems with variability, although mostly focusing on compositional
approaches [22,36,6,35] (even though some of these could be adapted to the
annotative context). Refactorings for an annotative approach are proposed in [23]
for C/C++ code with #ifdef annotations, which are often used to implicitly
encode variability. The AST is enhanced with variability annotations which are
considered during variability-aware static analysis to perform transformations
that preserve the behavior of all variants. It does not, however, consider the
existence of feature models. All these approaches adapt classic refactoring [12]
operations, such as renaming or moving functions/fields, while our approach also
supports finer-grained refactorings essential to formal software design, including
the refactoring of formulas and relational expressions.

Many other refactoring approaches for SPLs have focused only on transform-
ing feature models (e.g., [2]), including some that verify their soundness using
Alloy [15,16,39], but without taking into consideration the actual code.

Refactorings have been proposed for formal specification languages such as Al-
loy [14,13] Object-Z [38,29], OCL-annotated UML [27], Event-B [1] and ASM [37],
implementing typical refactorings such as renaming and moving elements, or in-
troducing inheritance. Variability-aware formal specification languages are scarce,
and we are not aware of refactorings aimed at them. Our approach relies on the
refactorings proposed for normal Alloy [14,13] for the transformations that are
not dependent on feature annotations.

Migration into SPLs Since the proactive approach is often infeasible due to the
dynamic nature of the software development process, there is extensive work
on migrating products into SPLs through extractive approaches, including for
clone-and-own scenarios [5]. As detailed in Section 4, the approach presented in
this paper can be applied for both the extractive and reactive scenarios, since
new variants can be introduced to an already existing Colorful Alloy model.

Nonetheless, only some of this work tackles the migration of multiple variants
at the source code level – in contrast to those acting at the domain analysis level,
focusing on the feature model. Here, the approach most closely related to ours is
the one proposed in [11], which builds on the refactoring operations proposed

16 Chong Liu and Nuno Macedo and Alcino Cunha

in [36] to handle the step-wise migration of multiple variants into a single software
family. It is has been proposed for feature-oriented programming, a compositional
approach, unlike our technique that follows an annotative approach. Again, our
refactoring operations are also more fine-grained, while [36] focuses mainly on
the refactoring of methods and fields, similarly to our merge signature and fields
refactorings. Clone detection is used to semi-automate the process, while our
approach is currently manual. In [2] refactorings are also proposed to migrate
multiple products into an SPL, but focusing mostly on the feature model level.

Some migration approaches have focused on automating the process, which
requires the automatic comparing, matching and merging of artifacts [32,7],
including n-way merge [33]. However, such approaches are best-suited to deal
with structural models, and not Alloy models rich in declarative constraints.
They also assume the existence of quality metrics to guide the process, whose
shape would be unclear considering the declarative constraints. Other approaches
act on source code of cloned variants to extract variability information [25,34] or
high-level architectural models with variability [20,28,19,24] but do not effectively
transform the code into an SPL.

Among SPL migration techniques for a single legacy product, it is worth
mentioning the one proposed in [40] that converts a product into an annotated
colorful SPL using CIDE [18], which was the inspiration for Colorful Alloy [26].
Here, the user must initially mark certain elements as the “seeds” of a feature,
and annotations are propagated to related elements automatically.

7 Conclusion and Future Work

In this paper we proposed a catalog of variant-preserving refactoring laws for
Colorful Alloy, a language for feature-oriented software design. This catalog covers
most aspects of the language, from structural elements, such as signature and field
declarations, to formulas in facts and assertions, including analysis commands.
Using these refactorings, we proposed a technique for migrating sets of plain
Alloy clones, specifying different variants of a system, into a single Colorful Alloy
SPL. The technique is step-wise and semi-automated, in the sense that the user
is responsible for choosing which elements to merge and selecting occasional
preparatory refactorings, being the application of the refactorings automated by
the Analyzer. We evaluated the effectiveness of this migration technique with
several sets of plain Alloy clones and achieved a substantial reduction in the size of
the equivalent Colorful Alloy model, with likely gains in terms of maintainability,
understandability, and efficiency of analysis.

In the future we intend to conduct a more extensive evaluation, with more
examples and measuring other aspects of model quality (besides number of lines),
in order to assess if the positive results achieved in the preliminary evaluation
still hold. We also intend to implement a full SAT-based decision procedure for
testing the laws preconditions.

Merging Cloned Alloy Models with Colorful Refactorings 17

Acknowledgments

This work is financed by the ERDF — European Regional Development Fund
through the Operational Programme for Competitiveness and Internationalisation
– COMPETE 2020 Programme and by National Funds through the Portuguese
funding agency, FCT – Fundação para a Ciência e a Tecnologia within project
PTDC/CCI-INF/29583/2017 – POCI-01-0145-FEDER-029583.

References

1. Abrial, J., Butler, M.J., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
An open toolset for modelling and reasoning in Event-B. Int. J. Softw. Tools Technol.
Transf. 12(6), 447–466 (2010)

2. Alves, V., Gheyi, R., Massoni, T., Kulesza, U., Borba, P., de Lucena, C.J.P.:
Refactoring product lines. In: GPCE. pp. 201–210. ACM (2006)

3. Apel, S., Batory, D.S., Kästner, C., Saake, G.: Feature-Oriented Software Product
Lines – Concepts and Implementation. Springer (2013)

4. Apel, S., Scholz, W., Lengauer, C., Kästner, C.: Detecting dependences and inter-
actions in feature-oriented design. In: ISSRE. pp. 161–170. IEEE Computer Society
(2010)

5. Assunção, W.K.G., Lopez-Herrejon, R.E., Linsbauer, L., Vergilio, S.R., Egyed,
A.: Reengineering legacy applications into software product lines: A systematic
mapping. Empirical Software Engineering 22(6), 2972–3016 (2017)

6. Borba, P., Teixeira, L., Gheyi, R.: A theory of software product line refinement.
Theor. Comput. Sci. 455, 2–30 (2012)

7. Boubakir, M., Chaoui, A.: A pairwise approach for model merging. In: Modelling
and Implementation of Complex Systems, pp. 327–340. Springer (2016)

8. Classen, A., Cordy, M., Heymans, P., Legay, A., Schobbens, P.: Model checking
software product lines with SNIP. Int. J. Softw. Tools Technol. Transf. 14(5),
589–612 (2012)

9. Czarnecki, K., Pietroszek, K.: Verifying feature-based model templates against
well-formedness OCL constraints. In: GPCE. pp. 211–220. ACM (2006)

10. Czarnecki, K., Wasowski, A.: Feature diagrams and logics: There and back again.
In: SPLC. pp. 23–34. IEEE (2007)

11. Fenske, W., Meinicke, J., Schulze, S., Schulze, S., Saake, G.: Variant-preserving
refactorings for migrating cloned products to a product line. In: SANER. pp.
316–326. IEEE (2017)

12. Fowler, M.: Refactoring – Improving the Design of Existing Code. Addison Wesley
object technology series, Addison-Wesley (1999)

13. Gheyi, R.: A Refinement Theory for Alloy. Ph.D. thesis, Universidade Federal de
Pernambuco (2007)

14. Gheyi, R., Borba, P.: Refactoring Alloy specifications. Electron. Notes Theor.
Comput. Sci. 95, 227–243 (2004)

15. Gheyi, R., Massoni, T., Borba, P.: A theory for feature models in Alloy. In: Alloy
Workshop @ SIGSOFT FSE. pp. 71–80 (2006)

16. Gheyi, R., Massoni, T., Borba, P.: Automatically checking feature model refactorings.
J. UCS 17(5), 684–711 (2011)

17. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT Press
(2012)

18 Chong Liu and Nuno Macedo and Alcino Cunha

18. Kästner, C., Apel, S., Kuhlemann, M.: Granularity in software product lines. In:
ICSE. pp. 311–320. ACM (2008)

19. Klatt, B., Krogmann, K., Seidl, C.: Program dependency analysis for consolidating
customized product copies. In: ICSME. pp. 496–500. IEEE (2014)

20. Koschke, R., Frenzel, P., Breu, A.P.J., Angstmann, K.: Extending the reflexion
method for consolidating software variants into product lines. Software Quality
Journal 17(4), 331–366 (2009)

21. Krueger, C.W.: Easing the transition to software mass customization. In: PFE.
LNCS, vol. 2290, pp. 282–293. Springer (2001)

22. Kuhlemann, M., Batory, D.S., Apel, S.: Refactoring feature modules. In: ICSR.
LNCS, vol. 5791, pp. 106–115. Springer (2009)

23. Liebig, J., Janker, A., Garbe, F., Apel, S., Lengauer, C.: Morpheus: Variability-aware
refactoring in the wild. In: ICSE (1). pp. 380–391. IEEE (2015)

24. Lima, C., do Carmo Machado, I., de Almeida, E.S., von Flach G. Chavez, C.:
Recovering the product line architecture of the Apo-Games. In: SPLC. pp. 289–293.
ACM (2018)

25. Linsbauer, L., Lopez-Herrejon, R.E., Egyed, A.: Variability extraction and modeling
for product variants. Software and Systems Modeling 16(4), 1179–1199 (2017)

26. Liu, C., Macedo, N., Cunha, A.: Simplifying the analysis of software design variants
with a colorful Alloy. In: SETTA. LNCS, vol. 11951, pp. 38–55. Springer (2019)

27. Markovic, S., Baar, T.: Refactoring OCL annotated UML class diagrams. Software
and Systems Modeling 7(1), 25–47 (2008)

28. Martinez, J., Thurimella, A.K.: Collaboration and source code driven bottom-up
product line engineering. In: SPLC (2). pp. 196–200. ACM (2012)

29. McComb, T., Smith, G.: A minimal set of refactoring rules for Object-Z. In:
FMOODS. LNCS, vol. 5051, pp. 170–184. Springer (2008)

30. Opdyke, W.F.: Refactoring object-oriented frameworks. Ph.D. thesis, University of
Illinois at Urbana-Champaign (1992)

31. Plath, M., Ryan, M.: Feature integration using a feature construct. Sci. Comput.
Program. 41(1), 53–84 (2001)

32. Rubin, J., Chechik, M.: Combining related products into product lines. In: FASE.
LNCS, vol. 7212, pp. 285–300. Springer (2012)

33. Rubin, J., Chechik, M.: N-way model merging. In: ESEC/SIGSOFT FSE. pp.
301–311. ACM (2013)

34. Schlie, A., Schulze, S., Schaefer, I.: Recovering variability information from source
code of clone-and-own software systems. In: VaMoS. pp. 19:1–19:9. ACM (2020)

35. Schulze, S., Richers, O., Schaefer, I.: Refactoring delta-oriented software product
lines. In: AOSD. pp. 73–84. ACM (2013)

36. Schulze, S., Thüm, T., Kuhlemann, M., Saake, G.: Variant-preserving refactoring
in feature-oriented software product lines. In: VaMoS. pp. 73–81. ACM (2012)

37. Shahir, H.Y., Farahbod, R., Glässer, U.: Refactoring Abstract State Machine models.
In: ABZ. LNCS, vol. 7316, pp. 345–348. Springer (2012)

38. Stepney, S., Polack, F., Toyn, I.: Refactoring in maintenance and development of Z
specifications. Electron. Notes Theor. Comput. Sci. 70(3), 50–69 (2002)

39. Tanhaei, M., Habibi, J., Mirian-Hosseinabadi, S.: Automating feature model refac-
toring: A model transformation approach. Inf. Softw. Technol. 80, 138–157 (2016)

40. Valente, M.T., Borges, V., Passos, L.T.: A semi-automatic approach for extracting
software product lines. IEEE Trans. Software Eng. 38(4), 737–754 (2012)

	Merging Cloned Alloy Models with Colorful Refactorings

